]>
Commit | Line | Data |
---|---|---|
b0d623f7 A |
1 | |
2 | /* | |
3 | * Copyright (c) 2000-2007 Apple Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
6 | * | |
7 | * This file contains Original Code and/or Modifications of Original Code | |
8 | * as defined in and that are subject to the Apple Public Source License | |
9 | * Version 2.0 (the 'License'). You may not use this file except in | |
10 | * compliance with the License. The rights granted to you under the License | |
11 | * may not be used to create, or enable the creation or redistribution of, | |
12 | * unlawful or unlicensed copies of an Apple operating system, or to | |
13 | * circumvent, violate, or enable the circumvention or violation of, any | |
14 | * terms of an Apple operating system software license agreement. | |
15 | * | |
16 | * Please obtain a copy of the License at | |
17 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
18 | * | |
19 | * The Original Code and all software distributed under the License are | |
20 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
21 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
22 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
23 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
24 | * Please see the License for the specific language governing rights and | |
25 | * limitations under the License. | |
26 | * | |
27 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
28 | */ | |
29 | /* | |
30 | * @OSF_COPYRIGHT@ | |
31 | */ | |
32 | /* | |
33 | * Mach Operating System | |
34 | * Copyright (c) 1991,1990,1989,1988 Carnegie Mellon University | |
35 | * All Rights Reserved. | |
36 | * | |
37 | * Permission to use, copy, modify and distribute this software and its | |
38 | * documentation is hereby granted, provided that both the copyright | |
39 | * notice and this permission notice appear in all copies of the | |
40 | * software, derivative works or modified versions, and any portions | |
41 | * thereof, and that both notices appear in supporting documentation. | |
42 | * | |
43 | * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" | |
44 | * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND FOR | |
45 | * ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. | |
46 | * | |
47 | * Carnegie Mellon requests users of this software to return to | |
48 | * | |
49 | * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU | |
50 | * School of Computer Science | |
51 | * Carnegie Mellon University | |
52 | * Pittsburgh PA 15213-3890 | |
53 | * | |
54 | * any improvements or extensions that they make and grant Carnegie Mellon | |
55 | * the rights to redistribute these changes. | |
56 | */ | |
57 | /* | |
58 | */ | |
59 | ||
60 | /* | |
61 | * File: pmap.c | |
62 | * Author: Avadis Tevanian, Jr., Michael Wayne Young | |
63 | * (These guys wrote the Vax version) | |
64 | * | |
65 | * Physical Map management code for Intel i386, i486, and i860. | |
66 | * | |
67 | * Manages physical address maps. | |
68 | * | |
69 | * In addition to hardware address maps, this | |
70 | * module is called upon to provide software-use-only | |
71 | * maps which may or may not be stored in the same | |
72 | * form as hardware maps. These pseudo-maps are | |
73 | * used to store intermediate results from copy | |
74 | * operations to and from address spaces. | |
75 | * | |
76 | * Since the information managed by this module is | |
77 | * also stored by the logical address mapping module, | |
78 | * this module may throw away valid virtual-to-physical | |
79 | * mappings at almost any time. However, invalidations | |
80 | * of virtual-to-physical mappings must be done as | |
81 | * requested. | |
82 | * | |
83 | * In order to cope with hardware architectures which | |
84 | * make virtual-to-physical map invalidates expensive, | |
85 | * this module may delay invalidate or reduced protection | |
86 | * operations until such time as they are actually | |
87 | * necessary. This module is given full information as | |
88 | * to which processors are currently using which maps, | |
89 | * and to when physical maps must be made correct. | |
90 | */ | |
91 | ||
92 | #include <string.h> | |
b0d623f7 A |
93 | #include <mach_kdb.h> |
94 | #include <mach_ldebug.h> | |
95 | ||
96 | #include <libkern/OSAtomic.h> | |
97 | ||
98 | #include <mach/machine/vm_types.h> | |
99 | ||
100 | #include <mach/boolean.h> | |
101 | #include <kern/thread.h> | |
102 | #include <kern/zalloc.h> | |
103 | #include <kern/queue.h> | |
104 | ||
105 | #include <kern/lock.h> | |
106 | #include <kern/kalloc.h> | |
107 | #include <kern/spl.h> | |
108 | ||
109 | #include <vm/pmap.h> | |
110 | #include <vm/vm_map.h> | |
111 | #include <vm/vm_kern.h> | |
112 | #include <mach/vm_param.h> | |
113 | #include <mach/vm_prot.h> | |
114 | #include <vm/vm_object.h> | |
115 | #include <vm/vm_page.h> | |
116 | ||
117 | #include <mach/machine/vm_param.h> | |
118 | #include <machine/thread.h> | |
119 | ||
120 | #include <kern/misc_protos.h> /* prototyping */ | |
121 | #include <i386/misc_protos.h> | |
122 | #include <x86_64/lowglobals.h> | |
123 | ||
124 | #include <i386/cpuid.h> | |
125 | #include <i386/cpu_data.h> | |
126 | #include <i386/cpu_number.h> | |
127 | #include <i386/machine_cpu.h> | |
128 | #include <i386/seg.h> | |
129 | #include <i386/serial_io.h> | |
130 | #include <i386/cpu_capabilities.h> | |
131 | #include <i386/machine_routines.h> | |
132 | #include <i386/proc_reg.h> | |
133 | #include <i386/tsc.h> | |
134 | #include <i386/pmap_internal.h> | |
135 | ||
136 | #if MACH_KDB | |
137 | #include <ddb/db_command.h> | |
138 | #include <ddb/db_output.h> | |
139 | #include <ddb/db_sym.h> | |
140 | #include <ddb/db_print.h> | |
141 | #endif /* MACH_KDB */ | |
142 | ||
143 | #include <vm/vm_protos.h> | |
144 | ||
145 | #include <i386/mp.h> | |
146 | #include <i386/mp_desc.h> | |
147 | ||
148 | ||
b0d623f7 A |
149 | |
150 | #ifdef IWANTTODEBUG | |
151 | #undef DEBUG | |
152 | #define DEBUG 1 | |
153 | #define POSTCODE_DELAY 1 | |
154 | #include <i386/postcode.h> | |
155 | #endif /* IWANTTODEBUG */ | |
156 | ||
157 | boolean_t pmap_trace = FALSE; | |
158 | ||
159 | #if PMAP_DBG | |
160 | #define DBG(x...) kprintf("DBG: " x) | |
161 | #else | |
162 | #define DBG(x...) | |
163 | #endif | |
164 | ||
165 | boolean_t no_shared_cr3 = DEBUG; /* TRUE for DEBUG by default */ | |
166 | ||
167 | /* | |
168 | * Forward declarations for internal functions. | |
169 | */ | |
170 | ||
b0d623f7 A |
171 | |
172 | void phys_attribute_clear( | |
173 | ppnum_t phys, | |
174 | int bits); | |
175 | ||
176 | int phys_attribute_test( | |
177 | ppnum_t phys, | |
178 | int bits); | |
179 | ||
180 | void phys_attribute_set( | |
181 | ppnum_t phys, | |
182 | int bits); | |
183 | ||
184 | void pmap_set_reference( | |
185 | ppnum_t pn); | |
186 | ||
187 | boolean_t phys_page_exists( | |
188 | ppnum_t pn); | |
189 | ||
190 | ||
191 | int nx_enabled = 1; /* enable no-execute protection */ | |
192 | int allow_data_exec = VM_ABI_32; /* 32-bit apps may execute data by default, 64-bit apps may not */ | |
193 | int allow_stack_exec = 0; /* No apps may execute from the stack by default */ | |
194 | ||
195 | const boolean_t cpu_64bit = TRUE; /* Mais oui! */ | |
196 | ||
b0d623f7 A |
197 | uint64_t max_preemption_latency_tsc = 0; |
198 | ||
b0d623f7 A |
199 | pv_hashed_entry_t *pv_hash_table; /* hash lists */ |
200 | ||
201 | uint32_t npvhash = 0; | |
202 | ||
b0d623f7 A |
203 | pv_hashed_entry_t pv_hashed_free_list = PV_HASHED_ENTRY_NULL; |
204 | pv_hashed_entry_t pv_hashed_kern_free_list = PV_HASHED_ENTRY_NULL; | |
205 | decl_simple_lock_data(,pv_hashed_free_list_lock) | |
206 | decl_simple_lock_data(,pv_hashed_kern_free_list_lock) | |
207 | decl_simple_lock_data(,pv_hash_table_lock) | |
208 | ||
209 | int pv_hashed_free_count = 0; | |
210 | int pv_hashed_kern_free_count = 0; | |
b0d623f7 | 211 | |
b0d623f7 A |
212 | |
213 | zone_t pv_hashed_list_zone; /* zone of pv_hashed_entry structures */ | |
214 | ||
215 | static zone_t pdpt_zone; | |
216 | ||
217 | /* | |
218 | * Each entry in the pv_head_table is locked by a bit in the | |
219 | * pv_lock_table. The lock bits are accessed by the physical | |
220 | * address of the page they lock. | |
221 | */ | |
222 | ||
223 | char *pv_lock_table; /* pointer to array of bits */ | |
b7266188 | 224 | |
b0d623f7 A |
225 | |
226 | char *pv_hash_lock_table; | |
b7266188 | 227 | |
b0d623f7 A |
228 | |
229 | /* | |
230 | * First and last physical addresses that we maintain any information | |
231 | * for. Initialized to zero so that pmap operations done before | |
232 | * pmap_init won't touch any non-existent structures. | |
233 | */ | |
234 | boolean_t pmap_initialized = FALSE;/* Has pmap_init completed? */ | |
235 | ||
236 | static struct vm_object kptobj_object_store; | |
237 | static struct vm_object kpml4obj_object_store; | |
238 | static struct vm_object kpdptobj_object_store; | |
239 | ||
240 | /* | |
b7266188 | 241 | * Array of physical page attributes for managed pages. |
b0d623f7 A |
242 | * One byte per physical page. |
243 | */ | |
244 | char *pmap_phys_attributes; | |
245 | unsigned int last_managed_page = 0; | |
b0d623f7 A |
246 | uint64_t pde_mapped_size = PDE_MAPPED_SIZE; |
247 | ||
b0d623f7 A |
248 | unsigned pmap_memory_region_count; |
249 | unsigned pmap_memory_region_current; | |
250 | ||
251 | pmap_memory_region_t pmap_memory_regions[PMAP_MEMORY_REGIONS_SIZE]; | |
252 | ||
253 | /* | |
254 | * Other useful macros. | |
255 | */ | |
256 | #define current_pmap() (vm_map_pmap(current_thread()->map)) | |
257 | ||
258 | struct pmap kernel_pmap_store; | |
259 | pmap_t kernel_pmap; | |
260 | ||
261 | pd_entry_t high_shared_pde; | |
262 | pd_entry_t commpage64_pde; | |
263 | ||
264 | struct zone *pmap_zone; /* zone of pmap structures */ | |
265 | ||
b0d623f7 A |
266 | unsigned int inuse_ptepages_count = 0; |
267 | ||
268 | addr64_t kernel64_cr3; | |
269 | ||
270 | /* | |
271 | * Pmap cache. Cache is threaded through ref_count field of pmap. | |
272 | * Max will eventually be constant -- variable for experimentation. | |
273 | */ | |
274 | int pmap_cache_max = 32; | |
275 | int pmap_alloc_chunk = 8; | |
276 | pmap_t pmap_cache_list; | |
277 | int pmap_cache_count; | |
278 | decl_simple_lock_data(,pmap_cache_lock) | |
279 | ||
280 | extern char end; | |
281 | ||
282 | static int nkpt; | |
283 | ||
284 | pt_entry_t *DMAP1, *DMAP2; | |
285 | caddr_t DADDR1; | |
286 | caddr_t DADDR2; | |
b0d623f7 A |
287 | /* |
288 | * for legacy, returns the address of the pde entry. | |
289 | * for 64 bit, causes the pdpt page containing the pde entry to be mapped, | |
290 | * then returns the mapped address of the pde entry in that page | |
291 | */ | |
292 | pd_entry_t * | |
293 | pmap_pde(pmap_t m, vm_map_offset_t v) | |
294 | { | |
295 | pd_entry_t *pde; | |
296 | ||
297 | assert(m); | |
298 | #if 0 | |
299 | if (m == kernel_pmap) | |
300 | pde = (&((m)->dirbase[(vm_offset_t)(v) >> PDESHIFT])); | |
301 | else | |
302 | #endif | |
303 | pde = pmap64_pde(m, v); | |
304 | ||
305 | return pde; | |
306 | } | |
307 | ||
308 | /* | |
309 | * the single pml4 page per pmap is allocated at pmap create time and exists | |
310 | * for the duration of the pmap. we allocate this page in kernel vm. | |
311 | * this returns the address of the requested pml4 entry in the top level page. | |
312 | */ | |
313 | static inline | |
314 | pml4_entry_t * | |
315 | pmap64_pml4(pmap_t pmap, vm_map_offset_t vaddr) | |
316 | { | |
317 | return &pmap->pm_pml4[(vaddr >> PML4SHIFT) & (NPML4PG-1)]; | |
318 | } | |
319 | ||
320 | /* | |
321 | * maps in the pml4 page, if any, containing the pdpt entry requested | |
322 | * and returns the address of the pdpt entry in that mapped page | |
323 | */ | |
324 | pdpt_entry_t * | |
325 | pmap64_pdpt(pmap_t pmap, vm_map_offset_t vaddr) | |
326 | { | |
327 | pml4_entry_t newpf; | |
328 | pml4_entry_t *pml4; | |
329 | ||
330 | assert(pmap); | |
331 | if ((vaddr > 0x00007FFFFFFFFFFFULL) && | |
332 | (vaddr < 0xFFFF800000000000ULL)) { | |
333 | return (0); | |
334 | } | |
335 | ||
336 | pml4 = pmap64_pml4(pmap, vaddr); | |
337 | if (pml4 && ((*pml4 & INTEL_PTE_VALID))) { | |
338 | newpf = *pml4 & PG_FRAME; | |
339 | return &((pdpt_entry_t *) PHYSMAP_PTOV(newpf)) | |
340 | [(vaddr >> PDPTSHIFT) & (NPDPTPG-1)]; | |
341 | } | |
342 | return (NULL); | |
343 | } | |
344 | /* | |
345 | * maps in the pdpt page, if any, containing the pde entry requested | |
346 | * and returns the address of the pde entry in that mapped page | |
347 | */ | |
348 | pd_entry_t * | |
349 | pmap64_pde(pmap_t pmap, vm_map_offset_t vaddr) | |
350 | { | |
351 | pdpt_entry_t newpf; | |
352 | pdpt_entry_t *pdpt; | |
353 | ||
354 | assert(pmap); | |
355 | if ((vaddr > 0x00007FFFFFFFFFFFULL) && | |
356 | (vaddr < 0xFFFF800000000000ULL)) { | |
357 | return (0); | |
358 | } | |
359 | ||
360 | pdpt = pmap64_pdpt(pmap, vaddr); | |
361 | ||
362 | if (pdpt && ((*pdpt & INTEL_PTE_VALID))) { | |
363 | newpf = *pdpt & PG_FRAME; | |
364 | return &((pd_entry_t *) PHYSMAP_PTOV(newpf)) | |
365 | [(vaddr >> PDSHIFT) & (NPDPG-1)]; | |
366 | } | |
367 | return (NULL); | |
368 | } | |
369 | ||
370 | /* | |
371 | * return address of mapped pte for vaddr va in pmap pmap. | |
372 | * | |
373 | * physically maps the pde page, if any, containing the pte in and returns | |
374 | * the address of the pte in that mapped page | |
375 | * | |
376 | * In case the pde maps a superpage, return the pde, which, in this case | |
377 | * is the actual page table entry. | |
378 | */ | |
379 | pt_entry_t * | |
380 | pmap_pte(pmap_t pmap, vm_map_offset_t vaddr) | |
381 | { | |
382 | pd_entry_t *pde; | |
383 | pd_entry_t newpf; | |
384 | ||
385 | assert(pmap); | |
386 | pde = pmap_pde(pmap, vaddr); | |
387 | ||
388 | if (pde && ((*pde & INTEL_PTE_VALID))) { | |
389 | if (*pde & INTEL_PTE_PS) | |
390 | return pde; | |
391 | newpf = *pde & PG_FRAME; | |
392 | return &((pt_entry_t *)PHYSMAP_PTOV(newpf)) | |
393 | [i386_btop(vaddr) & (ppnum_t)(NPTEPG-1)]; | |
394 | } | |
395 | return (NULL); | |
396 | } | |
397 | ||
398 | /* | |
399 | * Map memory at initialization. The physical addresses being | |
400 | * mapped are not managed and are never unmapped. | |
401 | * | |
402 | * For now, VM is already on, we only need to map the | |
403 | * specified memory. | |
404 | */ | |
405 | vm_offset_t | |
406 | pmap_map( | |
407 | vm_offset_t virt, | |
408 | vm_map_offset_t start_addr, | |
409 | vm_map_offset_t end_addr, | |
410 | vm_prot_t prot, | |
411 | unsigned int flags) | |
412 | { | |
413 | int ps; | |
414 | ||
415 | ps = PAGE_SIZE; | |
416 | while (start_addr < end_addr) { | |
417 | pmap_enter(kernel_pmap, (vm_map_offset_t)virt, | |
418 | (ppnum_t) i386_btop(start_addr), prot, flags, FALSE); | |
419 | virt += ps; | |
420 | start_addr += ps; | |
421 | } | |
422 | return(virt); | |
423 | } | |
424 | ||
425 | /* | |
426 | * Back-door routine for mapping kernel VM at initialization. | |
427 | * Useful for mapping memory outside the range | |
428 | * Sets no-cache, A, D. | |
429 | * Otherwise like pmap_map. | |
430 | */ | |
431 | vm_offset_t | |
432 | pmap_map_bd( | |
433 | vm_offset_t virt, | |
434 | vm_map_offset_t start_addr, | |
435 | vm_map_offset_t end_addr, | |
436 | vm_prot_t prot, | |
437 | unsigned int flags) | |
438 | { | |
439 | pt_entry_t template; | |
440 | pt_entry_t *pte; | |
441 | spl_t spl; | |
442 | ||
443 | template = pa_to_pte(start_addr) | |
444 | | INTEL_PTE_REF | |
445 | | INTEL_PTE_MOD | |
446 | | INTEL_PTE_WIRED | |
447 | | INTEL_PTE_VALID; | |
448 | ||
449 | if (flags & (VM_MEM_NOT_CACHEABLE | VM_WIMG_USE_DEFAULT)) { | |
450 | template |= INTEL_PTE_NCACHE; | |
451 | if (!(flags & (VM_MEM_GUARDED | VM_WIMG_USE_DEFAULT))) | |
452 | template |= INTEL_PTE_PTA; | |
453 | } | |
454 | if (prot & VM_PROT_WRITE) | |
455 | template |= INTEL_PTE_WRITE; | |
456 | ||
457 | ||
458 | while (start_addr < end_addr) { | |
459 | spl = splhigh(); | |
460 | pte = pmap_pte(kernel_pmap, (vm_map_offset_t)virt); | |
461 | if (pte == PT_ENTRY_NULL) { | |
462 | panic("pmap_map_bd: Invalid kernel address\n"); | |
463 | } | |
464 | pmap_store_pte(pte, template); | |
465 | splx(spl); | |
466 | pte_increment_pa(template); | |
467 | virt += PAGE_SIZE; | |
468 | start_addr += PAGE_SIZE; | |
469 | } | |
470 | ||
471 | ||
472 | flush_tlb(); | |
473 | return(virt); | |
474 | } | |
475 | ||
476 | extern char *first_avail; | |
477 | extern vm_offset_t virtual_avail, virtual_end; | |
478 | extern pmap_paddr_t avail_start, avail_end; | |
479 | extern vm_offset_t sHIB; | |
480 | extern vm_offset_t eHIB; | |
481 | extern vm_offset_t stext; | |
482 | extern vm_offset_t etext; | |
483 | extern vm_offset_t sdata; | |
484 | ||
485 | void | |
486 | pmap_cpu_init(void) | |
487 | { | |
488 | /* | |
489 | * Here early in the life of a processor (from cpu_mode_init()). | |
490 | * Ensure global page feature is disabled. | |
491 | */ | |
492 | set_cr4(get_cr4() &~ CR4_PGE); | |
493 | ||
494 | /* | |
495 | * Initialize the per-cpu, TLB-related fields. | |
496 | */ | |
497 | current_cpu_datap()->cpu_kernel_cr3 = kernel_pmap->pm_cr3; | |
498 | current_cpu_datap()->cpu_active_cr3 = kernel_pmap->pm_cr3; | |
499 | current_cpu_datap()->cpu_tlb_invalid = FALSE; | |
500 | } | |
501 | ||
502 | ||
503 | ||
504 | /* | |
505 | * Bootstrap the system enough to run with virtual memory. | |
506 | * Map the kernel's code and data, and allocate the system page table. | |
507 | * Called with mapping OFF. Page_size must already be set. | |
508 | */ | |
509 | ||
510 | void | |
511 | pmap_bootstrap( | |
512 | __unused vm_offset_t load_start, | |
513 | __unused boolean_t IA32e) | |
514 | { | |
515 | #if NCOPY_WINDOWS > 0 | |
516 | vm_offset_t va; | |
517 | int i; | |
518 | #endif | |
519 | ||
520 | assert(IA32e); | |
521 | ||
522 | vm_last_addr = VM_MAX_KERNEL_ADDRESS; /* Set the highest address | |
523 | * known to VM */ | |
524 | /* | |
525 | * The kernel's pmap is statically allocated so we don't | |
526 | * have to use pmap_create, which is unlikely to work | |
527 | * correctly at this part of the boot sequence. | |
528 | */ | |
529 | ||
530 | kernel_pmap = &kernel_pmap_store; | |
531 | kernel_pmap->ref_count = 1; | |
532 | kernel_pmap->nx_enabled = FALSE; | |
533 | kernel_pmap->pm_task_map = TASK_MAP_64BIT; | |
534 | kernel_pmap->pm_obj = (vm_object_t) NULL; | |
535 | kernel_pmap->dirbase = (pd_entry_t *)((uintptr_t)IdlePTD); | |
536 | kernel_pmap->pm_pdpt = (pd_entry_t *) ((uintptr_t)IdlePDPT); | |
537 | kernel_pmap->pm_pml4 = IdlePML4; | |
538 | kernel_pmap->pm_cr3 = (uintptr_t)ID_MAP_VTOP(IdlePML4); | |
539 | ||
540 | ||
541 | current_cpu_datap()->cpu_kernel_cr3 = (addr64_t) kernel_pmap->pm_cr3; | |
542 | ||
543 | nkpt = NKPT; | |
544 | OSAddAtomic(NKPT, &inuse_ptepages_count); | |
545 | ||
546 | virtual_avail = (vm_offset_t)(VM_MIN_KERNEL_ADDRESS) + (vm_offset_t)first_avail; | |
547 | virtual_end = (vm_offset_t)(VM_MAX_KERNEL_ADDRESS); | |
548 | ||
549 | #if NCOPY_WINDOWS > 0 | |
550 | /* | |
551 | * Reserve some special page table entries/VA space for temporary | |
552 | * mapping of pages. | |
553 | */ | |
554 | #define SYSMAP(c, p, v, n) \ | |
555 | v = (c)va; va += ((n)*INTEL_PGBYTES); | |
556 | ||
557 | va = virtual_avail; | |
558 | ||
559 | for (i=0; i<PMAP_NWINDOWS; i++) { | |
560 | #if 1 | |
561 | kprintf("trying to do SYSMAP idx %d %p\n", i, | |
562 | current_cpu_datap()); | |
563 | kprintf("cpu_pmap %p\n", current_cpu_datap()->cpu_pmap); | |
564 | kprintf("mapwindow %p\n", current_cpu_datap()->cpu_pmap->mapwindow); | |
565 | kprintf("two stuff %p %p\n", | |
566 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), | |
567 | (void *)(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR)); | |
568 | #endif | |
569 | SYSMAP(caddr_t, | |
570 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP), | |
571 | (current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CADDR), | |
572 | 1); | |
573 | current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = | |
574 | &(current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP_store); | |
575 | *current_cpu_datap()->cpu_pmap->mapwindow[i].prv_CMAP = 0; | |
576 | } | |
577 | ||
578 | /* DMAP user for debugger */ | |
579 | SYSMAP(caddr_t, DMAP1, DADDR1, 1); | |
580 | SYSMAP(caddr_t, DMAP2, DADDR2, 1); /* XXX temporary - can remove */ | |
581 | ||
582 | virtual_avail = va; | |
583 | #endif | |
584 | ||
585 | if (PE_parse_boot_argn("npvhash", &npvhash, sizeof (npvhash))) { | |
586 | if (0 != ((npvhash + 1) & npvhash)) { | |
587 | kprintf("invalid hash %d, must be ((2^N)-1), " | |
588 | "using default %d\n", npvhash, NPVHASH); | |
589 | npvhash = NPVHASH; | |
590 | } | |
591 | } else { | |
592 | npvhash = NPVHASH; | |
593 | } | |
594 | ||
595 | printf("npvhash=%d\n", npvhash); | |
596 | ||
597 | simple_lock_init(&kernel_pmap->lock, 0); | |
598 | simple_lock_init(&pv_hashed_free_list_lock, 0); | |
599 | simple_lock_init(&pv_hashed_kern_free_list_lock, 0); | |
600 | simple_lock_init(&pv_hash_table_lock,0); | |
601 | ||
602 | pmap_cpu_init(); | |
603 | ||
604 | kprintf("Kernel virtual space from 0x%lx to 0x%lx.\n", | |
605 | (long)KERNEL_BASE, (long)virtual_end); | |
606 | kprintf("Available physical space from 0x%llx to 0x%llx\n", | |
607 | avail_start, avail_end); | |
608 | ||
609 | /* | |
610 | * The -no_shared_cr3 boot-arg is a debugging feature (set by default | |
611 | * in the DEBUG kernel) to force the kernel to switch to its own map | |
612 | * (and cr3) when control is in kernelspace. The kernel's map does not | |
613 | * include (i.e. share) userspace so wild references will cause | |
614 | * a panic. Only copyin and copyout are exempt from this. | |
615 | */ | |
616 | (void) PE_parse_boot_argn("-no_shared_cr3", | |
617 | &no_shared_cr3, sizeof (no_shared_cr3)); | |
618 | if (no_shared_cr3) | |
619 | kprintf("Kernel not sharing user map\n"); | |
620 | ||
621 | #ifdef PMAP_TRACES | |
622 | if (PE_parse_boot_argn("-pmap_trace", &pmap_trace, sizeof (pmap_trace))) { | |
623 | kprintf("Kernel traces for pmap operations enabled\n"); | |
624 | } | |
625 | #endif /* PMAP_TRACES */ | |
626 | } | |
627 | ||
628 | void | |
629 | pmap_virtual_space( | |
630 | vm_offset_t *startp, | |
631 | vm_offset_t *endp) | |
632 | { | |
633 | *startp = virtual_avail; | |
634 | *endp = virtual_end; | |
635 | } | |
636 | ||
637 | /* | |
638 | * Initialize the pmap module. | |
639 | * Called by vm_init, to initialize any structures that the pmap | |
640 | * system needs to map virtual memory. | |
641 | */ | |
642 | void | |
643 | pmap_init(void) | |
644 | { | |
645 | long npages; | |
646 | vm_offset_t addr; | |
647 | vm_size_t s; | |
648 | vm_map_offset_t vaddr; | |
649 | ppnum_t ppn; | |
650 | ||
651 | ||
652 | kernel_pmap->pm_obj_pml4 = &kpml4obj_object_store; | |
653 | _vm_object_allocate((vm_object_size_t)NPML4PGS, &kpml4obj_object_store); | |
654 | ||
655 | kernel_pmap->pm_obj_pdpt = &kpdptobj_object_store; | |
656 | _vm_object_allocate((vm_object_size_t)NPDPTPGS, &kpdptobj_object_store); | |
657 | ||
658 | kernel_pmap->pm_obj = &kptobj_object_store; | |
659 | _vm_object_allocate((vm_object_size_t)NPDEPGS, &kptobj_object_store); | |
660 | ||
661 | /* | |
662 | * Allocate memory for the pv_head_table and its lock bits, | |
663 | * the modify bit array, and the pte_page table. | |
664 | */ | |
665 | ||
666 | /* | |
667 | * zero bias all these arrays now instead of off avail_start | |
668 | * so we cover all memory | |
669 | */ | |
670 | ||
671 | npages = i386_btop(avail_end); | |
672 | s = (vm_size_t) (sizeof(struct pv_rooted_entry) * npages | |
673 | + (sizeof (struct pv_hashed_entry_t *) * (npvhash+1)) | |
674 | + pv_lock_table_size(npages) | |
675 | + pv_hash_lock_table_size((npvhash+1)) | |
676 | + npages); | |
677 | ||
678 | s = round_page(s); | |
679 | if (kernel_memory_allocate(kernel_map, &addr, s, 0, | |
680 | KMA_KOBJECT | KMA_PERMANENT) | |
681 | != KERN_SUCCESS) | |
682 | panic("pmap_init"); | |
683 | ||
684 | memset((char *)addr, 0, s); | |
685 | ||
686 | #if PV_DEBUG | |
687 | if (0 == npvhash) panic("npvhash not initialized"); | |
688 | #endif | |
689 | ||
690 | /* | |
691 | * Allocate the structures first to preserve word-alignment. | |
692 | */ | |
693 | pv_head_table = (pv_rooted_entry_t) addr; | |
694 | addr = (vm_offset_t) (pv_head_table + npages); | |
695 | ||
696 | pv_hash_table = (pv_hashed_entry_t *)addr; | |
697 | addr = (vm_offset_t) (pv_hash_table + (npvhash + 1)); | |
698 | ||
699 | pv_lock_table = (char *) addr; | |
700 | addr = (vm_offset_t) (pv_lock_table + pv_lock_table_size(npages)); | |
701 | ||
702 | pv_hash_lock_table = (char *) addr; | |
703 | addr = (vm_offset_t) (pv_hash_lock_table + pv_hash_lock_table_size((npvhash+1))); | |
704 | ||
705 | pmap_phys_attributes = (char *) addr; | |
706 | ||
707 | ppnum_t last_pn = i386_btop(avail_end); | |
708 | unsigned int i; | |
709 | pmap_memory_region_t *pmptr = pmap_memory_regions; | |
710 | for (i = 0; i < pmap_memory_region_count; i++, pmptr++) { | |
711 | if (pmptr->type != kEfiConventionalMemory) | |
712 | continue; | |
713 | unsigned int pn; | |
714 | for (pn = pmptr->base; pn <= pmptr->end; pn++) { | |
715 | if (pn < last_pn) { | |
716 | pmap_phys_attributes[pn] |= PHYS_MANAGED; | |
717 | if (pn > last_managed_page) | |
718 | last_managed_page = pn; | |
719 | } | |
720 | } | |
721 | } | |
722 | ||
723 | /* | |
724 | * Create the zone of physical maps, | |
725 | * and of the physical-to-virtual entries. | |
726 | */ | |
727 | s = (vm_size_t) sizeof(struct pmap); | |
728 | pmap_zone = zinit(s, 400*s, 4096, "pmap"); /* XXX */ | |
729 | s = (vm_size_t) sizeof(struct pv_hashed_entry); | |
730 | pv_hashed_list_zone = zinit(s, 10000*s, 4096, "pv_list"); /* XXX */ | |
731 | s = 63; | |
732 | pdpt_zone = zinit(s, 400*s, 4096, "pdpt"); /* XXX */ | |
733 | ||
734 | ||
735 | /* create pv entries for kernel pages mapped by low level | |
736 | startup code. these have to exist so we can pmap_remove() | |
737 | e.g. kext pages from the middle of our addr space */ | |
738 | ||
739 | vaddr = (vm_map_offset_t) VM_MIN_KERNEL_ADDRESS; | |
740 | for (ppn = 0; ppn < i386_btop(avail_start); ppn++) { | |
741 | pv_rooted_entry_t pv_e; | |
742 | ||
743 | pv_e = pai_to_pvh(ppn); | |
744 | pv_e->va = vaddr; | |
745 | vaddr += PAGE_SIZE; | |
746 | pv_e->pmap = kernel_pmap; | |
747 | queue_init(&pv_e->qlink); | |
748 | } | |
749 | pmap_initialized = TRUE; | |
750 | ||
751 | /* | |
752 | * Initialize pmap cache. | |
753 | */ | |
754 | pmap_cache_list = PMAP_NULL; | |
755 | pmap_cache_count = 0; | |
756 | simple_lock_init(&pmap_cache_lock, 0); | |
757 | ||
758 | max_preemption_latency_tsc = tmrCvt((uint64_t)MAX_PREEMPTION_LATENCY_NS, tscFCvtn2t); | |
759 | ||
760 | /* | |
761 | * Ensure the kernel's PML4 entry exists for the basement | |
762 | * before this is shared with any user. | |
763 | */ | |
764 | pmap_expand_pml4(kernel_pmap, KERNEL_BASEMENT); | |
765 | } | |
766 | ||
767 | ||
768 | /* | |
769 | * this function is only used for debugging fron the vm layer | |
770 | */ | |
771 | boolean_t | |
772 | pmap_verify_free( | |
773 | ppnum_t pn) | |
774 | { | |
775 | pv_rooted_entry_t pv_h; | |
776 | int pai; | |
777 | boolean_t result; | |
778 | ||
779 | assert(pn != vm_page_fictitious_addr); | |
780 | ||
781 | if (!pmap_initialized) | |
782 | return(TRUE); | |
783 | ||
784 | if (pn == vm_page_guard_addr) | |
785 | return TRUE; | |
786 | ||
787 | pai = ppn_to_pai(pn); | |
788 | if (!IS_MANAGED_PAGE(pai)) | |
789 | return(FALSE); | |
790 | pv_h = pai_to_pvh(pn); | |
791 | result = (pv_h->pmap == PMAP_NULL); | |
792 | return(result); | |
793 | } | |
794 | ||
795 | boolean_t | |
796 | pmap_is_empty( | |
797 | pmap_t pmap, | |
798 | vm_map_offset_t va_start, | |
799 | vm_map_offset_t va_end) | |
800 | { | |
801 | vm_map_offset_t offset; | |
802 | ppnum_t phys_page; | |
803 | ||
804 | if (pmap == PMAP_NULL) { | |
805 | return TRUE; | |
806 | } | |
807 | ||
808 | /* | |
809 | * Check the resident page count | |
810 | * - if it's zero, the pmap is completely empty. | |
811 | * This short-circuit test prevents a virtual address scan which is | |
812 | * painfully slow for 64-bit spaces. | |
813 | * This assumes the count is correct | |
814 | * .. the debug kernel ought to be checking perhaps by page table walk. | |
815 | */ | |
816 | if (pmap->stats.resident_count == 0) | |
817 | return TRUE; | |
818 | ||
819 | for (offset = va_start; | |
820 | offset < va_end; | |
821 | offset += PAGE_SIZE_64) { | |
822 | phys_page = pmap_find_phys(pmap, offset); | |
823 | if (phys_page) { | |
824 | kprintf("pmap_is_empty(%p,0x%llx,0x%llx): " | |
825 | "page %d at 0x%llx\n", | |
826 | pmap, va_start, va_end, phys_page, offset); | |
827 | return FALSE; | |
828 | } | |
829 | } | |
830 | ||
831 | return TRUE; | |
832 | } | |
833 | ||
834 | ||
835 | /* | |
836 | * Create and return a physical map. | |
837 | * | |
838 | * If the size specified for the map | |
839 | * is zero, the map is an actual physical | |
840 | * map, and may be referenced by the | |
841 | * hardware. | |
842 | * | |
843 | * If the size specified is non-zero, | |
844 | * the map will be used in software only, and | |
845 | * is bounded by that size. | |
846 | */ | |
847 | pmap_t | |
848 | pmap_create( | |
849 | vm_map_size_t sz, | |
850 | boolean_t is_64bit) | |
851 | { | |
852 | pmap_t p; | |
853 | vm_size_t size; | |
854 | pml4_entry_t *pml4; | |
855 | pml4_entry_t *kpml4; | |
856 | ||
857 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, | |
858 | (uint32_t) (sz>>32), (uint32_t) sz, is_64bit, 0, 0); | |
859 | ||
860 | size = (vm_size_t) sz; | |
861 | ||
862 | /* | |
863 | * A software use-only map doesn't even need a map. | |
864 | */ | |
865 | ||
866 | if (size != 0) { | |
867 | return(PMAP_NULL); | |
868 | } | |
869 | ||
870 | p = (pmap_t) zalloc(pmap_zone); | |
871 | if (PMAP_NULL == p) | |
872 | panic("pmap_create zalloc"); | |
873 | ||
874 | /* init counts now since we'll be bumping some */ | |
875 | simple_lock_init(&p->lock, 0); | |
876 | p->stats.resident_count = 0; | |
877 | p->stats.resident_max = 0; | |
878 | p->stats.wired_count = 0; | |
879 | p->ref_count = 1; | |
880 | p->nx_enabled = 1; | |
881 | p->pm_shared = FALSE; | |
882 | ||
883 | p->pm_task_map = is_64bit ? TASK_MAP_64BIT : TASK_MAP_32BIT;; | |
884 | ||
885 | /* alloc the pml4 page in kernel vm */ | |
886 | if (KERN_SUCCESS != kmem_alloc_kobject(kernel_map, (vm_offset_t *)(&p->pm_pml4), PAGE_SIZE)) | |
887 | panic("pmap_create kmem_alloc_kobject pml4"); | |
888 | ||
889 | memset((char *)p->pm_pml4, 0, PAGE_SIZE); | |
890 | p->pm_cr3 = (pmap_paddr_t)kvtophys((vm_offset_t)p->pm_pml4); | |
891 | ||
892 | OSAddAtomic(1, &inuse_ptepages_count); | |
893 | ||
894 | /* allocate the vm_objs to hold the pdpt, pde and pte pages */ | |
895 | ||
896 | p->pm_obj_pml4 = vm_object_allocate((vm_object_size_t)(NPML4PGS)); | |
897 | if (NULL == p->pm_obj_pml4) | |
898 | panic("pmap_create pdpt obj"); | |
899 | ||
900 | p->pm_obj_pdpt = vm_object_allocate((vm_object_size_t)(NPDPTPGS)); | |
901 | if (NULL == p->pm_obj_pdpt) | |
902 | panic("pmap_create pdpt obj"); | |
903 | ||
904 | p->pm_obj = vm_object_allocate((vm_object_size_t)(NPDEPGS)); | |
905 | if (NULL == p->pm_obj) | |
906 | panic("pmap_create pte obj"); | |
907 | ||
908 | /* All pmaps share the kennel's pml4 */ | |
909 | pml4 = pmap64_pml4(p, 0ULL); | |
910 | kpml4 = kernel_pmap->pm_pml4; | |
911 | pml4[KERNEL_PML4_INDEX] = kpml4[KERNEL_PML4_INDEX]; | |
912 | pml4[KERNEL_KEXTS_INDEX] = kpml4[KERNEL_KEXTS_INDEX]; | |
913 | pml4[KERNEL_PHYSMAP_INDEX] = kpml4[KERNEL_PHYSMAP_INDEX]; | |
914 | ||
915 | PMAP_TRACE(PMAP_CODE(PMAP__CREATE) | DBG_FUNC_START, | |
916 | p, is_64bit, 0, 0, 0); | |
917 | ||
918 | return(p); | |
919 | } | |
920 | ||
921 | /* | |
922 | * Retire the given physical map from service. | |
923 | * Should only be called if the map contains | |
924 | * no valid mappings. | |
925 | */ | |
926 | ||
927 | void | |
928 | pmap_destroy( | |
929 | register pmap_t p) | |
930 | { | |
931 | register int c; | |
932 | ||
933 | if (p == PMAP_NULL) | |
934 | return; | |
935 | ||
936 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_START, | |
937 | p, 0, 0, 0, 0); | |
938 | ||
939 | PMAP_LOCK(p); | |
940 | ||
941 | c = --p->ref_count; | |
942 | ||
943 | if (c == 0) { | |
944 | /* | |
945 | * If some cpu is not using the physical pmap pointer that it | |
946 | * is supposed to be (see set_dirbase), we might be using the | |
947 | * pmap that is being destroyed! Make sure we are | |
948 | * physically on the right pmap: | |
949 | */ | |
950 | PMAP_UPDATE_TLBS(p, 0x0ULL, 0xFFFFFFFFFFFFF000ULL); | |
951 | } | |
952 | ||
953 | PMAP_UNLOCK(p); | |
954 | ||
955 | if (c != 0) { | |
956 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END, | |
957 | p, 1, 0, 0, 0); | |
958 | return; /* still in use */ | |
959 | } | |
960 | ||
961 | /* | |
962 | * Free the memory maps, then the | |
963 | * pmap structure. | |
964 | */ | |
965 | int inuse_ptepages = 0; | |
966 | ||
967 | inuse_ptepages++; | |
968 | kmem_free(kernel_map, (vm_offset_t)p->pm_pml4, PAGE_SIZE); | |
969 | ||
970 | inuse_ptepages += p->pm_obj_pml4->resident_page_count; | |
971 | vm_object_deallocate(p->pm_obj_pml4); | |
972 | ||
973 | inuse_ptepages += p->pm_obj_pdpt->resident_page_count; | |
974 | vm_object_deallocate(p->pm_obj_pdpt); | |
975 | ||
976 | inuse_ptepages += p->pm_obj->resident_page_count; | |
977 | vm_object_deallocate(p->pm_obj); | |
978 | ||
979 | OSAddAtomic(-inuse_ptepages, &inuse_ptepages_count); | |
980 | ||
981 | zfree(pmap_zone, p); | |
982 | ||
983 | PMAP_TRACE(PMAP_CODE(PMAP__DESTROY) | DBG_FUNC_END, | |
984 | 0, 0, 0, 0, 0); | |
985 | } | |
986 | ||
987 | /* | |
988 | * Add a reference to the specified pmap. | |
989 | */ | |
990 | ||
991 | void | |
992 | pmap_reference(pmap_t p) | |
993 | { | |
994 | if (p != PMAP_NULL) { | |
995 | PMAP_LOCK(p); | |
996 | p->ref_count++; | |
997 | PMAP_UNLOCK(p);; | |
998 | } | |
999 | } | |
1000 | ||
b0d623f7 A |
1001 | /* |
1002 | * Remove phys addr if mapped in specified map | |
1003 | * | |
1004 | */ | |
1005 | void | |
1006 | pmap_remove_some_phys( | |
1007 | __unused pmap_t map, | |
1008 | __unused ppnum_t pn) | |
1009 | { | |
1010 | ||
1011 | /* Implement to support working set code */ | |
1012 | ||
1013 | } | |
1014 | ||
b0d623f7 A |
1015 | |
1016 | /* | |
1017 | * Routine: | |
1018 | * pmap_disconnect | |
1019 | * | |
1020 | * Function: | |
1021 | * Disconnect all mappings for this page and return reference and change status | |
1022 | * in generic format. | |
1023 | * | |
1024 | */ | |
1025 | unsigned int pmap_disconnect( | |
1026 | ppnum_t pa) | |
1027 | { | |
1028 | pmap_page_protect(pa, 0); /* disconnect the page */ | |
1029 | return (pmap_get_refmod(pa)); /* return ref/chg status */ | |
1030 | } | |
1031 | ||
1032 | /* | |
1033 | * Set the physical protection on the | |
1034 | * specified range of this map as requested. | |
1035 | * Will not increase permissions. | |
1036 | */ | |
1037 | void | |
1038 | pmap_protect( | |
1039 | pmap_t map, | |
1040 | vm_map_offset_t sva, | |
1041 | vm_map_offset_t eva, | |
1042 | vm_prot_t prot) | |
1043 | { | |
1044 | pt_entry_t *pde; | |
1045 | pt_entry_t *spte, *epte; | |
1046 | vm_map_offset_t lva; | |
1047 | vm_map_offset_t orig_sva; | |
1048 | boolean_t set_NX; | |
1049 | int num_found = 0; | |
1050 | ||
1051 | pmap_intr_assert(); | |
1052 | ||
1053 | if (map == PMAP_NULL) | |
1054 | return; | |
1055 | ||
1056 | if (prot == VM_PROT_NONE) { | |
1057 | pmap_remove(map, sva, eva); | |
1058 | return; | |
1059 | } | |
1060 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_START, | |
1061 | map, | |
1062 | (uint32_t) (sva >> 32), (uint32_t) sva, | |
1063 | (uint32_t) (eva >> 32), (uint32_t) eva); | |
1064 | ||
1065 | if ((prot & VM_PROT_EXECUTE) || !nx_enabled || !map->nx_enabled) | |
1066 | set_NX = FALSE; | |
1067 | else | |
1068 | set_NX = TRUE; | |
1069 | ||
1070 | PMAP_LOCK(map); | |
1071 | ||
1072 | orig_sva = sva; | |
1073 | while (sva < eva) { | |
1074 | lva = (sva + pde_mapped_size) & ~(pde_mapped_size - 1); | |
1075 | if (lva > eva) | |
1076 | lva = eva; | |
1077 | pde = pmap_pde(map, sva); | |
1078 | if (pde && (*pde & INTEL_PTE_VALID)) { | |
1079 | if (*pde & INTEL_PTE_PS) { | |
1080 | /* superpage */ | |
1081 | spte = pde; | |
1082 | epte = spte+1; /* excluded */ | |
1083 | } else { | |
1084 | spte = pmap_pte(map, (sva & ~(pde_mapped_size - 1))); | |
1085 | spte = &spte[ptenum(sva)]; | |
1086 | epte = &spte[intel_btop(lva - sva)]; | |
1087 | } | |
1088 | ||
1089 | for (; spte < epte; spte++) { | |
1090 | if (!(*spte & INTEL_PTE_VALID)) | |
1091 | continue; | |
1092 | ||
1093 | if (prot & VM_PROT_WRITE) | |
1094 | pmap_update_pte(spte, *spte, | |
1095 | *spte | INTEL_PTE_WRITE); | |
1096 | else | |
1097 | pmap_update_pte(spte, *spte, | |
1098 | *spte & ~INTEL_PTE_WRITE); | |
1099 | ||
1100 | if (set_NX) | |
1101 | pmap_update_pte(spte, *spte, | |
1102 | *spte | INTEL_PTE_NX); | |
1103 | else | |
1104 | pmap_update_pte(spte, *spte, | |
1105 | *spte & ~INTEL_PTE_NX); | |
1106 | ||
1107 | num_found++; | |
1108 | } | |
1109 | } | |
1110 | sva = lva; | |
1111 | } | |
1112 | if (num_found) | |
1113 | PMAP_UPDATE_TLBS(map, orig_sva, eva); | |
1114 | ||
1115 | PMAP_UNLOCK(map); | |
1116 | ||
1117 | PMAP_TRACE(PMAP_CODE(PMAP__PROTECT) | DBG_FUNC_END, | |
1118 | 0, 0, 0, 0, 0); | |
1119 | ||
1120 | } | |
1121 | ||
1122 | /* Map a (possibly) autogenned block */ | |
1123 | void | |
1124 | pmap_map_block( | |
1125 | pmap_t pmap, | |
1126 | addr64_t va, | |
1127 | ppnum_t pa, | |
1128 | uint32_t size, | |
1129 | vm_prot_t prot, | |
1130 | int attr, | |
1131 | __unused unsigned int flags) | |
1132 | { | |
1133 | uint32_t page; | |
1134 | int cur_page_size; | |
1135 | ||
1136 | if (attr & VM_MEM_SUPERPAGE) | |
1137 | cur_page_size = SUPERPAGE_SIZE; | |
1138 | else | |
1139 | cur_page_size = PAGE_SIZE; | |
1140 | ||
1141 | for (page = 0; page < size; page+=cur_page_size/PAGE_SIZE) { | |
1142 | pmap_enter(pmap, va, pa, prot, attr, TRUE); | |
1143 | va += cur_page_size; | |
1144 | pa+=cur_page_size/PAGE_SIZE; | |
1145 | } | |
1146 | } | |
1147 | ||
b0d623f7 A |
1148 | /* |
1149 | * Routine: pmap_change_wiring | |
1150 | * Function: Change the wiring attribute for a map/virtual-address | |
1151 | * pair. | |
1152 | * In/out conditions: | |
1153 | * The mapping must already exist in the pmap. | |
1154 | */ | |
1155 | void | |
1156 | pmap_change_wiring( | |
1157 | pmap_t map, | |
1158 | vm_map_offset_t vaddr, | |
1159 | boolean_t wired) | |
1160 | { | |
1161 | pt_entry_t *pte; | |
1162 | ||
1163 | PMAP_LOCK(map); | |
1164 | ||
1165 | if ((pte = pmap_pte(map, vaddr)) == PT_ENTRY_NULL) | |
1166 | panic("pmap_change_wiring: pte missing"); | |
1167 | ||
1168 | if (wired && !iswired(*pte)) { | |
1169 | /* | |
1170 | * wiring down mapping | |
1171 | */ | |
1172 | OSAddAtomic(+1, &map->stats.wired_count); | |
1173 | pmap_update_pte(pte, *pte, (*pte | INTEL_PTE_WIRED)); | |
1174 | } | |
1175 | else if (!wired && iswired(*pte)) { | |
1176 | /* | |
1177 | * unwiring mapping | |
1178 | */ | |
1179 | assert(map->stats.wired_count >= 1); | |
1180 | OSAddAtomic(-1, &map->stats.wired_count); | |
1181 | pmap_update_pte(pte, *pte, (*pte & ~INTEL_PTE_WIRED)); | |
1182 | } | |
1183 | ||
1184 | PMAP_UNLOCK(map); | |
1185 | } | |
1186 | ||
1187 | void | |
1188 | pmap_expand_pml4( | |
1189 | pmap_t map, | |
1190 | vm_map_offset_t vaddr) | |
1191 | { | |
1192 | vm_page_t m; | |
1193 | pmap_paddr_t pa; | |
1194 | uint64_t i; | |
1195 | ppnum_t pn; | |
1196 | pml4_entry_t *pml4p; | |
1197 | ||
1198 | DBG("pmap_expand_pml4(%p,%p)\n", map, (void *)vaddr); | |
1199 | ||
1200 | /* | |
1201 | * Allocate a VM page for the pml4 page | |
1202 | */ | |
1203 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1204 | VM_PAGE_WAIT(); | |
1205 | ||
1206 | /* | |
1207 | * put the page into the pmap's obj list so it | |
1208 | * can be found later. | |
1209 | */ | |
1210 | pn = m->phys_page; | |
1211 | pa = i386_ptob(pn); | |
1212 | i = pml4idx(map, vaddr); | |
1213 | ||
1214 | /* | |
1215 | * Zero the page. | |
1216 | */ | |
1217 | pmap_zero_page(pn); | |
1218 | ||
1219 | vm_page_lockspin_queues(); | |
1220 | vm_page_wire(m); | |
1221 | vm_page_unlock_queues(); | |
1222 | ||
1223 | OSAddAtomic(1, &inuse_ptepages_count); | |
1224 | ||
1225 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1226 | vm_object_lock(map->pm_obj_pml4); | |
1227 | ||
1228 | PMAP_LOCK(map); | |
1229 | /* | |
1230 | * See if someone else expanded us first | |
1231 | */ | |
1232 | if (pmap64_pdpt(map, vaddr) != PDPT_ENTRY_NULL) { | |
1233 | PMAP_UNLOCK(map); | |
1234 | vm_object_unlock(map->pm_obj_pml4); | |
1235 | ||
1236 | VM_PAGE_FREE(m); | |
1237 | ||
1238 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1239 | return; | |
1240 | } | |
1241 | ||
1242 | #if 0 /* DEBUG */ | |
1243 | if (0 != vm_page_lookup(map->pm_obj_pml4, (vm_object_offset_t)i)) { | |
1244 | panic("pmap_expand_pml4: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n", | |
1245 | map, map->pm_obj_pml4, vaddr, i); | |
1246 | } | |
1247 | #endif | |
1248 | vm_page_insert(m, map->pm_obj_pml4, (vm_object_offset_t)i); | |
1249 | vm_object_unlock(map->pm_obj_pml4); | |
1250 | ||
1251 | /* | |
1252 | * Set the page directory entry for this page table. | |
1253 | */ | |
1254 | pml4p = pmap64_pml4(map, vaddr); /* refetch under lock */ | |
1255 | ||
1256 | pmap_store_pte(pml4p, pa_to_pte(pa) | |
1257 | | INTEL_PTE_VALID | |
1258 | | INTEL_PTE_USER | |
1259 | | INTEL_PTE_WRITE); | |
1260 | ||
1261 | PMAP_UNLOCK(map); | |
1262 | ||
1263 | return; | |
1264 | } | |
1265 | ||
1266 | void | |
1267 | pmap_expand_pdpt( | |
1268 | pmap_t map, | |
1269 | vm_map_offset_t vaddr) | |
1270 | { | |
1271 | vm_page_t m; | |
1272 | pmap_paddr_t pa; | |
1273 | uint64_t i; | |
1274 | ppnum_t pn; | |
1275 | pdpt_entry_t *pdptp; | |
1276 | ||
1277 | DBG("pmap_expand_pdpt(%p,%p)\n", map, (void *)vaddr); | |
1278 | ||
1279 | while ((pdptp = pmap64_pdpt(map, vaddr)) == PDPT_ENTRY_NULL) { | |
1280 | pmap_expand_pml4(map, vaddr); | |
1281 | } | |
1282 | ||
1283 | /* | |
1284 | * Allocate a VM page for the pdpt page | |
1285 | */ | |
1286 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1287 | VM_PAGE_WAIT(); | |
1288 | ||
1289 | /* | |
1290 | * put the page into the pmap's obj list so it | |
1291 | * can be found later. | |
1292 | */ | |
1293 | pn = m->phys_page; | |
1294 | pa = i386_ptob(pn); | |
1295 | i = pdptidx(map, vaddr); | |
1296 | ||
1297 | /* | |
1298 | * Zero the page. | |
1299 | */ | |
1300 | pmap_zero_page(pn); | |
1301 | ||
1302 | vm_page_lockspin_queues(); | |
1303 | vm_page_wire(m); | |
1304 | vm_page_unlock_queues(); | |
1305 | ||
1306 | OSAddAtomic(1, &inuse_ptepages_count); | |
1307 | ||
1308 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1309 | vm_object_lock(map->pm_obj_pdpt); | |
1310 | ||
1311 | PMAP_LOCK(map); | |
1312 | /* | |
1313 | * See if someone else expanded us first | |
1314 | */ | |
1315 | if (pmap64_pde(map, vaddr) != PD_ENTRY_NULL) { | |
1316 | PMAP_UNLOCK(map); | |
1317 | vm_object_unlock(map->pm_obj_pdpt); | |
1318 | ||
1319 | VM_PAGE_FREE(m); | |
1320 | ||
1321 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1322 | return; | |
1323 | } | |
1324 | ||
1325 | #if 0 /* DEBUG */ | |
1326 | if (0 != vm_page_lookup(map->pm_obj_pdpt, (vm_object_offset_t)i)) { | |
1327 | panic("pmap_expand_pdpt: obj not empty, pmap %p pm_obj %p vaddr 0x%llx i 0x%llx\n", | |
1328 | map, map->pm_obj_pdpt, vaddr, i); | |
1329 | } | |
1330 | #endif | |
1331 | vm_page_insert(m, map->pm_obj_pdpt, (vm_object_offset_t)i); | |
1332 | vm_object_unlock(map->pm_obj_pdpt); | |
1333 | ||
1334 | /* | |
1335 | * Set the page directory entry for this page table. | |
1336 | */ | |
1337 | pdptp = pmap64_pdpt(map, vaddr); /* refetch under lock */ | |
1338 | ||
1339 | pmap_store_pte(pdptp, pa_to_pte(pa) | |
1340 | | INTEL_PTE_VALID | |
1341 | | INTEL_PTE_USER | |
1342 | | INTEL_PTE_WRITE); | |
1343 | ||
1344 | PMAP_UNLOCK(map); | |
1345 | ||
1346 | return; | |
1347 | ||
1348 | } | |
1349 | ||
1350 | ||
1351 | ||
1352 | /* | |
1353 | * Routine: pmap_expand | |
1354 | * | |
1355 | * Expands a pmap to be able to map the specified virtual address. | |
1356 | * | |
1357 | * Allocates new virtual memory for the P0 or P1 portion of the | |
1358 | * pmap, then re-maps the physical pages that were in the old | |
1359 | * pmap to be in the new pmap. | |
1360 | * | |
1361 | * Must be called with the pmap system and the pmap unlocked, | |
1362 | * since these must be unlocked to use vm_allocate or vm_deallocate. | |
1363 | * Thus it must be called in a loop that checks whether the map | |
1364 | * has been expanded enough. | |
1365 | * (We won't loop forever, since page tables aren't shrunk.) | |
1366 | */ | |
1367 | void | |
1368 | pmap_expand( | |
1369 | pmap_t map, | |
1370 | vm_map_offset_t vaddr) | |
1371 | { | |
1372 | pt_entry_t *pdp; | |
1373 | register vm_page_t m; | |
1374 | register pmap_paddr_t pa; | |
1375 | uint64_t i; | |
1376 | ppnum_t pn; | |
1377 | ||
1378 | ||
1379 | /* | |
1380 | * For the kernel, the virtual address must be in or above the basement | |
1381 | * which is for kexts and is in the 512GB immediately below the kernel.. | |
1382 | * XXX - should use VM_MIN_KERNEL_AND_KEXT_ADDRESS not KERNEL_BASEMENT | |
1383 | */ | |
1384 | if (map == kernel_pmap && | |
1385 | !(vaddr >= KERNEL_BASEMENT && vaddr <= VM_MAX_KERNEL_ADDRESS)) | |
1386 | panic("pmap_expand: bad vaddr 0x%llx for kernel pmap", vaddr); | |
1387 | ||
1388 | ||
1389 | while ((pdp = pmap64_pde(map, vaddr)) == PD_ENTRY_NULL) { | |
1390 | /* need room for another pde entry */ | |
1391 | pmap_expand_pdpt(map, vaddr); | |
1392 | } | |
1393 | ||
1394 | /* | |
1395 | * Allocate a VM page for the pde entries. | |
1396 | */ | |
1397 | while ((m = vm_page_grab()) == VM_PAGE_NULL) | |
1398 | VM_PAGE_WAIT(); | |
1399 | ||
1400 | /* | |
1401 | * put the page into the pmap's obj list so it | |
1402 | * can be found later. | |
1403 | */ | |
1404 | pn = m->phys_page; | |
1405 | pa = i386_ptob(pn); | |
1406 | i = pdeidx(map, vaddr); | |
1407 | ||
1408 | /* | |
1409 | * Zero the page. | |
1410 | */ | |
1411 | pmap_zero_page(pn); | |
1412 | ||
1413 | vm_page_lockspin_queues(); | |
1414 | vm_page_wire(m); | |
1415 | vm_page_unlock_queues(); | |
1416 | ||
1417 | OSAddAtomic(1, &inuse_ptepages_count); | |
1418 | ||
1419 | /* Take the oject lock (mutex) before the PMAP_LOCK (spinlock) */ | |
1420 | vm_object_lock(map->pm_obj); | |
1421 | ||
1422 | PMAP_LOCK(map); | |
1423 | ||
1424 | /* | |
1425 | * See if someone else expanded us first | |
1426 | */ | |
1427 | if (pmap_pte(map, vaddr) != PT_ENTRY_NULL) { | |
1428 | PMAP_UNLOCK(map); | |
1429 | vm_object_unlock(map->pm_obj); | |
1430 | ||
1431 | VM_PAGE_FREE(m); | |
1432 | ||
1433 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1434 | return; | |
1435 | } | |
1436 | ||
1437 | #if 0 /* DEBUG */ | |
1438 | if (0 != vm_page_lookup(map->pm_obj, (vm_object_offset_t)i)) { | |
1439 | panic("pmap_expand: obj not empty, pmap 0x%x pm_obj 0x%x vaddr 0x%llx i 0x%llx\n", | |
1440 | map, map->pm_obj, vaddr, i); | |
1441 | } | |
1442 | #endif | |
1443 | vm_page_insert(m, map->pm_obj, (vm_object_offset_t)i); | |
1444 | vm_object_unlock(map->pm_obj); | |
1445 | ||
1446 | /* | |
1447 | * Set the page directory entry for this page table. | |
1448 | */ | |
1449 | pdp = pmap_pde(map, vaddr); | |
1450 | pmap_store_pte(pdp, pa_to_pte(pa) | |
1451 | | INTEL_PTE_VALID | |
1452 | | INTEL_PTE_USER | |
1453 | | INTEL_PTE_WRITE); | |
1454 | ||
1455 | PMAP_UNLOCK(map); | |
1456 | ||
1457 | return; | |
1458 | } | |
1459 | ||
1460 | /* On K64 machines with more than 32GB of memory, pmap_steal_memory | |
1461 | * will allocate past the 1GB of pre-expanded virtual kernel area. This | |
1462 | * function allocates all the page tables using memory from the same pool | |
1463 | * that pmap_steal_memory uses, rather than calling vm_page_grab (which | |
1464 | * isn't available yet). */ | |
1465 | void | |
1466 | pmap_pre_expand(pmap_t pmap, vm_map_offset_t vaddr) { | |
1467 | ppnum_t pn; | |
1468 | pt_entry_t *pte; | |
1469 | ||
1470 | PMAP_LOCK(pmap); | |
1471 | ||
1472 | if(pmap64_pdpt(pmap, vaddr) == PDPT_ENTRY_NULL) { | |
1473 | if (!pmap_next_page_k64(&pn)) | |
1474 | panic("pmap_pre_expand"); | |
1475 | ||
1476 | pmap_zero_page(pn); | |
1477 | ||
1478 | pte = pmap64_pml4(pmap, vaddr); | |
1479 | ||
1480 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1481 | | INTEL_PTE_VALID | |
1482 | | INTEL_PTE_USER | |
1483 | | INTEL_PTE_WRITE); | |
1484 | } | |
1485 | ||
1486 | if(pmap64_pde(pmap, vaddr) == PD_ENTRY_NULL) { | |
1487 | if (!pmap_next_page_k64(&pn)) | |
1488 | panic("pmap_pre_expand"); | |
1489 | ||
1490 | pmap_zero_page(pn); | |
1491 | ||
1492 | pte = pmap64_pdpt(pmap, vaddr); | |
1493 | ||
1494 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1495 | | INTEL_PTE_VALID | |
1496 | | INTEL_PTE_USER | |
1497 | | INTEL_PTE_WRITE); | |
1498 | } | |
1499 | ||
1500 | if(pmap_pte(pmap, vaddr) == PT_ENTRY_NULL) { | |
1501 | if (!pmap_next_page_k64(&pn)) | |
1502 | panic("pmap_pre_expand"); | |
1503 | ||
1504 | pmap_zero_page(pn); | |
1505 | ||
1506 | pte = pmap64_pde(pmap, vaddr); | |
1507 | ||
1508 | pmap_store_pte(pte, pa_to_pte(i386_ptob(pn)) | |
1509 | | INTEL_PTE_VALID | |
1510 | | INTEL_PTE_USER | |
1511 | | INTEL_PTE_WRITE); | |
1512 | } | |
1513 | ||
1514 | PMAP_UNLOCK(pmap); | |
1515 | } | |
1516 | ||
1517 | /* | |
1518 | * pmap_sync_page_data_phys(ppnum_t pa) | |
1519 | * | |
1520 | * Invalidates all of the instruction cache on a physical page and | |
1521 | * pushes any dirty data from the data cache for the same physical page | |
1522 | * Not required in i386. | |
1523 | */ | |
1524 | void | |
1525 | pmap_sync_page_data_phys(__unused ppnum_t pa) | |
1526 | { | |
1527 | return; | |
1528 | } | |
1529 | ||
1530 | /* | |
1531 | * pmap_sync_page_attributes_phys(ppnum_t pa) | |
1532 | * | |
1533 | * Write back and invalidate all cachelines on a physical page. | |
1534 | */ | |
1535 | void | |
1536 | pmap_sync_page_attributes_phys(ppnum_t pa) | |
1537 | { | |
1538 | cache_flush_page_phys(pa); | |
1539 | } | |
1540 | ||
1541 | ||
1542 | ||
1543 | #ifdef CURRENTLY_UNUSED_AND_UNTESTED | |
1544 | ||
1545 | int collect_ref; | |
1546 | int collect_unref; | |
1547 | ||
1548 | /* | |
1549 | * Routine: pmap_collect | |
1550 | * Function: | |
1551 | * Garbage collects the physical map system for | |
1552 | * pages which are no longer used. | |
1553 | * Success need not be guaranteed -- that is, there | |
1554 | * may well be pages which are not referenced, but | |
1555 | * others may be collected. | |
1556 | * Usage: | |
1557 | * Called by the pageout daemon when pages are scarce. | |
1558 | */ | |
1559 | void | |
1560 | pmap_collect( | |
1561 | pmap_t p) | |
1562 | { | |
1563 | register pt_entry_t *pdp, *ptp; | |
1564 | pt_entry_t *eptp; | |
1565 | int wired; | |
1566 | ||
1567 | if (p == PMAP_NULL) | |
1568 | return; | |
1569 | ||
1570 | if (p == kernel_pmap) | |
1571 | return; | |
1572 | ||
1573 | /* | |
1574 | * Garbage collect map. | |
1575 | */ | |
1576 | PMAP_LOCK(p); | |
1577 | ||
1578 | for (pdp = (pt_entry_t *)p->dirbase; | |
1579 | pdp < (pt_entry_t *)&p->dirbase[(UMAXPTDI+1)]; | |
1580 | pdp++) | |
1581 | { | |
1582 | if (*pdp & INTEL_PTE_VALID) { | |
1583 | if(*pdp & INTEL_PTE_REF) { | |
1584 | pmap_store_pte(pdp, *pdp & ~INTEL_PTE_REF); | |
1585 | collect_ref++; | |
1586 | } else { | |
1587 | collect_unref++; | |
1588 | ptp = pmap_pte(p, pdetova(pdp - (pt_entry_t *)p->dirbase)); | |
1589 | eptp = ptp + NPTEPG; | |
1590 | ||
1591 | /* | |
1592 | * If the pte page has any wired mappings, we cannot | |
1593 | * free it. | |
1594 | */ | |
1595 | wired = 0; | |
1596 | { | |
1597 | register pt_entry_t *ptep; | |
1598 | for (ptep = ptp; ptep < eptp; ptep++) { | |
1599 | if (iswired(*ptep)) { | |
1600 | wired = 1; | |
1601 | break; | |
1602 | } | |
1603 | } | |
1604 | } | |
1605 | if (!wired) { | |
1606 | /* | |
1607 | * Remove the virtual addresses mapped by this pte page. | |
1608 | */ | |
1609 | pmap_remove_range(p, | |
1610 | pdetova(pdp - (pt_entry_t *)p->dirbase), | |
1611 | ptp, | |
1612 | eptp); | |
1613 | ||
1614 | /* | |
1615 | * Invalidate the page directory pointer. | |
1616 | */ | |
1617 | pmap_store_pte(pdp, 0x0); | |
1618 | ||
1619 | PMAP_UNLOCK(p); | |
1620 | ||
1621 | /* | |
1622 | * And free the pte page itself. | |
1623 | */ | |
1624 | { | |
1625 | register vm_page_t m; | |
1626 | ||
1627 | vm_object_lock(p->pm_obj); | |
1628 | ||
1629 | m = vm_page_lookup(p->pm_obj,(vm_object_offset_t)(pdp - (pt_entry_t *)&p->dirbase[0])); | |
1630 | if (m == VM_PAGE_NULL) | |
1631 | panic("pmap_collect: pte page not in object"); | |
1632 | ||
1633 | VM_PAGE_FREE(m); | |
1634 | ||
1635 | OSAddAtomic(-1, &inuse_ptepages_count); | |
1636 | ||
1637 | vm_object_unlock(p->pm_obj); | |
1638 | } | |
1639 | ||
1640 | PMAP_LOCK(p); | |
1641 | } | |
1642 | } | |
1643 | } | |
1644 | } | |
1645 | ||
1646 | PMAP_UPDATE_TLBS(p, 0x0, 0xFFFFFFFFFFFFF000ULL); | |
1647 | PMAP_UNLOCK(p); | |
1648 | return; | |
1649 | ||
1650 | } | |
1651 | #endif | |
1652 | ||
1653 | ||
1654 | void | |
1655 | pmap_copy_page(ppnum_t src, ppnum_t dst) | |
1656 | { | |
1657 | bcopy_phys((addr64_t)i386_ptob(src), | |
1658 | (addr64_t)i386_ptob(dst), | |
1659 | PAGE_SIZE); | |
1660 | } | |
1661 | ||
1662 | ||
1663 | /* | |
1664 | * Routine: pmap_pageable | |
1665 | * Function: | |
1666 | * Make the specified pages (by pmap, offset) | |
1667 | * pageable (or not) as requested. | |
1668 | * | |
1669 | * A page which is not pageable may not take | |
1670 | * a fault; therefore, its page table entry | |
1671 | * must remain valid for the duration. | |
1672 | * | |
1673 | * This routine is merely advisory; pmap_enter | |
1674 | * will specify that these pages are to be wired | |
1675 | * down (or not) as appropriate. | |
1676 | */ | |
1677 | void | |
1678 | pmap_pageable( | |
1679 | __unused pmap_t pmap, | |
1680 | __unused vm_map_offset_t start_addr, | |
1681 | __unused vm_map_offset_t end_addr, | |
1682 | __unused boolean_t pageable) | |
1683 | { | |
1684 | #ifdef lint | |
1685 | pmap++; start_addr++; end_addr++; pageable++; | |
1686 | #endif /* lint */ | |
1687 | } | |
1688 | ||
1689 | /* | |
1690 | * Clear specified attribute bits. | |
1691 | */ | |
1692 | void | |
1693 | phys_attribute_clear( | |
1694 | ppnum_t pn, | |
1695 | int bits) | |
1696 | { | |
1697 | pv_rooted_entry_t pv_h; | |
1698 | pv_hashed_entry_t pv_e; | |
1699 | pt_entry_t *pte; | |
1700 | int pai; | |
1701 | pmap_t pmap; | |
1702 | ||
1703 | pmap_intr_assert(); | |
1704 | assert(pn != vm_page_fictitious_addr); | |
1705 | if (pn == vm_page_guard_addr) | |
1706 | return; | |
1707 | ||
1708 | pai = ppn_to_pai(pn); | |
1709 | ||
1710 | if (!IS_MANAGED_PAGE(pai)) { | |
1711 | /* | |
1712 | * Not a managed page. | |
1713 | */ | |
1714 | return; | |
1715 | } | |
1716 | ||
1717 | ||
1718 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_START, | |
1719 | pn, bits, 0, 0, 0); | |
1720 | ||
1721 | pv_h = pai_to_pvh(pai); | |
1722 | ||
1723 | LOCK_PVH(pai); | |
1724 | ||
1725 | /* | |
1726 | * Walk down PV list, clearing all modify or reference bits. | |
1727 | * We do not have to lock the pv_list because we have | |
1728 | * the entire pmap system locked. | |
1729 | */ | |
1730 | if (pv_h->pmap != PMAP_NULL) { | |
1731 | /* | |
1732 | * There are some mappings. | |
1733 | */ | |
1734 | ||
1735 | pv_e = (pv_hashed_entry_t)pv_h; | |
1736 | ||
1737 | do { | |
1738 | vm_map_offset_t va; | |
1739 | ||
1740 | pmap = pv_e->pmap; | |
1741 | va = pv_e->va; | |
1742 | ||
1743 | /* | |
1744 | * Clear modify and/or reference bits. | |
1745 | */ | |
1746 | pte = pmap_pte(pmap, va); | |
1747 | pmap_update_pte(pte, *pte, (*pte & ~bits)); | |
1748 | /* Ensure all processors using this translation | |
1749 | * invalidate this TLB entry. The invalidation *must* | |
1750 | * follow the PTE update, to ensure that the TLB | |
1751 | * shadow of the 'D' bit (in particular) is | |
1752 | * synchronized with the updated PTE. | |
1753 | */ | |
1754 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
1755 | ||
1756 | pv_e = (pv_hashed_entry_t)queue_next(&pv_e->qlink); | |
1757 | ||
1758 | } while (pv_e != (pv_hashed_entry_t)pv_h); | |
1759 | } | |
1760 | pmap_phys_attributes[pai] &= ~bits; | |
1761 | ||
1762 | UNLOCK_PVH(pai); | |
1763 | ||
1764 | PMAP_TRACE(PMAP_CODE(PMAP__ATTRIBUTE_CLEAR) | DBG_FUNC_END, | |
1765 | 0, 0, 0, 0, 0); | |
1766 | } | |
1767 | ||
1768 | /* | |
1769 | * Check specified attribute bits. | |
1770 | */ | |
1771 | int | |
1772 | phys_attribute_test( | |
1773 | ppnum_t pn, | |
1774 | int bits) | |
1775 | { | |
1776 | pv_rooted_entry_t pv_h; | |
1777 | pv_hashed_entry_t pv_e; | |
1778 | pt_entry_t *pte; | |
1779 | int pai; | |
1780 | pmap_t pmap; | |
1781 | int attributes = 0; | |
1782 | ||
1783 | pmap_intr_assert(); | |
1784 | assert(pn != vm_page_fictitious_addr); | |
1785 | if (pn == vm_page_guard_addr) | |
1786 | return 0; | |
1787 | ||
1788 | pai = ppn_to_pai(pn); | |
1789 | ||
1790 | if (!IS_MANAGED_PAGE(pai)) { | |
1791 | /* | |
1792 | * Not a managed page. | |
1793 | */ | |
1794 | return 0; | |
1795 | } | |
1796 | ||
1797 | /* | |
1798 | * super fast check... if bits already collected | |
1799 | * no need to take any locks... | |
1800 | * if not set, we need to recheck after taking | |
1801 | * the lock in case they got pulled in while | |
1802 | * we were waiting for the lock | |
1803 | */ | |
1804 | if ((pmap_phys_attributes[pai] & bits) == bits) | |
1805 | return bits; | |
1806 | ||
1807 | pv_h = pai_to_pvh(pai); | |
1808 | ||
1809 | LOCK_PVH(pai); | |
1810 | ||
1811 | attributes = pmap_phys_attributes[pai] & bits; | |
1812 | ||
1813 | ||
1814 | /* | |
1815 | * Walk down PV list, checking the mappings until we | |
1816 | * reach the end or we've found the attributes we've asked for | |
1817 | * We do not have to lock the pv_list because we have | |
1818 | * the entire pmap system locked. | |
1819 | */ | |
1820 | if (attributes != bits && | |
1821 | pv_h->pmap != PMAP_NULL) { | |
1822 | /* | |
1823 | * There are some mappings. | |
1824 | */ | |
1825 | pv_e = (pv_hashed_entry_t)pv_h; | |
1826 | do { | |
1827 | vm_map_offset_t va; | |
1828 | ||
1829 | pmap = pv_e->pmap; | |
1830 | va = pv_e->va; | |
1831 | /* | |
1832 | * first make sure any processor actively | |
1833 | * using this pmap, flushes its TLB state | |
1834 | */ | |
1835 | PMAP_UPDATE_TLBS(pmap, va, va + PAGE_SIZE); | |
1836 | ||
1837 | /* | |
1838 | * pick up modify and/or reference bits from mapping | |
1839 | */ | |
1840 | ||
1841 | pte = pmap_pte(pmap, va); | |
1842 | attributes |= (int)(*pte & bits); | |
1843 | ||
1844 | pv_e = (pv_hashed_entry_t)queue_next(&pv_e->qlink); | |
1845 | ||
1846 | } while ((attributes != bits) && | |
1847 | (pv_e != (pv_hashed_entry_t)pv_h)); | |
1848 | } | |
1849 | ||
1850 | UNLOCK_PVH(pai); | |
1851 | return (attributes); | |
1852 | } | |
1853 | ||
1854 | /* | |
1855 | * Set specified attribute bits. | |
1856 | */ | |
1857 | void | |
1858 | phys_attribute_set( | |
1859 | ppnum_t pn, | |
1860 | int bits) | |
1861 | { | |
1862 | int pai; | |
1863 | ||
1864 | pmap_intr_assert(); | |
1865 | assert(pn != vm_page_fictitious_addr); | |
1866 | if (pn == vm_page_guard_addr) | |
1867 | return; | |
1868 | ||
1869 | pai = ppn_to_pai(pn); | |
1870 | ||
1871 | if (!IS_MANAGED_PAGE(pai)) { | |
1872 | /* Not a managed page. */ | |
1873 | return; | |
1874 | } | |
1875 | ||
1876 | LOCK_PVH(pai); | |
1877 | pmap_phys_attributes[pai] |= bits; | |
1878 | UNLOCK_PVH(pai); | |
1879 | } | |
1880 | ||
1881 | /* | |
1882 | * Set the modify bit on the specified physical page. | |
1883 | */ | |
1884 | ||
1885 | void | |
1886 | pmap_set_modify(ppnum_t pn) | |
1887 | { | |
1888 | phys_attribute_set(pn, PHYS_MODIFIED); | |
1889 | } | |
1890 | ||
1891 | /* | |
1892 | * Clear the modify bits on the specified physical page. | |
1893 | */ | |
1894 | ||
1895 | void | |
1896 | pmap_clear_modify(ppnum_t pn) | |
1897 | { | |
1898 | phys_attribute_clear(pn, PHYS_MODIFIED); | |
1899 | } | |
1900 | ||
1901 | /* | |
1902 | * pmap_is_modified: | |
1903 | * | |
1904 | * Return whether or not the specified physical page is modified | |
1905 | * by any physical maps. | |
1906 | */ | |
1907 | ||
1908 | boolean_t | |
1909 | pmap_is_modified(ppnum_t pn) | |
1910 | { | |
1911 | if (phys_attribute_test(pn, PHYS_MODIFIED)) | |
1912 | return TRUE; | |
1913 | return FALSE; | |
1914 | } | |
1915 | ||
1916 | /* | |
1917 | * pmap_clear_reference: | |
1918 | * | |
1919 | * Clear the reference bit on the specified physical page. | |
1920 | */ | |
1921 | ||
1922 | void | |
1923 | pmap_clear_reference(ppnum_t pn) | |
1924 | { | |
1925 | phys_attribute_clear(pn, PHYS_REFERENCED); | |
1926 | } | |
1927 | ||
1928 | void | |
1929 | pmap_set_reference(ppnum_t pn) | |
1930 | { | |
1931 | phys_attribute_set(pn, PHYS_REFERENCED); | |
1932 | } | |
1933 | ||
1934 | /* | |
1935 | * pmap_is_referenced: | |
1936 | * | |
1937 | * Return whether or not the specified physical page is referenced | |
1938 | * by any physical maps. | |
1939 | */ | |
1940 | ||
1941 | boolean_t | |
1942 | pmap_is_referenced(ppnum_t pn) | |
1943 | { | |
1944 | if (phys_attribute_test(pn, PHYS_REFERENCED)) | |
1945 | return TRUE; | |
1946 | return FALSE; | |
1947 | } | |
1948 | ||
1949 | /* | |
1950 | * pmap_get_refmod(phys) | |
1951 | * returns the referenced and modified bits of the specified | |
1952 | * physical page. | |
1953 | */ | |
1954 | unsigned int | |
1955 | pmap_get_refmod(ppnum_t pn) | |
1956 | { | |
1957 | int refmod; | |
1958 | unsigned int retval = 0; | |
1959 | ||
1960 | refmod = phys_attribute_test(pn, PHYS_MODIFIED | PHYS_REFERENCED); | |
1961 | ||
1962 | if (refmod & PHYS_MODIFIED) | |
1963 | retval |= VM_MEM_MODIFIED; | |
1964 | if (refmod & PHYS_REFERENCED) | |
1965 | retval |= VM_MEM_REFERENCED; | |
1966 | ||
1967 | return (retval); | |
1968 | } | |
1969 | ||
1970 | /* | |
1971 | * pmap_clear_refmod(phys, mask) | |
1972 | * clears the referenced and modified bits as specified by the mask | |
1973 | * of the specified physical page. | |
1974 | */ | |
1975 | void | |
1976 | pmap_clear_refmod(ppnum_t pn, unsigned int mask) | |
1977 | { | |
1978 | unsigned int x86Mask; | |
1979 | ||
1980 | x86Mask = ( ((mask & VM_MEM_MODIFIED)? PHYS_MODIFIED : 0) | |
1981 | | ((mask & VM_MEM_REFERENCED)? PHYS_REFERENCED : 0)); | |
1982 | phys_attribute_clear(pn, x86Mask); | |
1983 | } | |
1984 | ||
1985 | void | |
1986 | invalidate_icache(__unused vm_offset_t addr, | |
1987 | __unused unsigned cnt, | |
1988 | __unused int phys) | |
1989 | { | |
1990 | return; | |
1991 | } | |
1992 | ||
1993 | void | |
1994 | flush_dcache(__unused vm_offset_t addr, | |
1995 | __unused unsigned count, | |
1996 | __unused int phys) | |
1997 | { | |
1998 | return; | |
1999 | } | |
2000 | ||
2001 | #if CONFIG_DTRACE | |
2002 | /* | |
2003 | * Constrain DTrace copyin/copyout actions | |
2004 | */ | |
2005 | extern kern_return_t dtrace_copyio_preflight(addr64_t); | |
2006 | extern kern_return_t dtrace_copyio_postflight(addr64_t); | |
2007 | ||
2008 | kern_return_t dtrace_copyio_preflight(__unused addr64_t va) | |
2009 | { | |
2010 | thread_t thread = current_thread(); | |
2011 | ||
2012 | if (current_map() == kernel_map) | |
2013 | return KERN_FAILURE; | |
2014 | else if (get_cr3() != thread->map->pmap->pm_cr3) | |
2015 | return KERN_FAILURE; | |
2016 | else if (thread->machine.specFlags & CopyIOActive) | |
2017 | return KERN_FAILURE; | |
2018 | else | |
2019 | return KERN_SUCCESS; | |
2020 | } | |
2021 | ||
2022 | kern_return_t dtrace_copyio_postflight(__unused addr64_t va) | |
2023 | { | |
2024 | return KERN_SUCCESS; | |
2025 | } | |
2026 | #endif /* CONFIG_DTRACE */ | |
2027 | ||
2028 | #include <mach_vm_debug.h> | |
2029 | #if MACH_VM_DEBUG | |
2030 | #include <vm/vm_debug.h> | |
2031 | ||
2032 | int | |
2033 | pmap_list_resident_pages( | |
2034 | __unused pmap_t pmap, | |
2035 | __unused vm_offset_t *listp, | |
2036 | __unused int space) | |
2037 | { | |
2038 | return 0; | |
2039 | } | |
2040 | #endif /* MACH_VM_DEBUG */ | |
2041 | ||
2042 | ||
2043 | ||
2044 | /* temporary workaround */ | |
2045 | boolean_t | |
2046 | coredumpok(__unused vm_map_t map, __unused vm_offset_t va) | |
2047 | { | |
2048 | #if 0 | |
2049 | pt_entry_t *ptep; | |
2050 | ||
2051 | ptep = pmap_pte(map->pmap, va); | |
2052 | if (0 == ptep) | |
2053 | return FALSE; | |
2054 | return ((*ptep & (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)) != (INTEL_PTE_NCACHE | INTEL_PTE_WIRED)); | |
2055 | #else | |
2056 | return TRUE; | |
2057 | #endif | |
2058 | } | |
2059 | ||
2060 | ||
2061 | boolean_t | |
2062 | phys_page_exists(ppnum_t pn) | |
2063 | { | |
2064 | assert(pn != vm_page_fictitious_addr); | |
2065 | ||
2066 | if (!pmap_initialized) | |
2067 | return TRUE; | |
2068 | ||
2069 | if (pn == vm_page_guard_addr) | |
2070 | return FALSE; | |
2071 | ||
2072 | if (!IS_MANAGED_PAGE(ppn_to_pai(pn))) | |
2073 | return FALSE; | |
2074 | ||
2075 | return TRUE; | |
2076 | } | |
2077 | ||
b0d623f7 A |
2078 | void |
2079 | pmap_switch(pmap_t tpmap) | |
2080 | { | |
2081 | spl_t s; | |
2082 | ||
2083 | s = splhigh(); /* Make sure interruptions are disabled */ | |
2084 | set_dirbase(tpmap, current_thread()); | |
2085 | splx(s); | |
2086 | } | |
2087 | ||
2088 | ||
2089 | /* | |
2090 | * disable no-execute capability on | |
2091 | * the specified pmap | |
2092 | */ | |
2093 | void | |
2094 | pmap_disable_NX(pmap_t pmap) | |
2095 | { | |
2096 | pmap->nx_enabled = 0; | |
2097 | } | |
2098 | ||
2099 | void | |
2100 | pt_fake_zone_info( | |
2101 | int *count, | |
2102 | vm_size_t *cur_size, | |
2103 | vm_size_t *max_size, | |
2104 | vm_size_t *elem_size, | |
2105 | vm_size_t *alloc_size, | |
2106 | int *collectable, | |
2107 | int *exhaustable) | |
2108 | { | |
2109 | *count = inuse_ptepages_count; | |
2110 | *cur_size = PAGE_SIZE * inuse_ptepages_count; | |
2111 | *max_size = PAGE_SIZE * (inuse_ptepages_count + | |
2112 | vm_page_inactive_count + | |
2113 | vm_page_active_count + | |
2114 | vm_page_free_count); | |
2115 | *elem_size = PAGE_SIZE; | |
2116 | *alloc_size = PAGE_SIZE; | |
2117 | ||
2118 | *collectable = 1; | |
2119 | *exhaustable = 0; | |
2120 | } | |
2121 | ||
2122 | static inline void | |
2123 | pmap_cpuset_NMIPI(cpu_set cpu_mask) { | |
2124 | unsigned int cpu, cpu_bit; | |
2125 | uint64_t deadline; | |
2126 | ||
2127 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2128 | if (cpu_mask & cpu_bit) | |
2129 | cpu_NMI_interrupt(cpu); | |
2130 | } | |
2131 | deadline = mach_absolute_time() + (LockTimeOut); | |
2132 | while (mach_absolute_time() < deadline) | |
2133 | cpu_pause(); | |
2134 | } | |
2135 | ||
2136 | /* | |
2137 | * Called with pmap locked, we: | |
2138 | * - scan through per-cpu data to see which other cpus need to flush | |
2139 | * - send an IPI to each non-idle cpu to be flushed | |
2140 | * - wait for all to signal back that they are inactive or we see that | |
2141 | * they are at a safe point (idle). | |
2142 | * - flush the local tlb if active for this pmap | |
2143 | * - return ... the caller will unlock the pmap | |
2144 | */ | |
2145 | void | |
2146 | pmap_flush_tlbs(pmap_t pmap) | |
2147 | { | |
2148 | unsigned int cpu; | |
2149 | unsigned int cpu_bit; | |
2150 | cpu_set cpus_to_signal; | |
2151 | unsigned int my_cpu = cpu_number(); | |
2152 | pmap_paddr_t pmap_cr3 = pmap->pm_cr3; | |
2153 | boolean_t flush_self = FALSE; | |
2154 | uint64_t deadline; | |
2155 | ||
2156 | assert((processor_avail_count < 2) || | |
2157 | (ml_get_interrupts_enabled() && get_preemption_level() != 0)); | |
2158 | ||
2159 | /* | |
2160 | * Scan other cpus for matching active or task CR3. | |
2161 | * For idle cpus (with no active map) we mark them invalid but | |
2162 | * don't signal -- they'll check as they go busy. | |
2163 | */ | |
2164 | cpus_to_signal = 0; | |
2165 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2166 | if (!cpu_datap(cpu)->cpu_running) | |
2167 | continue; | |
2168 | uint64_t cpu_active_cr3 = CPU_GET_ACTIVE_CR3(cpu); | |
2169 | uint64_t cpu_task_cr3 = CPU_GET_TASK_CR3(cpu); | |
2170 | ||
2171 | if ((pmap_cr3 == cpu_task_cr3) || | |
2172 | (pmap_cr3 == cpu_active_cr3) || | |
2173 | (pmap->pm_shared) || | |
2174 | (pmap == kernel_pmap)) { | |
2175 | if (cpu == my_cpu) { | |
2176 | flush_self = TRUE; | |
2177 | continue; | |
2178 | } | |
2179 | cpu_datap(cpu)->cpu_tlb_invalid = TRUE; | |
2180 | __asm__ volatile("mfence"); | |
2181 | ||
2182 | /* | |
2183 | * We don't need to signal processors which will flush | |
2184 | * lazily at the idle state or kernel boundary. | |
2185 | * For example, if we're invalidating the kernel pmap, | |
2186 | * processors currently in userspace don't need to flush | |
2187 | * their TLBs until the next time they enter the kernel. | |
2188 | * Alterations to the address space of a task active | |
2189 | * on a remote processor result in a signal, to | |
2190 | * account for copy operations. (There may be room | |
2191 | * for optimization in such cases). | |
2192 | * The order of the loads below with respect | |
2193 | * to the store to the "cpu_tlb_invalid" field above | |
2194 | * is important--hence the barrier. | |
2195 | */ | |
2196 | if (CPU_CR3_IS_ACTIVE(cpu) && | |
2197 | (pmap_cr3 == CPU_GET_ACTIVE_CR3(cpu) || | |
2198 | pmap->pm_shared || | |
2199 | (pmap_cr3 == CPU_GET_TASK_CR3(cpu)))) { | |
2200 | cpus_to_signal |= cpu_bit; | |
2201 | i386_signal_cpu(cpu, MP_TLB_FLUSH, ASYNC); | |
2202 | } | |
2203 | } | |
2204 | } | |
2205 | ||
2206 | PMAP_TRACE(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_START, | |
2207 | pmap, cpus_to_signal, flush_self, 0, 0); | |
2208 | ||
2209 | /* | |
2210 | * Flush local tlb if required. | |
2211 | * Do this now to overlap with other processors responding. | |
2212 | */ | |
2213 | if (flush_self) | |
2214 | flush_tlb(); | |
2215 | ||
2216 | if (cpus_to_signal) { | |
2217 | cpu_set cpus_to_respond = cpus_to_signal; | |
2218 | ||
2219 | deadline = mach_absolute_time() + LockTimeOut; | |
2220 | /* | |
2221 | * Wait for those other cpus to acknowledge | |
2222 | */ | |
2223 | while (cpus_to_respond != 0) { | |
2224 | if (mach_absolute_time() > deadline) { | |
2225 | if (mp_recent_debugger_activity()) | |
2226 | continue; | |
2227 | if (!panic_active()) { | |
2228 | pmap_tlb_flush_timeout = TRUE; | |
2229 | pmap_cpuset_NMIPI(cpus_to_respond); | |
2230 | } | |
2231 | panic("pmap_flush_tlbs() timeout: " | |
2232 | "cpu(s) failing to respond to interrupts, pmap=%p cpus_to_respond=0x%lx", | |
2233 | pmap, cpus_to_respond); | |
2234 | } | |
2235 | ||
2236 | for (cpu = 0, cpu_bit = 1; cpu < real_ncpus; cpu++, cpu_bit <<= 1) { | |
2237 | if ((cpus_to_respond & cpu_bit) != 0) { | |
2238 | if (!cpu_datap(cpu)->cpu_running || | |
2239 | cpu_datap(cpu)->cpu_tlb_invalid == FALSE || | |
2240 | !CPU_CR3_IS_ACTIVE(cpu)) { | |
2241 | cpus_to_respond &= ~cpu_bit; | |
2242 | } | |
2243 | cpu_pause(); | |
2244 | } | |
2245 | if (cpus_to_respond == 0) | |
2246 | break; | |
2247 | } | |
2248 | } | |
2249 | } | |
2250 | ||
2251 | PMAP_TRACE(PMAP_CODE(PMAP__FLUSH_TLBS) | DBG_FUNC_END, | |
2252 | pmap, cpus_to_signal, flush_self, 0, 0); | |
2253 | } | |
2254 | ||
2255 | void | |
2256 | process_pmap_updates(void) | |
2257 | { | |
2258 | assert(ml_get_interrupts_enabled() == 0 || get_preemption_level() != 0); | |
2259 | ||
2260 | flush_tlb(); | |
2261 | ||
2262 | current_cpu_datap()->cpu_tlb_invalid = FALSE; | |
2263 | __asm__ volatile("mfence"); | |
2264 | } | |
2265 | ||
2266 | void | |
2267 | pmap_update_interrupt(void) | |
2268 | { | |
2269 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_START, | |
2270 | 0, 0, 0, 0, 0); | |
2271 | ||
2272 | process_pmap_updates(); | |
2273 | ||
2274 | PMAP_TRACE(PMAP_CODE(PMAP__UPDATE_INTERRUPT) | DBG_FUNC_END, | |
2275 | 0, 0, 0, 0, 0); | |
2276 | } | |
2277 | ||
2278 | ||
2279 | unsigned int | |
2280 | pmap_cache_attributes(ppnum_t pn) | |
2281 | { | |
2282 | return IS_MANAGED_PAGE(ppn_to_pai(pn)) ? VM_WIMG_COPYBACK | |
2283 | : VM_WIMG_IO; | |
2284 | } | |
2285 | ||
2286 |