]>
Commit | Line | Data |
---|---|---|
fe8ab488 A |
1 | /* |
2 | * Copyright (c) 2013 Apple Inc. All rights reserved. | |
3 | * | |
4 | * @APPLE_OSREFERENCE_LICENSE_HEADER_START@ | |
5 | * | |
6 | * This file contains Original Code and/or Modifications of Original Code | |
7 | * as defined in and that are subject to the Apple Public Source License | |
8 | * Version 2.0 (the 'License'). You may not use this file except in | |
9 | * compliance with the License. The rights granted to you under the License | |
10 | * may not be used to create, or enable the creation or redistribution of, | |
11 | * unlawful or unlicensed copies of an Apple operating system, or to | |
12 | * circumvent, violate, or enable the circumvention or violation of, any | |
13 | * terms of an Apple operating system software license agreement. | |
14 | * | |
15 | * Please obtain a copy of the License at | |
16 | * http://www.opensource.apple.com/apsl/ and read it before using this file. | |
17 | * | |
18 | * The Original Code and all software distributed under the License are | |
19 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
20 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
21 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
22 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
23 | * Please see the License for the specific language governing rights and | |
24 | * limitations under the License. | |
25 | * | |
26 | * @APPLE_OSREFERENCE_LICENSE_HEADER_END@ | |
27 | */ | |
28 | ||
29 | #include <mach/machine.h> | |
30 | #include <mach/processor.h> | |
31 | #include <kern/processor.h> | |
32 | #include <kern/cpu_data.h> | |
33 | #include <kern/cpu_number.h> | |
34 | #include <kern/kalloc.h> | |
35 | #include <kern/machine.h> | |
36 | #include <kern/misc_protos.h> | |
37 | #include <kern/startup.h> | |
38 | #include <kern/sched.h> | |
39 | #include <kern/thread.h> | |
40 | #include <kern/thread_call.h> | |
41 | #include <machine/cpu_data.h> | |
42 | #include <machine/simple_lock.h> | |
43 | #include <vm/pmap.h> | |
44 | #include <vm/vm_page.h> | |
45 | #include <sys/kdebug.h> | |
46 | #include <sys/random.h> | |
47 | ||
48 | #include <prng/random.h> | |
49 | #include <corecrypto/ccdrbg.h> | |
50 | #include <corecrypto/ccsha1.h> | |
51 | ||
52 | #include <pexpert/pexpert.h> | |
53 | #include <console/serial_protos.h> | |
54 | #include <IOKit/IOPlatformExpert.h> | |
55 | ||
56 | static lck_grp_t *gPRNGGrp; | |
57 | static lck_attr_t *gPRNGAttr; | |
58 | static lck_grp_attr_t *gPRNGGrpAttr; | |
59 | static lck_mtx_t *gPRNGMutex = NULL; | |
60 | ||
61 | typedef struct prngContext { | |
62 | struct ccdrbg_info *infop; | |
63 | struct ccdrbg_state *statep; | |
64 | uint64_t bytes_generated; | |
65 | uint64_t bytes_reseeded; | |
66 | } *prngContextp; | |
67 | ||
68 | ccdrbg_factory_t prng_ccdrbg_factory = NULL; | |
69 | ||
70 | entropy_data_t EntropyData = { .index_ptr = EntropyData.buffer }; | |
71 | ||
72 | boolean_t erandom_seed_set = FALSE; | |
73 | char erandom_seed[EARLY_RANDOM_SEED_SIZE]; | |
74 | typedef struct ccdrbg_state ccdrbg_state_t; | |
75 | uint8_t master_erandom_state[EARLY_RANDOM_STATE_STATIC_SIZE]; | |
76 | ccdrbg_state_t *erandom_state[MAX_CPUS]; | |
77 | struct ccdrbg_info erandom_info; | |
78 | decl_simple_lock_data(,entropy_lock); | |
79 | ||
80 | struct ccdrbg_nisthmac_custom erandom_custom = { | |
81 | .di = &ccsha1_eay_di, | |
82 | .strictFIPS = 0, | |
83 | }; | |
84 | ||
85 | static void read_erandom(void *buffer, u_int numBytes); /* Forward */ | |
86 | ||
87 | void | |
88 | entropy_buffer_read(char *buffer, | |
89 | unsigned int *count) | |
90 | { | |
91 | boolean_t current_state; | |
92 | unsigned int i, j; | |
93 | ||
94 | if (!erandom_seed_set) { | |
95 | panic("early_random was never invoked"); | |
96 | } | |
97 | ||
98 | if ((*count) > (ENTROPY_BUFFER_SIZE * sizeof(unsigned int))) | |
99 | *count = ENTROPY_BUFFER_SIZE * sizeof(unsigned int); | |
100 | ||
101 | current_state = ml_set_interrupts_enabled(FALSE); | |
102 | #if defined (__x86_64__) | |
103 | simple_lock(&entropy_lock); | |
104 | #endif | |
105 | ||
106 | memcpy((char *) buffer, (char *) EntropyData.buffer, *count); | |
107 | ||
108 | for (i = 0, j = (ENTROPY_BUFFER_SIZE - 1); i < ENTROPY_BUFFER_SIZE; j = i, i++) | |
109 | EntropyData.buffer[i] = EntropyData.buffer[i] ^ EntropyData.buffer[j]; | |
110 | ||
111 | #if defined (__x86_64__) | |
112 | simple_unlock(&entropy_lock); | |
113 | #endif | |
114 | (void) ml_set_interrupts_enabled(current_state); | |
115 | ||
116 | #if DEVELOPMENT || DEBUG | |
117 | uint32_t *word = (uint32_t *) (void *) buffer; | |
118 | /* Good for both 32-bit and 64-bit kernels. */ | |
119 | for (i = 0; i < ENTROPY_BUFFER_SIZE; i += 4) | |
120 | /* | |
121 | * We use "EARLY" here so that we can grab early entropy on | |
122 | * ARM, where tracing is not started until after PRNG is | |
123 | * initialized. | |
124 | */ | |
125 | KERNEL_DEBUG_EARLY(ENTROPY_READ(i/4), | |
126 | word[i+0], word[i+1], word[i+2], word[i+3]); | |
127 | #endif | |
128 | } | |
129 | ||
130 | /* | |
131 | * Return a uniformly distributed 64-bit random number. | |
132 | * | |
133 | * This interface should have minimal dependencies on kernel | |
134 | * services, and thus be available very early in the life | |
135 | * of the kernel. | |
136 | * This provides cryptographically secure randomness. | |
137 | * Each processor has its own generator instance. | |
138 | * It is seeded (lazily) with entropy provided by the Booter. | |
139 | * | |
140 | * For <rdar://problem/17292592> the algorithm switched from LCG to | |
141 | * NIST HMAC DBRG as follows: | |
142 | * - When first called (on OSX this is very early while page tables are being | |
143 | * built) early_random() calls ccdrbg_factory_hmac() to set-up a ccdbrg info | |
144 | * structure. | |
145 | * - The boot processor's ccdrbg state structure is a statically allocated area | |
146 | * which is then initialized by calling the ccdbrg_init method. | |
147 | * The initial entropy is 16 bytes of boot entropy. | |
148 | * The nonce is the first 8 bytes of entropy xor'ed with a timestamp | |
149 | * from ml_get_timebase(). | |
150 | * The personalization data provided is null. | |
151 | * - The first 64-bit random value is returned on the boot processor from | |
152 | * an invocation of the ccdbrg_generate method. | |
153 | * - Non-boot processor's DRBG state structures are allocated dynamically | |
154 | * from prng_init(). Each is initialized with the same 16 bytes of entropy | |
155 | * but with a different timestamped nonce and cpu number as personalization. | |
156 | * - Subsequent calls to early_random() pass to read_erandom() to generate | |
157 | * an 8-byte random value. read_erandom() ensures that pre-emption is | |
158 | * disabled and selects the DBRG state from the current processor. | |
159 | * The ccdbrg_generate method is called for the required random output. | |
160 | * If this method returns CCDRBG_STATUS_NEED_RESEED, the erandom_seed buffer | |
161 | * is re-filled with kernel-harvested entropy and the ccdbrg_reseed method is | |
162 | * called with this new entropy. The kernel panics if a reseed fails. | |
163 | */ | |
164 | uint64_t | |
165 | early_random(void) | |
166 | { | |
167 | uint32_t cnt = 0; | |
168 | uint64_t result; | |
169 | uint64_t nonce; | |
170 | int rc; | |
3e170ce0 | 171 | int ps; |
fe8ab488 A |
172 | ccdrbg_state_t *state; |
173 | ||
174 | if (!erandom_seed_set) { | |
175 | simple_lock_init(&entropy_lock,0); | |
176 | erandom_seed_set = TRUE; | |
177 | cnt = PE_get_random_seed((unsigned char *) EntropyData.buffer, | |
178 | sizeof(EntropyData.buffer)); | |
179 | ||
180 | if (cnt < sizeof(EntropyData.buffer)) { | |
181 | /* | |
182 | * Insufficient entropy is fatal. We must fill the | |
183 | * entire entropy buffer during initializaton. | |
184 | */ | |
185 | panic("EntropyData needed %lu bytes, but got %u.\n", | |
186 | sizeof(EntropyData.buffer), cnt); | |
187 | } | |
188 | ||
189 | /* | |
190 | * Use some of the supplied entropy as a basis for early_random; | |
191 | * reuse is ugly, but simplifies things. Ideally, we would guard | |
192 | * early random values well enough that it isn't safe to attack | |
193 | * them, but this cannot be guaranteed; thus, initial entropy | |
194 | * can be considered 8 bytes weaker for a given boot if any | |
195 | * early random values are conclusively determined. | |
196 | * | |
197 | * early_random_seed could be larger than EntopyData.buffer... | |
198 | * but it won't be. | |
199 | */ | |
200 | bcopy(EntropyData.buffer, &erandom_seed, sizeof(erandom_seed)); | |
201 | ||
202 | /* Init DRBG for NIST HMAC */ | |
203 | ccdrbg_factory_nisthmac(&erandom_info, &erandom_custom); | |
204 | assert(erandom_info.size <= sizeof(master_erandom_state)); | |
205 | state = (ccdrbg_state_t *) master_erandom_state; | |
206 | erandom_state[0] = state; | |
207 | ||
208 | /* | |
3e170ce0 A |
209 | * Init our DBRG from the boot entropy and a timestamp as nonce |
210 | * and the cpu number as personalization. | |
fe8ab488 A |
211 | */ |
212 | assert(sizeof(erandom_seed) > sizeof(nonce)); | |
3e170ce0 A |
213 | nonce = ml_get_timebase(); |
214 | ps = 0; /* boot cpu */ | |
fe8ab488 A |
215 | rc = ccdrbg_init(&erandom_info, state, |
216 | sizeof(erandom_seed), erandom_seed, | |
217 | sizeof(nonce), &nonce, | |
3e170ce0 A |
218 | sizeof(ps), &ps); |
219 | cc_clear(sizeof(nonce), &nonce); | |
220 | if (rc != CCDRBG_STATUS_OK) | |
221 | panic("ccdrbg_init() returned %d", rc); | |
fe8ab488 A |
222 | |
223 | /* Generate output */ | |
224 | rc = ccdrbg_generate(&erandom_info, state, | |
225 | sizeof(result), &result, | |
226 | 0, NULL); | |
3e170ce0 A |
227 | if (rc != CCDRBG_STATUS_OK) |
228 | panic("ccdrbg_generate() returned %d", rc); | |
fe8ab488 A |
229 | |
230 | return result; | |
231 | }; | |
232 | ||
233 | read_erandom(&result, sizeof(result)); | |
234 | ||
235 | return result; | |
236 | } | |
237 | ||
3e170ce0 | 238 | static void |
fe8ab488 A |
239 | read_erandom(void *buffer, u_int numBytes) |
240 | { | |
241 | int cpu; | |
242 | int rc; | |
243 | uint32_t cnt; | |
244 | ccdrbg_state_t *state; | |
245 | ||
246 | mp_disable_preemption(); | |
247 | cpu = cpu_number(); | |
248 | state = erandom_state[cpu]; | |
249 | assert(state); | |
250 | while (TRUE) { | |
251 | /* Generate output */ | |
252 | rc = ccdrbg_generate(&erandom_info, state, | |
253 | numBytes, buffer, | |
254 | 0, NULL); | |
255 | if (rc == CCDRBG_STATUS_OK) | |
256 | break; | |
257 | if (rc == CCDRBG_STATUS_NEED_RESEED) { | |
258 | /* It's time to reseed. Get more entropy */ | |
259 | cnt = sizeof(erandom_seed); | |
260 | entropy_buffer_read(erandom_seed, &cnt); | |
261 | assert(cnt == sizeof(erandom_seed)); | |
262 | rc = ccdrbg_reseed(&erandom_info, state, | |
263 | sizeof(erandom_seed), erandom_seed, | |
264 | 0, NULL); | |
3e170ce0 | 265 | cc_clear(sizeof(erandom_seed), erandom_seed); |
fe8ab488 A |
266 | if (rc == CCDRBG_STATUS_OK) |
267 | continue; | |
268 | panic("read_erandom reseed error %d\n", rc); | |
269 | } | |
270 | panic("read_erandom ccdrbg error %d\n", rc); | |
271 | } | |
272 | mp_enable_preemption(); | |
273 | } | |
274 | ||
275 | void | |
276 | read_frandom(void *buffer, u_int numBytes) | |
277 | { | |
278 | char *cp = (char *) buffer; | |
279 | int nbytes; | |
280 | ||
281 | /* | |
282 | * Split up into requests for blocks smaller than | |
283 | * than the DBRG request limit. iThis limit is private but | |
284 | * for NISTHMAC it's known to be greater then 4096. | |
285 | */ | |
286 | while (numBytes) { | |
287 | nbytes = MIN(numBytes, PAGE_SIZE); | |
288 | read_erandom(cp, nbytes); | |
289 | cp += nbytes; | |
290 | numBytes -= nbytes; | |
291 | } | |
292 | } | |
293 | ||
294 | /* | |
295 | * Register a DRBG factory routine to e used in constructing the kernel PRNG. | |
296 | * XXX to be called from the corecrypto kext. | |
297 | */ | |
298 | void | |
299 | prng_factory_register(ccdrbg_factory_t factory) | |
300 | { | |
301 | prng_ccdrbg_factory = factory; | |
302 | thread_wakeup((event_t) &prng_ccdrbg_factory); | |
303 | } | |
304 | ||
305 | void | |
306 | prng_cpu_init(int cpu) | |
307 | { | |
308 | uint64_t nonce; | |
309 | int rc; | |
310 | ccdrbg_state_t *state; | |
311 | prngContextp pp; | |
312 | ||
313 | /* | |
314 | * Allocate state and initialize DBRG state for early_random() | |
315 | * for this processor, if necessary. | |
316 | */ | |
317 | if (erandom_state[cpu] == NULL) { | |
318 | ||
319 | state = kalloc(erandom_info.size); | |
320 | if (state == NULL) { | |
321 | panic("prng_init kalloc failed\n"); | |
322 | } | |
323 | erandom_state[cpu] = state; | |
324 | ||
325 | /* | |
3e170ce0 A |
326 | * Init our DBRG from boot entropy, nonce as timestamp |
327 | * and use the cpu number as the personalization parameter. | |
fe8ab488 | 328 | */ |
3e170ce0 | 329 | nonce = ml_get_timebase(); |
fe8ab488 A |
330 | rc = ccdrbg_init(&erandom_info, state, |
331 | sizeof(erandom_seed), erandom_seed, | |
332 | sizeof(nonce), &nonce, | |
333 | sizeof(cpu), &cpu); | |
3e170ce0 A |
334 | cc_clear(sizeof(nonce), &nonce); |
335 | if (rc != CCDRBG_STATUS_OK) | |
336 | panic("ccdrbg_init() returned %d", rc); | |
fe8ab488 A |
337 | } |
338 | ||
339 | /* Non-boot cpus use the master cpu's global context */ | |
340 | if (cpu != master_cpu) { | |
341 | cpu_datap(cpu)->cpu_prng = master_prng_context(); | |
342 | return; | |
343 | } | |
344 | ||
345 | assert(gPRNGMutex == NULL); /* Once only, please */ | |
346 | ||
347 | /* make a mutex to control access */ | |
348 | gPRNGGrpAttr = lck_grp_attr_alloc_init(); | |
349 | gPRNGGrp = lck_grp_alloc_init("random", gPRNGGrpAttr); | |
350 | gPRNGAttr = lck_attr_alloc_init(); | |
351 | gPRNGMutex = lck_mtx_alloc_init(gPRNGGrp, gPRNGAttr); | |
352 | ||
353 | pp = kalloc(sizeof(*pp)); | |
354 | if (pp == NULL) | |
355 | panic("Unable to allocate prng context"); | |
356 | pp->bytes_generated = 0; | |
357 | pp->bytes_reseeded = 0; | |
358 | pp->infop = NULL; | |
359 | ||
360 | /* XXX Temporary registration */ | |
361 | prng_factory_register(ccdrbg_factory_yarrow); | |
362 | ||
363 | master_prng_context() = pp; | |
364 | } | |
365 | ||
366 | static ccdrbg_info_t * | |
367 | prng_infop(prngContextp pp) | |
368 | { | |
369 | lck_mtx_assert(gPRNGMutex, LCK_MTX_ASSERT_OWNED); | |
370 | ||
371 | /* Usual case: the info is all set */ | |
372 | if (pp->infop) | |
373 | return pp->infop; | |
374 | ||
375 | /* | |
376 | * Possibly wait for the CCDRBG factory routune to be registered | |
377 | * by corecypto. But panic after waiting for more than 10 seconds. | |
378 | */ | |
379 | while (prng_ccdrbg_factory == NULL ) { | |
380 | wait_result_t wait_result; | |
381 | assert_wait_timeout((event_t) &prng_ccdrbg_factory, TRUE, | |
382 | 10, NSEC_PER_USEC); | |
383 | lck_mtx_unlock(gPRNGMutex); | |
384 | wait_result = thread_block(THREAD_CONTINUE_NULL); | |
385 | if (wait_result == THREAD_TIMED_OUT) | |
386 | panic("prng_ccdrbg_factory registration timeout"); | |
387 | lck_mtx_lock(gPRNGMutex); | |
388 | } | |
389 | /* Check we didn't lose the set-up race */ | |
390 | if (pp->infop) | |
391 | return pp->infop; | |
392 | ||
393 | pp->infop = (ccdrbg_info_t *) kalloc(sizeof(ccdrbg_info_t)); | |
394 | if (pp->infop == NULL) | |
395 | panic("Unable to allocate prng info"); | |
396 | ||
397 | prng_ccdrbg_factory(pp->infop, NULL); | |
398 | ||
399 | pp->statep = kalloc(pp->infop->size); | |
400 | if (pp->statep == NULL) | |
401 | panic("Unable to allocate prng state"); | |
402 | ||
403 | char rdBuffer[ENTROPY_BUFFER_BYTE_SIZE]; | |
404 | unsigned int bytesToInput = sizeof(rdBuffer); | |
405 | ||
406 | entropy_buffer_read(rdBuffer, &bytesToInput); | |
407 | ||
408 | (void) ccdrbg_init(pp->infop, pp->statep, | |
409 | bytesToInput, rdBuffer, | |
410 | 0, NULL, | |
411 | 0, NULL); | |
3e170ce0 | 412 | cc_clear(sizeof(rdBuffer), rdBuffer); |
fe8ab488 A |
413 | return pp->infop; |
414 | } | |
415 | ||
416 | static void | |
417 | Reseed(prngContextp pp) | |
418 | { | |
419 | char rdBuffer[ENTROPY_BUFFER_BYTE_SIZE]; | |
420 | unsigned int bytesToInput = sizeof(rdBuffer); | |
421 | ||
422 | entropy_buffer_read(rdBuffer, &bytesToInput); | |
423 | ||
424 | PRNG_CCDRBG((void) ccdrbg_reseed(pp->infop, pp->statep, | |
425 | bytesToInput, rdBuffer, | |
426 | 0, NULL)); | |
427 | ||
3e170ce0 | 428 | cc_clear(sizeof(rdBuffer), rdBuffer); |
fe8ab488 A |
429 | pp->bytes_reseeded = pp->bytes_generated; |
430 | } | |
431 | ||
432 | ||
433 | /* export good random numbers to the rest of the kernel */ | |
434 | void | |
435 | read_random(void* buffer, u_int numbytes) | |
436 | { | |
437 | prngContextp pp; | |
438 | ccdrbg_info_t *infop; | |
439 | int ccdrbg_err; | |
440 | ||
441 | lck_mtx_lock(gPRNGMutex); | |
442 | ||
443 | pp = current_prng_context(); | |
444 | infop = prng_infop(pp); | |
445 | ||
446 | /* | |
447 | * Call DRBG, reseeding and retrying if requested. | |
448 | */ | |
449 | while (TRUE) { | |
450 | PRNG_CCDRBG( | |
451 | ccdrbg_err = ccdrbg_generate(infop, pp->statep, | |
452 | numbytes, buffer, | |
453 | 0, NULL)); | |
454 | if (ccdrbg_err == CCDRBG_STATUS_OK) | |
455 | break; | |
456 | if (ccdrbg_err == CCDRBG_STATUS_NEED_RESEED) { | |
457 | Reseed(pp); | |
458 | continue; | |
459 | } | |
460 | panic("read_random ccdrbg error %d\n", ccdrbg_err); | |
461 | } | |
462 | ||
463 | pp->bytes_generated += numbytes; | |
464 | lck_mtx_unlock(gPRNGMutex); | |
465 | } | |
466 | ||
467 | int | |
468 | write_random(void* buffer, u_int numbytes) | |
469 | { | |
470 | #if 0 | |
471 | int retval = 0; | |
472 | prngContextp pp; | |
473 | ||
474 | lck_mtx_lock(gPRNGMutex); | |
475 | ||
476 | pp = current_prng_context(); | |
477 | ||
478 | if (ccdrbg_reseed(prng_infop(pp), pp->statep, | |
479 | bytesToInput, rdBuffer, 0, NULL) != 0) | |
480 | retval = EIO; | |
481 | ||
482 | lck_mtx_unlock(gPRNGMutex); | |
483 | return retval; | |
484 | #else | |
485 | #pragma unused(buffer, numbytes) | |
486 | return 0; | |
487 | #endif | |
488 | } |