--- /dev/null
+/* Copyright (c) 1998,2011,2014 Apple Inc. All Rights Reserved.
+ *
+ * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT
+ * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE
+ * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE, INC. AND THE
+ * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE,
+ * INC. ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL
+ * EXPOSE YOU TO LIABILITY.
+ ***************************************************************************
+ *
+ * ckSHA1_priv.c - low-level SHA-1 hash algorithm.
+ *
+ * Revision History
+ * ----------------
+ * 05 Jan 1998 at Apple
+ * Created, based on source by Peter C. Gutmann.
+ * Mods: made reentrant, added NIST fix to expand(), eliminated
+ * unnecessary copy to local W[] array.
+ */
+
+
+/* NIST proposed Secure Hash Standard.
+
+ Written 2 September 1992, Peter C. Gutmann.
+ This implementation placed in the public domain.
+
+ Comments to pgut1@cs.aukuni.ac.nz */
+
+#include "ckconfig.h"
+
+#if !CRYPTKIT_LIBMD_DIGEST
+
+#include "ckSHA1_priv.h"
+#include "platform.h"
+#include <string.h>
+
+/* The SHS f()-functions */
+
+#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */
+#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */
+#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */
+#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */
+
+/* The SHS Mysterious Constants */
+
+#define K1 0x5A827999L /* Rounds 0-19 */
+#define K2 0x6ED9EBA1L /* Rounds 20-39 */
+#define K3 0x8F1BBCDCL /* Rounds 40-59 */
+#define K4 0xCA62C1D6L /* Rounds 60-79 */
+
+/* SHS initial values */
+
+#define h0init 0x67452301L
+#define h1init 0xEFCDAB89L
+#define h2init 0x98BADCFEL
+#define h3init 0x10325476L
+#define h4init 0xC3D2E1F0L
+
+/* 32-bit rotate - kludged with shifts */
+
+#define S(n,X) ( ( X << n ) | ( X >> ( 32 - n ) ) )
+
+/* The initial expanding function */
+
+/*
+ * 06 Jan 1998. Added left circular shift per NIST FIPS-180-1 (at
+ * http://www.nist.gov/itl/div897/pubs/fip180-1.htm). Also see
+ * B. Schneier, Applied Cryptography, Second Edition, section 18.7
+ * for info on this addenda to the original NIST spec.
+ */
+#define expand(count) { \
+ W[count] = W[count - 3] ^ W[count - 8] ^ W[count - 14] ^ W[count - 16]; \
+ W[count] = S(1, W[count]); \
+}
+
+/* The four SHS sub-rounds */
+
+#define subRound1(count) \
+ { \
+ temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \
+ E = D; \
+ D = C; \
+ C = S( 30, B ); \
+ B = A; \
+ A = temp; \
+ }
+
+#define subRound2(count) \
+ { \
+ temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \
+ E = D; \
+ D = C; \
+ C = S( 30, B ); \
+ B = A; \
+ A = temp; \
+ }
+
+#define subRound3(count) \
+ { \
+ temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \
+ E = D; \
+ D = C; \
+ C = S( 30, B ); \
+ B = A; \
+ A = temp; \
+ }
+
+#define subRound4(count) \
+ { \
+ temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \
+ E = D; \
+ D = C; \
+ C = S( 30, B ); \
+ B = A; \
+ A = temp; \
+ }
+
+/* Initialize the SHS values */
+
+void shsInit( SHS_INFO *shsInfo )
+ {
+ /* Set the h-vars to their initial values */
+ shsInfo->digest[ 0 ] = h0init;
+ shsInfo->digest[ 1 ] = h1init;
+ shsInfo->digest[ 2 ] = h2init;
+ shsInfo->digest[ 3 ] = h3init;
+ shsInfo->digest[ 4 ] = h4init;
+
+ /* Initialise bit count */
+ shsInfo->countLo = shsInfo->countHi = 0L;
+ }
+
+/* Perform the SHS transformation. Note that this code, like MD5, seems to
+ break some optimizing compilers - it may be necessary to split it into
+ sections, eg based on the four subrounds */
+
+static void shsTransform( SHS_INFO *shsInfo )
+{
+ LONG *W, temp;
+ LONG A, B, C, D, E;
+
+ /* Step A. Copy the data buffer into the local work buffer. */
+ /* 07 Jan 1998, dmitch: skip this bogus move, and let the caller
+ * copy data directly into the W[] array. To minimize changes,
+ * we'll just increase the size of shsInfo->data[] and make W
+ * a pointer here.
+ */
+ W = shsInfo->data;
+
+ /* Step B. Expand the 16 words into 64 temporary data words */
+
+ /*
+ * Note: I tried optimizing this via a for loop, and for some reason,
+ * the "optimized" version ran slower on PPC than the original
+ * unrolled version. The optimized version does run faster on i486 than
+ * the unrolled version.
+ *
+ * Similarly, the set of subRounds, below, runs slower on i486 when
+ * optimized via 4 'for' loops. The "optimized" version of that is
+ * a wash on PPC.
+ *
+ * Conclusion: leave both of 'em unrolled. We could ifdef per machine,
+ * but this would get messy once we had more than two architectures.
+ * We may want to revisit this. --dpm
+ */
+ expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 );
+ expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 );
+ expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 );
+ expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 );
+ expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 );
+ expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 );
+ expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 );
+ expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 );
+ expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 );
+ expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 );
+ expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 );
+ expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 );
+ expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 );
+
+ /* Step C. Set up first buffer */
+ A = shsInfo->digest[ 0 ];
+ B = shsInfo->digest[ 1 ];
+ C = shsInfo->digest[ 2 ];
+ D = shsInfo->digest[ 3 ];
+ E = shsInfo->digest[ 4 ];
+
+ /* Step D. Serious mangling, divided into four sub-rounds */
+ subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 );
+ subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 );
+ subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 );
+ subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 );
+ subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 );
+ subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 );
+ subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 );
+ subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 );
+ subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 );
+ subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 );
+ subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 );
+ subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 );
+ subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 );
+ subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 );
+ subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 );
+ subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 );
+ subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 );
+ subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 );
+ subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 );
+ subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 );
+
+ /* Step E. Build message digest */
+ shsInfo->digest[ 0 ] += A;
+ shsInfo->digest[ 1 ] += B;
+ shsInfo->digest[ 2 ] += C;
+ shsInfo->digest[ 3 ] += D;
+ shsInfo->digest[ 4 ] += E;
+}
+
+/* __LITTLE_ENDIAN__ is in fact #defined on OS X on PPC.... */
+//#ifdef __LITTLE_ENDIAN__
+#if 0
+
+/* When run on a little-endian CPU we need to perform byte reversal on an
+ array of longwords. It is possible to make the code endianness-
+ independant by fiddling around with data at the byte level, but this
+ makes for very slow code, so we rely on the user to sort out endianness
+ at compile time */
+
+static void byteReverse( buffer, byteCount )
+ LONG *buffer;
+ int byteCount;
+
+ {
+ LONG value;
+ int count;
+
+ byteCount /= sizeof( LONG );
+ for( count = 0; count < byteCount; count++ )
+ {
+ value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 );
+ buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 );
+ }
+ }
+
+#else /* __LITTLE_ENDIAN__ */
+
+/*
+ * Nop for big-endian machines
+ */
+#define byteReverse( buffer, byteCount )
+
+#endif /* __LITTLE_ENDIAN__ */
+
+
+/* Update SHS for a block of data. This code assumes that the buffer size
+ is a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot
+ more efficient since it does away with the need to handle partial blocks
+ between calls to shsUpdate() */
+
+void shsUpdate(
+ SHS_INFO *shsInfo,
+ const BYTE *buffer,
+ int count)
+
+ {
+ /* Update bitcount */
+ if( ( shsInfo->countLo + ( ( LONG ) count << 3 ) ) < shsInfo->countLo )
+ shsInfo->countHi++; /* Carry from low to high bitCount */
+ shsInfo->countLo += ( ( LONG ) count << 3 );
+ shsInfo->countHi += ( ( LONG ) count >> 29 );
+
+ /* Process data in SHS_BLOCKSIZE chunks */
+ while( count >= SHS_BLOCKSIZE )
+ {
+ memcpy( shsInfo->data, buffer, SHS_BLOCKSIZE );
+ byteReverse( shsInfo->data, SHS_BLOCKSIZE );
+ shsTransform( shsInfo );
+ buffer += SHS_BLOCKSIZE;
+ count -= SHS_BLOCKSIZE;
+ }
+
+ /* Handle any remaining bytes of data. This should only happen once
+ on the final lot of data */
+ memcpy( shsInfo->data, buffer, count );
+ }
+
+void shsFinal(SHS_INFO *shsInfo)
+ {
+ int count;
+ LONG lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi;
+
+ /* Compute number of bytes mod 64 */
+ count = ( int ) ( ( shsInfo->countLo >> 3 ) & 0x3F );
+
+ /* Set the first char of padding to 0x80. This is safe since there is
+ always at least one byte free */
+ ( ( BYTE * ) shsInfo->data )[ count++ ] = 0x80;
+
+ /* Pad out to 56 mod 64 */
+ if( count > 56 )
+ {
+ /* Two lots of padding: Pad the first block to 64 bytes */
+ memset( ( BYTE * ) &shsInfo->data + count, 0, 64 - count );
+ byteReverse( shsInfo->data, SHS_BLOCKSIZE );
+ shsTransform( shsInfo );
+
+ /* Now fill the next block with 56 bytes */
+ memset( &shsInfo->data, 0, 56 );
+ }
+ else
+ /* Pad block to 56 bytes */
+ memset( ( BYTE * ) &shsInfo->data + count, 0, 56 - count );
+ byteReverse( shsInfo->data, SHS_BLOCKSIZE );
+
+ /* Append length in bits and transform */
+ shsInfo->data[ 14 ] = highBitcount;
+ shsInfo->data[ 15 ] = lowBitcount;
+
+ shsTransform( shsInfo );
+ byteReverse( shsInfo->data, SHS_DIGESTSIZE );
+ }
+
+#endif /* CRYPTKIT_LIBMD_DIGEST */