X-Git-Url: https://git.saurik.com/apple/security.git/blobdiff_plain/80e2389990082500d76eb566d4946be3e786c3ef..d8f41ccd20de16f8ebe2ccc84d47bf1cb2b26bbb:/Security/libsecurity_cryptkit/lib/ckSHA1_priv.c diff --git a/Security/libsecurity_cryptkit/lib/ckSHA1_priv.c b/Security/libsecurity_cryptkit/lib/ckSHA1_priv.c new file mode 100644 index 00000000..4ea15ae0 --- /dev/null +++ b/Security/libsecurity_cryptkit/lib/ckSHA1_priv.c @@ -0,0 +1,321 @@ +/* Copyright (c) 1998,2011,2014 Apple Inc. All Rights Reserved. + * + * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT + * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE + * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE, INC. AND THE + * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE, + * INC. ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL + * EXPOSE YOU TO LIABILITY. + *************************************************************************** + * + * ckSHA1_priv.c - low-level SHA-1 hash algorithm. + * + * Revision History + * ---------------- + * 05 Jan 1998 at Apple + * Created, based on source by Peter C. Gutmann. + * Mods: made reentrant, added NIST fix to expand(), eliminated + * unnecessary copy to local W[] array. + */ + + +/* NIST proposed Secure Hash Standard. + + Written 2 September 1992, Peter C. Gutmann. + This implementation placed in the public domain. + + Comments to pgut1@cs.aukuni.ac.nz */ + +#include "ckconfig.h" + +#if !CRYPTKIT_LIBMD_DIGEST + +#include "ckSHA1_priv.h" +#include "platform.h" +#include + +/* The SHS f()-functions */ + +#define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) /* Rounds 0-19 */ +#define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ +#define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) /* Rounds 40-59 */ +#define f4(x,y,z) ( x ^ y ^ z ) /* Rounds 60-79 */ + +/* The SHS Mysterious Constants */ + +#define K1 0x5A827999L /* Rounds 0-19 */ +#define K2 0x6ED9EBA1L /* Rounds 20-39 */ +#define K3 0x8F1BBCDCL /* Rounds 40-59 */ +#define K4 0xCA62C1D6L /* Rounds 60-79 */ + +/* SHS initial values */ + +#define h0init 0x67452301L +#define h1init 0xEFCDAB89L +#define h2init 0x98BADCFEL +#define h3init 0x10325476L +#define h4init 0xC3D2E1F0L + +/* 32-bit rotate - kludged with shifts */ + +#define S(n,X) ( ( X << n ) | ( X >> ( 32 - n ) ) ) + +/* The initial expanding function */ + +/* + * 06 Jan 1998. Added left circular shift per NIST FIPS-180-1 (at + * http://www.nist.gov/itl/div897/pubs/fip180-1.htm). Also see + * B. Schneier, Applied Cryptography, Second Edition, section 18.7 + * for info on this addenda to the original NIST spec. + */ +#define expand(count) { \ + W[count] = W[count - 3] ^ W[count - 8] ^ W[count - 14] ^ W[count - 16]; \ + W[count] = S(1, W[count]); \ +} + +/* The four SHS sub-rounds */ + +#define subRound1(count) \ + { \ + temp = S( 5, A ) + f1( B, C, D ) + E + W[ count ] + K1; \ + E = D; \ + D = C; \ + C = S( 30, B ); \ + B = A; \ + A = temp; \ + } + +#define subRound2(count) \ + { \ + temp = S( 5, A ) + f2( B, C, D ) + E + W[ count ] + K2; \ + E = D; \ + D = C; \ + C = S( 30, B ); \ + B = A; \ + A = temp; \ + } + +#define subRound3(count) \ + { \ + temp = S( 5, A ) + f3( B, C, D ) + E + W[ count ] + K3; \ + E = D; \ + D = C; \ + C = S( 30, B ); \ + B = A; \ + A = temp; \ + } + +#define subRound4(count) \ + { \ + temp = S( 5, A ) + f4( B, C, D ) + E + W[ count ] + K4; \ + E = D; \ + D = C; \ + C = S( 30, B ); \ + B = A; \ + A = temp; \ + } + +/* Initialize the SHS values */ + +void shsInit( SHS_INFO *shsInfo ) + { + /* Set the h-vars to their initial values */ + shsInfo->digest[ 0 ] = h0init; + shsInfo->digest[ 1 ] = h1init; + shsInfo->digest[ 2 ] = h2init; + shsInfo->digest[ 3 ] = h3init; + shsInfo->digest[ 4 ] = h4init; + + /* Initialise bit count */ + shsInfo->countLo = shsInfo->countHi = 0L; + } + +/* Perform the SHS transformation. Note that this code, like MD5, seems to + break some optimizing compilers - it may be necessary to split it into + sections, eg based on the four subrounds */ + +static void shsTransform( SHS_INFO *shsInfo ) +{ + LONG *W, temp; + LONG A, B, C, D, E; + + /* Step A. Copy the data buffer into the local work buffer. */ + /* 07 Jan 1998, dmitch: skip this bogus move, and let the caller + * copy data directly into the W[] array. To minimize changes, + * we'll just increase the size of shsInfo->data[] and make W + * a pointer here. + */ + W = shsInfo->data; + + /* Step B. Expand the 16 words into 64 temporary data words */ + + /* + * Note: I tried optimizing this via a for loop, and for some reason, + * the "optimized" version ran slower on PPC than the original + * unrolled version. The optimized version does run faster on i486 than + * the unrolled version. + * + * Similarly, the set of subRounds, below, runs slower on i486 when + * optimized via 4 'for' loops. The "optimized" version of that is + * a wash on PPC. + * + * Conclusion: leave both of 'em unrolled. We could ifdef per machine, + * but this would get messy once we had more than two architectures. + * We may want to revisit this. --dpm + */ + expand( 16 ); expand( 17 ); expand( 18 ); expand( 19 ); expand( 20 ); + expand( 21 ); expand( 22 ); expand( 23 ); expand( 24 ); expand( 25 ); + expand( 26 ); expand( 27 ); expand( 28 ); expand( 29 ); expand( 30 ); + expand( 31 ); expand( 32 ); expand( 33 ); expand( 34 ); expand( 35 ); + expand( 36 ); expand( 37 ); expand( 38 ); expand( 39 ); expand( 40 ); + expand( 41 ); expand( 42 ); expand( 43 ); expand( 44 ); expand( 45 ); + expand( 46 ); expand( 47 ); expand( 48 ); expand( 49 ); expand( 50 ); + expand( 51 ); expand( 52 ); expand( 53 ); expand( 54 ); expand( 55 ); + expand( 56 ); expand( 57 ); expand( 58 ); expand( 59 ); expand( 60 ); + expand( 61 ); expand( 62 ); expand( 63 ); expand( 64 ); expand( 65 ); + expand( 66 ); expand( 67 ); expand( 68 ); expand( 69 ); expand( 70 ); + expand( 71 ); expand( 72 ); expand( 73 ); expand( 74 ); expand( 75 ); + expand( 76 ); expand( 77 ); expand( 78 ); expand( 79 ); + + /* Step C. Set up first buffer */ + A = shsInfo->digest[ 0 ]; + B = shsInfo->digest[ 1 ]; + C = shsInfo->digest[ 2 ]; + D = shsInfo->digest[ 3 ]; + E = shsInfo->digest[ 4 ]; + + /* Step D. Serious mangling, divided into four sub-rounds */ + subRound1( 0 ); subRound1( 1 ); subRound1( 2 ); subRound1( 3 ); + subRound1( 4 ); subRound1( 5 ); subRound1( 6 ); subRound1( 7 ); + subRound1( 8 ); subRound1( 9 ); subRound1( 10 ); subRound1( 11 ); + subRound1( 12 ); subRound1( 13 ); subRound1( 14 ); subRound1( 15 ); + subRound1( 16 ); subRound1( 17 ); subRound1( 18 ); subRound1( 19 ); + subRound2( 20 ); subRound2( 21 ); subRound2( 22 ); subRound2( 23 ); + subRound2( 24 ); subRound2( 25 ); subRound2( 26 ); subRound2( 27 ); + subRound2( 28 ); subRound2( 29 ); subRound2( 30 ); subRound2( 31 ); + subRound2( 32 ); subRound2( 33 ); subRound2( 34 ); subRound2( 35 ); + subRound2( 36 ); subRound2( 37 ); subRound2( 38 ); subRound2( 39 ); + subRound3( 40 ); subRound3( 41 ); subRound3( 42 ); subRound3( 43 ); + subRound3( 44 ); subRound3( 45 ); subRound3( 46 ); subRound3( 47 ); + subRound3( 48 ); subRound3( 49 ); subRound3( 50 ); subRound3( 51 ); + subRound3( 52 ); subRound3( 53 ); subRound3( 54 ); subRound3( 55 ); + subRound3( 56 ); subRound3( 57 ); subRound3( 58 ); subRound3( 59 ); + subRound4( 60 ); subRound4( 61 ); subRound4( 62 ); subRound4( 63 ); + subRound4( 64 ); subRound4( 65 ); subRound4( 66 ); subRound4( 67 ); + subRound4( 68 ); subRound4( 69 ); subRound4( 70 ); subRound4( 71 ); + subRound4( 72 ); subRound4( 73 ); subRound4( 74 ); subRound4( 75 ); + subRound4( 76 ); subRound4( 77 ); subRound4( 78 ); subRound4( 79 ); + + /* Step E. Build message digest */ + shsInfo->digest[ 0 ] += A; + shsInfo->digest[ 1 ] += B; + shsInfo->digest[ 2 ] += C; + shsInfo->digest[ 3 ] += D; + shsInfo->digest[ 4 ] += E; +} + +/* __LITTLE_ENDIAN__ is in fact #defined on OS X on PPC.... */ +//#ifdef __LITTLE_ENDIAN__ +#if 0 + +/* When run on a little-endian CPU we need to perform byte reversal on an + array of longwords. It is possible to make the code endianness- + independant by fiddling around with data at the byte level, but this + makes for very slow code, so we rely on the user to sort out endianness + at compile time */ + +static void byteReverse( buffer, byteCount ) + LONG *buffer; + int byteCount; + + { + LONG value; + int count; + + byteCount /= sizeof( LONG ); + for( count = 0; count < byteCount; count++ ) + { + value = ( buffer[ count ] << 16 ) | ( buffer[ count ] >> 16 ); + buffer[ count ] = ( ( value & 0xFF00FF00L ) >> 8 ) | ( ( value & 0x00FF00FFL ) << 8 ); + } + } + +#else /* __LITTLE_ENDIAN__ */ + +/* + * Nop for big-endian machines + */ +#define byteReverse( buffer, byteCount ) + +#endif /* __LITTLE_ENDIAN__ */ + + +/* Update SHS for a block of data. This code assumes that the buffer size + is a multiple of SHS_BLOCKSIZE bytes long, which makes the code a lot + more efficient since it does away with the need to handle partial blocks + between calls to shsUpdate() */ + +void shsUpdate( + SHS_INFO *shsInfo, + const BYTE *buffer, + int count) + + { + /* Update bitcount */ + if( ( shsInfo->countLo + ( ( LONG ) count << 3 ) ) < shsInfo->countLo ) + shsInfo->countHi++; /* Carry from low to high bitCount */ + shsInfo->countLo += ( ( LONG ) count << 3 ); + shsInfo->countHi += ( ( LONG ) count >> 29 ); + + /* Process data in SHS_BLOCKSIZE chunks */ + while( count >= SHS_BLOCKSIZE ) + { + memcpy( shsInfo->data, buffer, SHS_BLOCKSIZE ); + byteReverse( shsInfo->data, SHS_BLOCKSIZE ); + shsTransform( shsInfo ); + buffer += SHS_BLOCKSIZE; + count -= SHS_BLOCKSIZE; + } + + /* Handle any remaining bytes of data. This should only happen once + on the final lot of data */ + memcpy( shsInfo->data, buffer, count ); + } + +void shsFinal(SHS_INFO *shsInfo) + { + int count; + LONG lowBitcount = shsInfo->countLo, highBitcount = shsInfo->countHi; + + /* Compute number of bytes mod 64 */ + count = ( int ) ( ( shsInfo->countLo >> 3 ) & 0x3F ); + + /* Set the first char of padding to 0x80. This is safe since there is + always at least one byte free */ + ( ( BYTE * ) shsInfo->data )[ count++ ] = 0x80; + + /* Pad out to 56 mod 64 */ + if( count > 56 ) + { + /* Two lots of padding: Pad the first block to 64 bytes */ + memset( ( BYTE * ) &shsInfo->data + count, 0, 64 - count ); + byteReverse( shsInfo->data, SHS_BLOCKSIZE ); + shsTransform( shsInfo ); + + /* Now fill the next block with 56 bytes */ + memset( &shsInfo->data, 0, 56 ); + } + else + /* Pad block to 56 bytes */ + memset( ( BYTE * ) &shsInfo->data + count, 0, 56 - count ); + byteReverse( shsInfo->data, SHS_BLOCKSIZE ); + + /* Append length in bits and transform */ + shsInfo->data[ 14 ] = highBitcount; + shsInfo->data[ 15 ] = lowBitcount; + + shsTransform( shsInfo ); + byteReverse( shsInfo->data, SHS_DIGESTSIZE ); + } + +#endif /* CRYPTKIT_LIBMD_DIGEST */