]>
git.saurik.com Git - apple/security.git/blob - cdsa/cdsa_utilities/threading.h
2 * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved.
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
20 // threading - generic thread support
25 #include <Security/utilities.h>
26 #include <Security/debugging.h>
28 #if _USE_THREADS == _USE_PTHREADS
32 #include <Security/threading_internal.h>
39 // Potentially, debug-logging all Mutex activity can really ruin your
40 // performance day. We take some measures to reduce the impact, but if
41 // you really can't stomach any overhead, define THREAD_NDEBUG to turn
42 // (only) thread debug-logging off. NDEBUG will turn this on automatically.
43 // On the other hand, throwing out all debug code will change the ABI of
44 // Mutexi in incompatible ways. Thus, we still generate the debug-style out-of-line
45 // code even with THREAD_NDEBUG, so that debug-style code will work with us.
46 // If you want to ditch it completely, #define THREAD_CLEAN_NDEBUG.
48 #if defined(NDEBUG) || defined(THREAD_CLEAN_NDEBUG)
49 # if !defined(THREAD_NDEBUG)
50 # define THREAD_NDEBUG
56 // An abstraction of a per-thread untyped storage slot of pointer size.
57 // Do not use this in ordinary code; this is for implementing other primitives only.
58 // Use a PerThreadPointer or ThreadNexus.
60 #if _USE_THREADS == _USE_PTHREADS
62 class ThreadStoreSlot
{
64 typedef void Destructor(void *);
65 ThreadStoreSlot(Destructor
*destructor
= NULL
);
68 void *get() const { return pthread_getspecific(mKey
); }
69 operator void * () const { return get(); }
70 void operator = (void *value
) const
72 if (int err
= pthread_setspecific(mKey
, value
))
73 UnixError::throwMe(err
);
80 #endif //_USE_PTHREADS
84 // Per-thread pointers are patterned after the pthread TLS (thread local storage)
87 #if _USE_THREADS == _USE_PTHREADS
90 class PerThreadPointer
: public ThreadStoreSlot
{
92 PerThreadPointer(bool cleanup
= true) : ThreadStoreSlot(cleanup
? destructor
: NULL
) { }
93 operator bool() const { return get() != NULL
; }
94 operator T
* () const { return reinterpret_cast<T
*>(get()); }
95 T
*operator -> () const { return static_cast<T
*>(*this); }
96 T
&operator * () const { return *static_cast<T
*>(get()); }
97 void operator = (T
*t
) { ThreadStoreSlot::operator = (t
); }
100 static void destructor(void *element
)
101 { delete reinterpret_cast<T
*>(element
); }
104 #elif _USE_THREADS == _USE_NO_THREADS
107 class PerThreadPointer
{
109 PerThreadPointer(bool cleanup
= true) : mCleanup(cleanup
) { }
110 ~PerThreadPointer() { if (mCleanup
) delete mValue
; }
111 operator bool() const { return mValue
!= NULL
; }
112 operator T
* () const { return mValue
; }
113 T
*operator -> () const { return mValue
; }
114 T
&operator * () const { assert(mValue
); return *mValue
; }
115 void operator = (T
*t
) { mValue
= t
; }
123 # error Unsupported threading model
124 #endif //_USE_THREADS
128 // Basic Mutex operations.
129 // This will be some as-cheap-as-feasible locking primitive that only
130 // controls one bit (locked/unlocked), plus whatever you contractually
131 // put under its control.
133 #if _USE_THREADS == _USE_PTHREADS
138 void check(int err
) { if (err
) UnixError::throwMe(err
); }
141 #if defined(THREAD_NDEBUG) && !defined(THREAD_MAKE_STUBS)
142 Mutex(bool = true) { check(pthread_mutex_init(&me
, NULL
)); }
143 void lock() { check(pthread_mutex_lock(&me
)); }
145 if (int err
= pthread_mutex_trylock(&me
))
146 if (err
== EBUSY
) return false; else UnixError::throwMe(err
);
149 void unlock() { check(pthread_mutex_unlock(&me
)); }
150 ~Mutex() { check(pthread_mutex_destroy(&me
)); }
151 #else //THREAD_NDEBUG
152 Mutex(bool log
= true);
157 #endif //THREAD_NDEBUG
162 #if !defined(THREAD_CLEAN_NDEBUG)
163 bool debugLog
; // log *this* mutex
164 unsigned long useCount
; // number of locks succeeded
165 unsigned long contentionCount
; // number of contentions (valid only if debugLog)
166 static bool debugHasInitialized
; // global: debug state set up
167 static bool loggingMutexi
; // global: we are debug-logging mutexi
168 #endif //THREAD_CLEAN_NDEBUG
171 #elif _USE_THREADS == _USE_NO_THREADS
175 void lock(bool = true) { }
177 bool tryLock() { return true; }
181 # error Unsupported threading model
182 #endif //_USE_THREADS
186 // A CountingMutex adds a counter to a Mutex.
187 // NOTE: This is not officially a semaphore, even if it happens to be implemented with
188 // one on some platforms.
190 class CountingMutex
: public Mutex
{
191 // note that this implementation works for any system implementing Mutex *somehow*
193 CountingMutex() : mCount(0) { }
194 ~CountingMutex() { assert(mCount
== 0); }
200 // these methods do not lock - use only while you hold the lock
201 unsigned int count() const { return mCount
; }
202 bool isIdle() const { return mCount
== 0; }
204 // convert Mutex lock to CountingMutex enter/exit. Expert use only
214 // A guaranteed-unlocker stack-based class.
215 // By default, this will use lock/unlock methods, but you can provide your own
216 // alternates (to, e.g., use enter/exit, or some more specialized pair of operations).
218 // NOTE: StLock itself is not thread-safe. It is intended for use (usually on the stack)
219 // by a single thread.
221 template <class Lock
,
222 void (Lock::*_lock
)() = &Lock::lock
,
223 void (Lock::*_unlock
)() = &Lock::unlock
>
226 StLock(Lock
&lck
) : me(lck
) { (me
.*_lock
)(); mActive
= true; }
227 StLock(Lock
&lck
, bool option
) : me(lck
), mActive(option
) { }
228 ~StLock() { if (mActive
) (me
.*_unlock
)(); }
230 bool isActive() const { return mActive
; }
231 void lock() { if(!mActive
) { (me
.*_lock
)(); mActive
= true; }}
232 void unlock() { if(mActive
) { (me
.*_unlock
)(); mActive
= false; }}
234 operator const Lock
&() const { return me
; }
243 // Atomic increment/decrement operations.
244 // The default implementation uses a Mutex. However, many architectures can do
245 // much better than that.
246 // Be very clear on the nature of AtomicCounter. It implies no memory barriers of
247 // any kind. This means that (1) you cannot protect any other memory region with it
248 // (use a Mutex for that), and (2) it may not enforce cross-processor ordering, which
249 // means that you have no guarantee that you'll see modifications by other processors
250 // made earlier (unless another mechanism provides the memory barrier).
251 // On the other hand, if your compiler has brains, this is blindingly fast...
253 template <class Integer
= int>
254 class StaticAtomicCounter
{
257 #if defined(_HAVE_ATOMIC_OPERATIONS)
260 operator Integer() const { return mValue
; }
262 // infix versions (primary)
263 Integer
operator ++ () { return atomicIncrement(mValue
); }
264 Integer
operator -- () { return atomicDecrement(mValue
); }
267 Integer
operator ++ (int) { return atomicIncrement(mValue
) - 1; }
268 Integer
operator -- (int) { return atomicDecrement(mValue
) + 1; }
271 Integer
operator += (int delta
) { return atomicOffset(mValue
, delta
); }
273 #else // no atomic integers, use locks
278 StaticAtomicCounter(Integer init
= 0) : mValue(init
), mLock(false) { }
279 operator Integer() const { StLock
<Mutex
> _(mLock
); return mValue
; }
280 Integer
operator ++ () { StLock
<Mutex
> _(mLock
); return ++mValue
; }
281 Integer
operator -- () { StLock
<Mutex
> _(mLock
); return --mValue
; }
282 Integer
operator ++ (int) { StLock
<Mutex
> _(mLock
); return mValue
++; }
283 Integer
operator -- (int) { StLock
<Mutex
> _(mLock
); return mValue
--; }
284 Integer
operator += (int delta
) { StLock
<Mutex
> _(mLock
); return mValue
+= delta
; }
289 template <class Integer
= int>
290 class AtomicCounter
: public StaticAtomicCounter
<Integer
> {
292 AtomicCounter(Integer init
= 0) { mValue
= 0; }
297 // A class implementing a separate thread of execution.
298 // Do not expect many high-level semantics to be portable. If you can,
299 // restrict yourself to expect parallel execution and little else.
301 #if _USE_THREADS == _USE_PTHREADS
306 Thread() { } // constructor
307 virtual ~Thread(); // virtual destructor
308 void run(); // begin running the thread
311 static void yield(); // unstructured short-term processor yield
319 static Identity
current() { return pthread_self(); }
321 bool operator == (const Identity
&other
) const
322 { return pthread_equal(mIdent
, other
.mIdent
); }
324 bool operator != (const Identity
&other
) const
325 { return !(*this == other
); }
328 static const int idLength
= 10;
329 static void getIdString(char id
[idLength
]);
335 Identity(pthread_t id
) : mIdent(id
) { }
339 virtual void action() = 0; // the action to be performed
342 Identity self
; // my own identity (instance constant)
344 static void *runner(void *); // argument to pthread_create
347 #elif _USE_THREADS == _USE_NO_THREADS
352 Thread() { } // constructor
353 virtual ~Thread() { } // virtual destructor
354 void run() { action(); } // just synchronously run the action
359 static Identity
current() { return Identity(); }
361 bool operator == (const Identity
&) const { return true; } // all the same
362 bool operator != (const Identity
&) const { return false; }
365 static const idLength
= 9;
366 static void getIdString(char id
[idLength
]) { memcpy(id
, "nothread", idLength
); }
374 virtual void action() = 0; // implement action of thread
378 # error Unsupported threading model
383 // A "just run this function in a thread" variant of Thread
385 class ThreadRunner
: public Thread
{
386 typedef void Action();
388 ThreadRunner(Action
*todo
);
397 // A NestingMutex allows recursive re-entry by the same thread.
398 // Some pthread implementations support this through a mutex attribute.
399 // OSX's doesn't, naturally. This implementation works on all pthread platforms.
412 Thread::Identity mIdent
;
416 } // end namespace Security
418 #endif //_H_THREADING