2 * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved.
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
19 /* trees.c -- output deflated data using Huffman coding
20 * Copyright (C) 1995-1998 Jean-loup Gailly
21 * For conditions of distribution and use, see copyright notice in zlib.h
27 * The "deflation" process uses several Huffman trees. The more
28 * common source values are represented by shorter bit sequences.
30 * Each code tree is stored in a compressed form which is itself
31 * a Huffman encoding of the lengths of all the code strings (in
32 * ascending order by source values). The actual code strings are
33 * reconstructed from the lengths in the inflate process, as described
34 * in the deflate specification.
38 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
39 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
42 * Data Compression: Methods and Theory, pp. 49-50.
43 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
47 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
50 /* @(#) $Id: trees.c,v 1.1.1.1 2001/05/18 23:14:03 mb Exp $ */
52 /* #define GEN_TREES_H */
60 /* ===========================================================================
65 /* Bit length codes must not exceed MAX_BL_BITS bits */
68 /* end of block literal code */
71 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
74 /* repeat a zero length 3-10 times (3 bits of repeat count) */
76 #define REPZ_11_138 18
77 /* repeat a zero length 11-138 times (7 bits of repeat count) */
79 local
const int extra_lbits
[LENGTH_CODES
] /* extra bits for each length code */
80 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
82 local
const int extra_dbits
[D_CODES
] /* extra bits for each distance code */
83 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
85 local
const int extra_blbits
[BL_CODES
]/* extra bits for each bit length code */
86 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
88 local
const uch bl_order
[BL_CODES
]
89 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
90 /* The lengths of the bit length codes are sent in order of decreasing
91 * probability, to avoid transmitting the lengths for unused bit length codes.
94 #define Buf_size (8 * 2*sizeof(char))
95 /* Number of bits used within bi_buf. (bi_buf might be implemented on
96 * more than 16 bits on some systems.)
99 /* ===========================================================================
100 * Local data. These are initialized only once.
103 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
105 #if defined(GEN_TREES_H) || !defined(STDC)
106 /* non ANSI compilers may not accept trees.h */
108 local ct_data static_ltree
[L_CODES
+2];
109 /* The static literal tree. Since the bit lengths are imposed, there is no
110 * need for the L_CODES extra codes used during heap construction. However
111 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
115 local ct_data static_dtree
[D_CODES
];
116 /* The static distance tree. (Actually a trivial tree since all codes use
120 uch _dist_code
[DIST_CODE_LEN
];
121 /* Distance codes. The first 256 values correspond to the distances
122 * 3 .. 258, the last 256 values correspond to the top 8 bits of
123 * the 15 bit distances.
126 uch _length_code
[MAX_MATCH
-MIN_MATCH
+1];
127 /* length code for each normalized match length (0 == MIN_MATCH) */
129 local
int base_length
[LENGTH_CODES
];
130 /* First normalized length for each code (0 = MIN_MATCH) */
132 local
int base_dist
[D_CODES
];
133 /* First normalized distance for each code (0 = distance of 1) */
137 #endif /* GEN_TREES_H */
139 struct static_tree_desc_s
{
140 const ct_data
*static_tree
; /* static tree or NULL */
141 const intf
*extra_bits
; /* extra bits for each code or NULL */
142 int extra_base
; /* base index for extra_bits */
143 int elems
; /* max number of elements in the tree */
144 int max_length
; /* max bit length for the codes */
147 local static_tree_desc static_l_desc
=
148 {static_ltree
, extra_lbits
, LITERALS
+1, L_CODES
, MAX_BITS
};
150 local static_tree_desc static_d_desc
=
151 {static_dtree
, extra_dbits
, 0, D_CODES
, MAX_BITS
};
153 local static_tree_desc static_bl_desc
=
154 {(const ct_data
*)0, extra_blbits
, 0, BL_CODES
, MAX_BL_BITS
};
156 /* ===========================================================================
157 * Local (static) routines in this file.
160 local
void tr_static_init
OF((void));
161 local
void init_block
OF((deflate_state
*s
));
162 local
void pqdownheap
OF((deflate_state
*s
, ct_data
*tree
, int k
));
163 local
void gen_bitlen
OF((deflate_state
*s
, tree_desc
*desc
));
164 local
void gen_codes
OF((ct_data
*tree
, int max_code
, ushf
*bl_count
));
165 local
void build_tree
OF((deflate_state
*s
, tree_desc
*desc
));
166 local
void scan_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
167 local
void send_tree
OF((deflate_state
*s
, ct_data
*tree
, int max_code
));
168 local
int build_bl_tree
OF((deflate_state
*s
));
169 local
void send_all_trees
OF((deflate_state
*s
, int lcodes
, int dcodes
,
171 local
void compress_block
OF((deflate_state
*s
, ct_data
*ltree
,
173 local
void set_data_type
OF((deflate_state
*s
));
174 local
unsigned bi_reverse
OF((unsigned value
, int length
));
175 local
void bi_windup
OF((deflate_state
*s
));
176 local
void bi_flush
OF((deflate_state
*s
));
177 local
void copy_block
OF((deflate_state
*s
, charf
*buf
, unsigned len
,
181 local
void gen_trees_header
OF((void));
185 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
186 /* Send a code of the given tree. c and tree must not have side effects */
189 # define send_code(s, c, tree) \
190 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
191 send_bits(s, tree[c].Code, tree[c].Len); }
194 /* ===========================================================================
195 * Output a short LSB first on the stream.
196 * IN assertion: there is enough room in pendingBuf.
198 #define put_short(s, w) { \
199 put_byte(s, (uch)((w) & 0xff)); \
200 put_byte(s, (uch)((ush)(w) >> 8)); \
203 /* ===========================================================================
204 * Send a value on a given number of bits.
205 * IN assertion: length <= 16 and value fits in length bits.
208 local
void send_bits
OF((deflate_state
*s
, int value
, int length
));
210 local
void send_bits(s
, value
, length
)
212 int value
; /* value to send */
213 int length
; /* number of bits */
215 Tracevv((stderr
," l %2d v %4x ", length
, value
));
216 Assert(length
> 0 && length
<= 15, "invalid length");
217 s
->bits_sent
+= (ulg
)length
;
219 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
220 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
221 * unused bits in value.
223 if (s
->bi_valid
> (int)Buf_size
- length
) {
224 s
->bi_buf
|= (value
<< s
->bi_valid
);
225 put_short(s
, s
->bi_buf
);
226 s
->bi_buf
= (ush
)value
>> (Buf_size
- s
->bi_valid
);
227 s
->bi_valid
+= length
- Buf_size
;
229 s
->bi_buf
|= value
<< s
->bi_valid
;
230 s
->bi_valid
+= length
;
235 #define send_bits(s, value, length) \
237 if (s->bi_valid > (int)Buf_size - len) {\
239 s->bi_buf |= (val << s->bi_valid);\
240 put_short(s, s->bi_buf);\
241 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
242 s->bi_valid += len - Buf_size;\
244 s->bi_buf |= (value) << s->bi_valid;\
251 #define MAX(a,b) (a >= b ? a : b)
252 /* the arguments must not have side effects */
254 /* ===========================================================================
255 * Initialize the various 'constant' tables.
257 local
void tr_static_init()
259 #if defined(GEN_TREES_H) || !defined(STDC)
260 static int static_init_done
= 0;
261 int n
; /* iterates over tree elements */
262 int bits
; /* bit counter */
263 int length
; /* length value */
264 int code
; /* code value */
265 int dist
; /* distance index */
266 ush bl_count
[MAX_BITS
+1];
267 /* number of codes at each bit length for an optimal tree */
269 if (static_init_done
) return;
271 /* For some embedded targets, global variables are not initialized: */
272 static_l_desc
.static_tree
= static_ltree
;
273 static_l_desc
.extra_bits
= extra_lbits
;
274 static_d_desc
.static_tree
= static_dtree
;
275 static_d_desc
.extra_bits
= extra_dbits
;
276 static_bl_desc
.extra_bits
= extra_blbits
;
278 /* Initialize the mapping length (0..255) -> length code (0..28) */
280 for (code
= 0; code
< LENGTH_CODES
-1; code
++) {
281 base_length
[code
] = length
;
282 for (n
= 0; n
< (1<<extra_lbits
[code
]); n
++) {
283 _length_code
[length
++] = (uch
)code
;
286 Assert (length
== 256, "tr_static_init: length != 256");
287 /* Note that the length 255 (match length 258) can be represented
288 * in two different ways: code 284 + 5 bits or code 285, so we
289 * overwrite length_code[255] to use the best encoding:
291 _length_code
[length
-1] = (uch
)code
;
293 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
295 for (code
= 0 ; code
< 16; code
++) {
296 base_dist
[code
] = dist
;
297 for (n
= 0; n
< (1<<extra_dbits
[code
]); n
++) {
298 _dist_code
[dist
++] = (uch
)code
;
301 Assert (dist
== 256, "tr_static_init: dist != 256");
302 dist
>>= 7; /* from now on, all distances are divided by 128 */
303 for ( ; code
< D_CODES
; code
++) {
304 base_dist
[code
] = dist
<< 7;
305 for (n
= 0; n
< (1<<(extra_dbits
[code
]-7)); n
++) {
306 _dist_code
[256 + dist
++] = (uch
)code
;
309 Assert (dist
== 256, "tr_static_init: 256+dist != 512");
311 /* Construct the codes of the static literal tree */
312 for (bits
= 0; bits
<= MAX_BITS
; bits
++) bl_count
[bits
] = 0;
314 while (n
<= 143) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
315 while (n
<= 255) static_ltree
[n
++].Len
= 9, bl_count
[9]++;
316 while (n
<= 279) static_ltree
[n
++].Len
= 7, bl_count
[7]++;
317 while (n
<= 287) static_ltree
[n
++].Len
= 8, bl_count
[8]++;
318 /* Codes 286 and 287 do not exist, but we must include them in the
319 * tree construction to get a canonical Huffman tree (longest code
322 gen_codes((ct_data
*)static_ltree
, L_CODES
+1, bl_count
);
324 /* The static distance tree is trivial: */
325 for (n
= 0; n
< D_CODES
; n
++) {
326 static_dtree
[n
].Len
= 5;
327 static_dtree
[n
].Code
= bi_reverse((unsigned)n
, 5);
329 static_init_done
= 1;
334 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
337 /* ===========================================================================
338 * Genererate the file trees.h describing the static trees.
345 # define SEPARATOR(i, last, width) \
346 ((i) == (last)? "\n};\n\n" : \
347 ((i) % (width) == (width)-1 ? ",\n" : ", "))
349 void gen_trees_header()
351 FILE *header
= fopen("trees.h", "w");
354 Assert (header
!= NULL
, "Can't open trees.h");
356 "/* header created automatically with -DGEN_TREES_H */\n\n");
358 fprintf(header
, "local const ct_data static_ltree[L_CODES+2] = {\n");
359 for (i
= 0; i
< L_CODES
+2; i
++) {
360 fprintf(header
, "{{%3u},{%3u}}%s", static_ltree
[i
].Code
,
361 static_ltree
[i
].Len
, SEPARATOR(i
, L_CODES
+1, 5));
364 fprintf(header
, "local const ct_data static_dtree[D_CODES] = {\n");
365 for (i
= 0; i
< D_CODES
; i
++) {
366 fprintf(header
, "{{%2u},{%2u}}%s", static_dtree
[i
].Code
,
367 static_dtree
[i
].Len
, SEPARATOR(i
, D_CODES
-1, 5));
370 fprintf(header
, "const uch _dist_code[DIST_CODE_LEN] = {\n");
371 for (i
= 0; i
< DIST_CODE_LEN
; i
++) {
372 fprintf(header
, "%2u%s", _dist_code
[i
],
373 SEPARATOR(i
, DIST_CODE_LEN
-1, 20));
376 fprintf(header
, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
377 for (i
= 0; i
< MAX_MATCH
-MIN_MATCH
+1; i
++) {
378 fprintf(header
, "%2u%s", _length_code
[i
],
379 SEPARATOR(i
, MAX_MATCH
-MIN_MATCH
, 20));
382 fprintf(header
, "local const int base_length[LENGTH_CODES] = {\n");
383 for (i
= 0; i
< LENGTH_CODES
; i
++) {
384 fprintf(header
, "%1u%s", base_length
[i
],
385 SEPARATOR(i
, LENGTH_CODES
-1, 20));
388 fprintf(header
, "local const int base_dist[D_CODES] = {\n");
389 for (i
= 0; i
< D_CODES
; i
++) {
390 fprintf(header
, "%5u%s", base_dist
[i
],
391 SEPARATOR(i
, D_CODES
-1, 10));
396 #endif /* GEN_TREES_H */
398 /* ===========================================================================
399 * Initialize the tree data structures for a new zlib stream.
406 s
->l_desc
.dyn_tree
= s
->dyn_ltree
;
407 s
->l_desc
.stat_desc
= &static_l_desc
;
409 s
->d_desc
.dyn_tree
= s
->dyn_dtree
;
410 s
->d_desc
.stat_desc
= &static_d_desc
;
412 s
->bl_desc
.dyn_tree
= s
->bl_tree
;
413 s
->bl_desc
.stat_desc
= &static_bl_desc
;
417 s
->last_eob_len
= 8; /* enough lookahead for inflate */
419 s
->compressed_len
= 0L;
423 /* Initialize the first block of the first file: */
427 /* ===========================================================================
428 * Initialize a new block.
430 local
void init_block(s
)
433 int n
; /* iterates over tree elements */
435 /* Initialize the trees. */
436 for (n
= 0; n
< L_CODES
; n
++) s
->dyn_ltree
[n
].Freq
= 0;
437 for (n
= 0; n
< D_CODES
; n
++) s
->dyn_dtree
[n
].Freq
= 0;
438 for (n
= 0; n
< BL_CODES
; n
++) s
->bl_tree
[n
].Freq
= 0;
440 s
->dyn_ltree
[END_BLOCK
].Freq
= 1;
441 s
->opt_len
= s
->static_len
= 0L;
442 s
->last_lit
= s
->matches
= 0;
446 /* Index within the heap array of least frequent node in the Huffman tree */
449 /* ===========================================================================
450 * Remove the smallest element from the heap and recreate the heap with
451 * one less element. Updates heap and heap_len.
453 #define pqremove(s, tree, top) \
455 top = s->heap[SMALLEST]; \
456 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
457 pqdownheap(s, tree, SMALLEST); \
460 /* ===========================================================================
461 * Compares to subtrees, using the tree depth as tie breaker when
462 * the subtrees have equal frequency. This minimizes the worst case length.
464 #define smaller(tree, n, m, depth) \
465 (tree[n].Freq < tree[m].Freq || \
466 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
468 /* ===========================================================================
469 * Restore the heap property by moving down the tree starting at node k,
470 * exchanging a node with the smallest of its two sons if necessary, stopping
471 * when the heap property is re-established (each father smaller than its
474 local
void pqdownheap(s
, tree
, k
)
476 ct_data
*tree
; /* the tree to restore */
477 int k
; /* node to move down */
480 int j
= k
<< 1; /* left son of k */
481 while (j
<= s
->heap_len
) {
482 /* Set j to the smallest of the two sons: */
483 if (j
< s
->heap_len
&&
484 smaller(tree
, s
->heap
[j
+1], s
->heap
[j
], s
->depth
)) {
487 /* Exit if v is smaller than both sons */
488 if (smaller(tree
, v
, s
->heap
[j
], s
->depth
)) break;
490 /* Exchange v with the smallest son */
491 s
->heap
[k
] = s
->heap
[j
]; k
= j
;
493 /* And continue down the tree, setting j to the left son of k */
499 /* ===========================================================================
500 * Compute the optimal bit lengths for a tree and update the total bit length
501 * for the current block.
502 * IN assertion: the fields freq and dad are set, heap[heap_max] and
503 * above are the tree nodes sorted by increasing frequency.
504 * OUT assertions: the field len is set to the optimal bit length, the
505 * array bl_count contains the frequencies for each bit length.
506 * The length opt_len is updated; static_len is also updated if stree is
509 local
void gen_bitlen(s
, desc
)
511 tree_desc
*desc
; /* the tree descriptor */
513 ct_data
*tree
= desc
->dyn_tree
;
514 int max_code
= desc
->max_code
;
515 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
516 const intf
*extra
= desc
->stat_desc
->extra_bits
;
517 int base
= desc
->stat_desc
->extra_base
;
518 int max_length
= desc
->stat_desc
->max_length
;
519 int h
; /* heap index */
520 int n
, m
; /* iterate over the tree elements */
521 int bits
; /* bit length */
522 int xbits
; /* extra bits */
523 ush f
; /* frequency */
524 int overflow
= 0; /* number of elements with bit length too large */
526 for (bits
= 0; bits
<= MAX_BITS
; bits
++) s
->bl_count
[bits
] = 0;
528 /* In a first pass, compute the optimal bit lengths (which may
529 * overflow in the case of the bit length tree).
531 tree
[s
->heap
[s
->heap_max
]].Len
= 0; /* root of the heap */
533 for (h
= s
->heap_max
+1; h
< HEAP_SIZE
; h
++) {
535 bits
= tree
[tree
[n
].Dad
].Len
+ 1;
536 if (bits
> max_length
) bits
= max_length
, overflow
++;
537 tree
[n
].Len
= (ush
)bits
;
538 /* We overwrite tree[n].Dad which is no longer needed */
540 if (n
> max_code
) continue; /* not a leaf node */
544 if (n
>= base
) xbits
= extra
[n
-base
];
546 s
->opt_len
+= (ulg
)f
* (bits
+ xbits
);
547 if (stree
) s
->static_len
+= (ulg
)f
* (stree
[n
].Len
+ xbits
);
549 if (overflow
== 0) return;
551 Trace((stderr
,"\nbit length overflow\n"));
552 /* This happens for example on obj2 and pic of the Calgary corpus */
554 /* Find the first bit length which could increase: */
557 while (s
->bl_count
[bits
] == 0) bits
--;
558 s
->bl_count
[bits
]--; /* move one leaf down the tree */
559 s
->bl_count
[bits
+1] += 2; /* move one overflow item as its brother */
560 s
->bl_count
[max_length
]--;
561 /* The brother of the overflow item also moves one step up,
562 * but this does not affect bl_count[max_length]
565 } while (overflow
> 0);
567 /* Now recompute all bit lengths, scanning in increasing frequency.
568 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
569 * lengths instead of fixing only the wrong ones. This idea is taken
570 * from 'ar' written by Haruhiko Okumura.)
572 for (bits
= max_length
; bits
!= 0; bits
--) {
573 n
= s
->bl_count
[bits
];
576 if (m
> max_code
) continue;
577 if (tree
[m
].Len
!= (unsigned) bits
) {
578 Trace((stderr
,"code %d bits %d->%d\n", m
, tree
[m
].Len
, bits
));
579 s
->opt_len
+= ((long)bits
- (long)tree
[m
].Len
)
581 tree
[m
].Len
= (ush
)bits
;
588 /* ===========================================================================
589 * Generate the codes for a given tree and bit counts (which need not be
591 * IN assertion: the array bl_count contains the bit length statistics for
592 * the given tree and the field len is set for all tree elements.
593 * OUT assertion: the field code is set for all tree elements of non
596 local
void gen_codes (tree
, max_code
, bl_count
)
597 ct_data
*tree
; /* the tree to decorate */
598 int max_code
; /* largest code with non zero frequency */
599 ushf
*bl_count
; /* number of codes at each bit length */
601 ush next_code
[MAX_BITS
+1]; /* next code value for each bit length */
602 ush code
= 0; /* running code value */
603 int bits
; /* bit index */
604 int n
; /* code index */
606 /* The distribution counts are first used to generate the code values
607 * without bit reversal.
609 for (bits
= 1; bits
<= MAX_BITS
; bits
++) {
610 next_code
[bits
] = code
= (code
+ bl_count
[bits
-1]) << 1;
612 /* Check that the bit counts in bl_count are consistent. The last code
615 Assert (code
+ bl_count
[MAX_BITS
]-1 == (1<<MAX_BITS
)-1,
616 "inconsistent bit counts");
617 Tracev((stderr
,"\ngen_codes: max_code %d ", max_code
));
619 for (n
= 0; n
<= max_code
; n
++) {
620 int len
= tree
[n
].Len
;
621 if (len
== 0) continue;
622 /* Now reverse the bits */
623 tree
[n
].Code
= bi_reverse(next_code
[len
]++, len
);
625 Tracecv(tree
!= static_ltree
, (stderr
,"\nn %3d %c l %2d c %4x (%x) ",
626 n
, (isgraph(n
) ? n
: ' '), len
, tree
[n
].Code
, next_code
[len
]-1));
630 /* ===========================================================================
631 * Construct one Huffman tree and assigns the code bit strings and lengths.
632 * Update the total bit length for the current block.
633 * IN assertion: the field freq is set for all tree elements.
634 * OUT assertions: the fields len and code are set to the optimal bit length
635 * and corresponding code. The length opt_len is updated; static_len is
636 * also updated if stree is not null. The field max_code is set.
638 local
void build_tree(s
, desc
)
640 tree_desc
*desc
; /* the tree descriptor */
642 ct_data
*tree
= desc
->dyn_tree
;
643 const ct_data
*stree
= desc
->stat_desc
->static_tree
;
644 int elems
= desc
->stat_desc
->elems
;
645 int n
, m
; /* iterate over heap elements */
646 int max_code
= -1; /* largest code with non zero frequency */
647 int node
; /* new node being created */
649 /* Construct the initial heap, with least frequent element in
650 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
651 * heap[0] is not used.
653 s
->heap_len
= 0, s
->heap_max
= HEAP_SIZE
;
655 for (n
= 0; n
< elems
; n
++) {
656 if (tree
[n
].Freq
!= 0) {
657 s
->heap
[++(s
->heap_len
)] = max_code
= n
;
664 /* The pkzip format requires that at least one distance code exists,
665 * and that at least one bit should be sent even if there is only one
666 * possible code. So to avoid special checks later on we force at least
667 * two codes of non zero frequency.
669 while (s
->heap_len
< 2) {
670 node
= s
->heap
[++(s
->heap_len
)] = (max_code
< 2 ? ++max_code
: 0);
673 s
->opt_len
--; if (stree
) s
->static_len
-= stree
[node
].Len
;
674 /* node is 0 or 1 so it does not have extra bits */
676 desc
->max_code
= max_code
;
678 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
679 * establish sub-heaps of increasing lengths:
681 for (n
= s
->heap_len
/2; n
>= 1; n
--) pqdownheap(s
, tree
, n
);
683 /* Construct the Huffman tree by repeatedly combining the least two
686 node
= elems
; /* next internal node of the tree */
688 pqremove(s
, tree
, n
); /* n = node of least frequency */
689 m
= s
->heap
[SMALLEST
]; /* m = node of next least frequency */
691 s
->heap
[--(s
->heap_max
)] = n
; /* keep the nodes sorted by frequency */
692 s
->heap
[--(s
->heap_max
)] = m
;
694 /* Create a new node father of n and m */
695 tree
[node
].Freq
= tree
[n
].Freq
+ tree
[m
].Freq
;
696 s
->depth
[node
] = (uch
) (MAX(s
->depth
[n
], s
->depth
[m
]) + 1);
697 tree
[n
].Dad
= tree
[m
].Dad
= (ush
)node
;
699 if (tree
== s
->bl_tree
) {
700 fprintf(stderr
,"\nnode %d(%d), sons %d(%d) %d(%d)",
701 node
, tree
[node
].Freq
, n
, tree
[n
].Freq
, m
, tree
[m
].Freq
);
704 /* and insert the new node in the heap */
705 s
->heap
[SMALLEST
] = node
++;
706 pqdownheap(s
, tree
, SMALLEST
);
708 } while (s
->heap_len
>= 2);
710 s
->heap
[--(s
->heap_max
)] = s
->heap
[SMALLEST
];
712 /* At this point, the fields freq and dad are set. We can now
713 * generate the bit lengths.
715 gen_bitlen(s
, (tree_desc
*)desc
);
717 /* The field len is now set, we can generate the bit codes */
718 gen_codes ((ct_data
*)tree
, max_code
, s
->bl_count
);
721 /* ===========================================================================
722 * Scan a literal or distance tree to determine the frequencies of the codes
723 * in the bit length tree.
725 local
void scan_tree (s
, tree
, max_code
)
727 ct_data
*tree
; /* the tree to be scanned */
728 int max_code
; /* and its largest code of non zero frequency */
730 int n
; /* iterates over all tree elements */
731 int prevlen
= -1; /* last emitted length */
732 int curlen
; /* length of current code */
733 int nextlen
= tree
[0].Len
; /* length of next code */
734 int count
= 0; /* repeat count of the current code */
735 int max_count
= 7; /* max repeat count */
736 int min_count
= 4; /* min repeat count */
738 if (nextlen
== 0) max_count
= 138, min_count
= 3;
739 tree
[max_code
+1].Len
= (ush
)0xffff; /* guard */
741 for (n
= 0; n
<= max_code
; n
++) {
742 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
743 if (++count
< max_count
&& curlen
== nextlen
) {
745 } else if (count
< min_count
) {
746 s
->bl_tree
[curlen
].Freq
+= count
;
747 } else if (curlen
!= 0) {
748 if (curlen
!= prevlen
) s
->bl_tree
[curlen
].Freq
++;
749 s
->bl_tree
[REP_3_6
].Freq
++;
750 } else if (count
<= 10) {
751 s
->bl_tree
[REPZ_3_10
].Freq
++;
753 s
->bl_tree
[REPZ_11_138
].Freq
++;
755 count
= 0; prevlen
= curlen
;
757 max_count
= 138, min_count
= 3;
758 } else if (curlen
== nextlen
) {
759 max_count
= 6, min_count
= 3;
761 max_count
= 7, min_count
= 4;
766 /* ===========================================================================
767 * Send a literal or distance tree in compressed form, using the codes in
770 local
void send_tree (s
, tree
, max_code
)
772 ct_data
*tree
; /* the tree to be scanned */
773 int max_code
; /* and its largest code of non zero frequency */
775 int n
; /* iterates over all tree elements */
776 int prevlen
= -1; /* last emitted length */
777 int curlen
; /* length of current code */
778 int nextlen
= tree
[0].Len
; /* length of next code */
779 int count
= 0; /* repeat count of the current code */
780 int max_count
= 7; /* max repeat count */
781 int min_count
= 4; /* min repeat count */
783 /* tree[max_code+1].Len = -1; */ /* guard already set */
784 if (nextlen
== 0) max_count
= 138, min_count
= 3;
786 for (n
= 0; n
<= max_code
; n
++) {
787 curlen
= nextlen
; nextlen
= tree
[n
+1].Len
;
788 if (++count
< max_count
&& curlen
== nextlen
) {
790 } else if (count
< min_count
) {
791 do { send_code(s
, curlen
, s
->bl_tree
); } while (--count
!= 0);
793 } else if (curlen
!= 0) {
794 if (curlen
!= prevlen
) {
795 send_code(s
, curlen
, s
->bl_tree
); count
--;
797 Assert(count
>= 3 && count
<= 6, " 3_6?");
798 send_code(s
, REP_3_6
, s
->bl_tree
); send_bits(s
, count
-3, 2);
800 } else if (count
<= 10) {
801 send_code(s
, REPZ_3_10
, s
->bl_tree
); send_bits(s
, count
-3, 3);
804 send_code(s
, REPZ_11_138
, s
->bl_tree
); send_bits(s
, count
-11, 7);
806 count
= 0; prevlen
= curlen
;
808 max_count
= 138, min_count
= 3;
809 } else if (curlen
== nextlen
) {
810 max_count
= 6, min_count
= 3;
812 max_count
= 7, min_count
= 4;
817 /* ===========================================================================
818 * Construct the Huffman tree for the bit lengths and return the index in
819 * bl_order of the last bit length code to send.
821 local
int build_bl_tree(s
)
824 int max_blindex
; /* index of last bit length code of non zero freq */
826 /* Determine the bit length frequencies for literal and distance trees */
827 scan_tree(s
, (ct_data
*)s
->dyn_ltree
, s
->l_desc
.max_code
);
828 scan_tree(s
, (ct_data
*)s
->dyn_dtree
, s
->d_desc
.max_code
);
830 /* Build the bit length tree: */
831 build_tree(s
, (tree_desc
*)(&(s
->bl_desc
)));
832 /* opt_len now includes the length of the tree representations, except
833 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
836 /* Determine the number of bit length codes to send. The pkzip format
837 * requires that at least 4 bit length codes be sent. (appnote.txt says
838 * 3 but the actual value used is 4.)
840 for (max_blindex
= BL_CODES
-1; max_blindex
>= 3; max_blindex
--) {
841 if (s
->bl_tree
[bl_order
[max_blindex
]].Len
!= 0) break;
843 /* Update opt_len to include the bit length tree and counts */
844 s
->opt_len
+= 3*(max_blindex
+1) + 5+5+4;
845 Tracev((stderr
, "\ndyn trees: dyn %ld, stat %ld",
846 s
->opt_len
, s
->static_len
));
851 /* ===========================================================================
852 * Send the header for a block using dynamic Huffman trees: the counts, the
853 * lengths of the bit length codes, the literal tree and the distance tree.
854 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
856 local
void send_all_trees(s
, lcodes
, dcodes
, blcodes
)
858 int lcodes
, dcodes
, blcodes
; /* number of codes for each tree */
860 int rank
; /* index in bl_order */
862 Assert (lcodes
>= 257 && dcodes
>= 1 && blcodes
>= 4, "not enough codes");
863 Assert (lcodes
<= L_CODES
&& dcodes
<= D_CODES
&& blcodes
<= BL_CODES
,
865 Tracev((stderr
, "\nbl counts: "));
866 send_bits(s
, lcodes
-257, 5); /* not +255 as stated in appnote.txt */
867 send_bits(s
, dcodes
-1, 5);
868 send_bits(s
, blcodes
-4, 4); /* not -3 as stated in appnote.txt */
869 for (rank
= 0; rank
< blcodes
; rank
++) {
870 Tracev((stderr
, "\nbl code %2d ", bl_order
[rank
]));
871 send_bits(s
, s
->bl_tree
[bl_order
[rank
]].Len
, 3);
873 Tracev((stderr
, "\nbl tree: sent %ld", s
->bits_sent
));
875 send_tree(s
, (ct_data
*)s
->dyn_ltree
, lcodes
-1); /* literal tree */
876 Tracev((stderr
, "\nlit tree: sent %ld", s
->bits_sent
));
878 send_tree(s
, (ct_data
*)s
->dyn_dtree
, dcodes
-1); /* distance tree */
879 Tracev((stderr
, "\ndist tree: sent %ld", s
->bits_sent
));
882 /* ===========================================================================
883 * Send a stored block
885 void _tr_stored_block(s
, buf
, stored_len
, eof
)
887 charf
*buf
; /* input block */
888 ulg stored_len
; /* length of input block */
889 int eof
; /* true if this is the last block for a file */
891 send_bits(s
, (STORED_BLOCK
<<1)+eof
, 3); /* send block type */
893 s
->compressed_len
= (s
->compressed_len
+ 3 + 7) & (ulg
)~7L;
894 s
->compressed_len
+= (stored_len
+ 4) << 3;
896 copy_block(s
, buf
, (unsigned)stored_len
, 1); /* with header */
899 /* ===========================================================================
900 * Send one empty static block to give enough lookahead for inflate.
901 * This takes 10 bits, of which 7 may remain in the bit buffer.
902 * The current inflate code requires 9 bits of lookahead. If the
903 * last two codes for the previous block (real code plus EOB) were coded
904 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
905 * the last real code. In this case we send two empty static blocks instead
906 * of one. (There are no problems if the previous block is stored or fixed.)
907 * To simplify the code, we assume the worst case of last real code encoded
913 send_bits(s
, STATIC_TREES
<<1, 3);
914 send_code(s
, END_BLOCK
, static_ltree
);
916 s
->compressed_len
+= 10L; /* 3 for block type, 7 for EOB */
919 /* Of the 10 bits for the empty block, we have already sent
920 * (10 - bi_valid) bits. The lookahead for the last real code (before
921 * the EOB of the previous block) was thus at least one plus the length
922 * of the EOB plus what we have just sent of the empty static block.
924 if (1 + s
->last_eob_len
+ 10 - s
->bi_valid
< 9) {
925 send_bits(s
, STATIC_TREES
<<1, 3);
926 send_code(s
, END_BLOCK
, static_ltree
);
928 s
->compressed_len
+= 10L;
935 /* ===========================================================================
936 * Determine the best encoding for the current block: dynamic trees, static
937 * trees or store, and output the encoded block to the zip file.
939 void _tr_flush_block(s
, buf
, stored_len
, eof
)
941 charf
*buf
; /* input block, or NULL if too old */
942 ulg stored_len
; /* length of input block */
943 int eof
; /* true if this is the last block for a file */
945 ulg opt_lenb
, static_lenb
; /* opt_len and static_len in bytes */
946 int max_blindex
= 0; /* index of last bit length code of non zero freq */
948 /* Build the Huffman trees unless a stored block is forced */
951 /* Check if the file is ascii or binary */
952 if (s
->data_type
== Z_UNKNOWN
) set_data_type(s
);
954 /* Construct the literal and distance trees */
955 build_tree(s
, (tree_desc
*)(&(s
->l_desc
)));
956 Tracev((stderr
, "\nlit data: dyn %ld, stat %ld", s
->opt_len
,
959 build_tree(s
, (tree_desc
*)(&(s
->d_desc
)));
960 Tracev((stderr
, "\ndist data: dyn %ld, stat %ld", s
->opt_len
,
962 /* At this point, opt_len and static_len are the total bit lengths of
963 * the compressed block data, excluding the tree representations.
966 /* Build the bit length tree for the above two trees, and get the index
967 * in bl_order of the last bit length code to send.
969 max_blindex
= build_bl_tree(s
);
971 /* Determine the best encoding. Compute first the block length in bytes*/
972 opt_lenb
= (s
->opt_len
+3+7)>>3;
973 static_lenb
= (s
->static_len
+3+7)>>3;
975 Tracev((stderr
, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
976 opt_lenb
, s
->opt_len
, static_lenb
, s
->static_len
, stored_len
,
979 if (static_lenb
<= opt_lenb
) opt_lenb
= static_lenb
;
982 Assert(buf
!= (char*)0, "lost buf");
983 opt_lenb
= static_lenb
= stored_len
+ 5; /* force a stored block */
987 if (buf
!= (char*)0) { /* force stored block */
989 if (stored_len
+4 <= opt_lenb
&& buf
!= (char*)0) {
990 /* 4: two words for the lengths */
992 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
993 * Otherwise we can't have processed more than WSIZE input bytes since
994 * the last block flush, because compression would have been
995 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
996 * transform a block into a stored block.
998 _tr_stored_block(s
, buf
, stored_len
, eof
);
1001 } else if (static_lenb
>= 0) { /* force static trees */
1003 } else if (static_lenb
== opt_lenb
) {
1005 send_bits(s
, (STATIC_TREES
<<1)+eof
, 3);
1006 compress_block(s
, (ct_data
*)static_ltree
, (ct_data
*)static_dtree
);
1008 s
->compressed_len
+= 3 + s
->static_len
;
1011 send_bits(s
, (DYN_TREES
<<1)+eof
, 3);
1012 send_all_trees(s
, s
->l_desc
.max_code
+1, s
->d_desc
.max_code
+1,
1014 compress_block(s
, (ct_data
*)s
->dyn_ltree
, (ct_data
*)s
->dyn_dtree
);
1016 s
->compressed_len
+= 3 + s
->opt_len
;
1019 Assert (s
->compressed_len
== s
->bits_sent
, "bad compressed size");
1020 /* The above check is made mod 2^32, for files larger than 512 MB
1021 * and uLong implemented on 32 bits.
1028 s
->compressed_len
+= 7; /* align on byte boundary */
1031 Tracev((stderr
,"\ncomprlen %lu(%lu) ", s
->compressed_len
>>3,
1032 s
->compressed_len
-7*eof
));
1035 /* ===========================================================================
1036 * Save the match info and tally the frequency counts. Return true if
1037 * the current block must be flushed.
1039 int _tr_tally (s
, dist
, lc
)
1041 unsigned dist
; /* distance of matched string */
1042 unsigned lc
; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1044 s
->d_buf
[s
->last_lit
] = (ush
)dist
;
1045 s
->l_buf
[s
->last_lit
++] = (uch
)lc
;
1047 /* lc is the unmatched char */
1048 s
->dyn_ltree
[lc
].Freq
++;
1051 /* Here, lc is the match length - MIN_MATCH */
1052 dist
--; /* dist = match distance - 1 */
1053 Assert((ush
)dist
< (ush
)MAX_DIST(s
) &&
1054 (ush
)lc
<= (ush
)(MAX_MATCH
-MIN_MATCH
) &&
1055 (ush
)d_code(dist
) < (ush
)D_CODES
, "_tr_tally: bad match");
1057 s
->dyn_ltree
[_length_code
[lc
]+LITERALS
+1].Freq
++;
1058 s
->dyn_dtree
[d_code(dist
)].Freq
++;
1061 #ifdef TRUNCATE_BLOCK
1062 /* Try to guess if it is profitable to stop the current block here */
1063 if ((s
->last_lit
& 0x1fff) == 0 && s
->level
> 2) {
1064 /* Compute an upper bound for the compressed length */
1065 ulg out_length
= (ulg
)s
->last_lit
*8L;
1066 ulg in_length
= (ulg
)((long)s
->strstart
- s
->block_start
);
1068 for (dcode
= 0; dcode
< D_CODES
; dcode
++) {
1069 out_length
+= (ulg
)s
->dyn_dtree
[dcode
].Freq
*
1070 (5L+extra_dbits
[dcode
]);
1073 Tracev((stderr
,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1074 s
->last_lit
, in_length
, out_length
,
1075 100L - out_length
*100L/in_length
));
1076 if (s
->matches
< s
->last_lit
/2 && out_length
< in_length
/2) return 1;
1079 return (s
->last_lit
== s
->lit_bufsize
-1);
1080 /* We avoid equality with lit_bufsize because of wraparound at 64K
1081 * on 16 bit machines and because stored blocks are restricted to
1086 /* ===========================================================================
1087 * Send the block data compressed using the given Huffman trees
1089 local
void compress_block(s
, ltree
, dtree
)
1091 ct_data
*ltree
; /* literal tree */
1092 ct_data
*dtree
; /* distance tree */
1094 unsigned dist
; /* distance of matched string */
1095 int lc
; /* match length or unmatched char (if dist == 0) */
1096 unsigned lx
= 0; /* running index in l_buf */
1097 unsigned code
; /* the code to send */
1098 int extra
; /* number of extra bits to send */
1100 if (s
->last_lit
!= 0) do {
1101 dist
= s
->d_buf
[lx
];
1102 lc
= s
->l_buf
[lx
++];
1104 send_code(s
, lc
, ltree
); /* send a literal byte */
1105 Tracecv(isgraph(lc
), (stderr
," '%c' ", lc
));
1107 /* Here, lc is the match length - MIN_MATCH */
1108 code
= _length_code
[lc
];
1109 send_code(s
, code
+LITERALS
+1, ltree
); /* send the length code */
1110 extra
= extra_lbits
[code
];
1112 lc
-= base_length
[code
];
1113 send_bits(s
, lc
, extra
); /* send the extra length bits */
1115 dist
--; /* dist is now the match distance - 1 */
1116 code
= d_code(dist
);
1117 Assert (code
< D_CODES
, "bad d_code");
1119 send_code(s
, code
, dtree
); /* send the distance code */
1120 extra
= extra_dbits
[code
];
1122 dist
-= base_dist
[code
];
1123 send_bits(s
, dist
, extra
); /* send the extra distance bits */
1125 } /* literal or match pair ? */
1127 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1128 Assert(s
->pending
< s
->lit_bufsize
+ 2*lx
, "pendingBuf overflow");
1130 } while (lx
< s
->last_lit
);
1132 send_code(s
, END_BLOCK
, ltree
);
1133 s
->last_eob_len
= ltree
[END_BLOCK
].Len
;
1136 /* ===========================================================================
1137 * Set the data type to ASCII or BINARY, using a crude approximation:
1138 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1139 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1140 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1142 local
void set_data_type(s
)
1146 unsigned ascii_freq
= 0;
1147 unsigned bin_freq
= 0;
1148 while (n
< 7) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1149 while (n
< 128) ascii_freq
+= s
->dyn_ltree
[n
++].Freq
;
1150 while (n
< LITERALS
) bin_freq
+= s
->dyn_ltree
[n
++].Freq
;
1151 s
->data_type
= (Byte
)(bin_freq
> (ascii_freq
>> 2) ? Z_BINARY
: Z_ASCII
);
1154 /* ===========================================================================
1155 * Reverse the first len bits of a code, using straightforward code (a faster
1156 * method would use a table)
1157 * IN assertion: 1 <= len <= 15
1159 local
unsigned bi_reverse(code
, len
)
1160 unsigned code
; /* the value to invert */
1161 int len
; /* its bit length */
1163 register unsigned res
= 0;
1166 code
>>= 1, res
<<= 1;
1167 } while (--len
> 0);
1171 /* ===========================================================================
1172 * Flush the bit buffer, keeping at most 7 bits in it.
1174 local
void bi_flush(s
)
1177 if (s
->bi_valid
== 16) {
1178 put_short(s
, s
->bi_buf
);
1181 } else if (s
->bi_valid
>= 8) {
1182 put_byte(s
, (Byte
)s
->bi_buf
);
1188 /* ===========================================================================
1189 * Flush the bit buffer and align the output on a byte boundary
1191 local
void bi_windup(s
)
1194 if (s
->bi_valid
> 8) {
1195 put_short(s
, s
->bi_buf
);
1196 } else if (s
->bi_valid
> 0) {
1197 put_byte(s
, (Byte
)s
->bi_buf
);
1202 s
->bits_sent
= (s
->bits_sent
+7) & ~7;
1206 /* ===========================================================================
1207 * Copy a stored block, storing first the length and its
1208 * one's complement if requested.
1210 local
void copy_block(s
, buf
, len
, header
)
1212 charf
*buf
; /* the input data */
1213 unsigned len
; /* its length */
1214 int header
; /* true if block header must be written */
1216 bi_windup(s
); /* align on byte boundary */
1217 s
->last_eob_len
= 8; /* enough lookahead for inflate */
1220 put_short(s
, (ush
)len
);
1221 put_short(s
, (ush
)~len
);
1223 s
->bits_sent
+= 2*16;
1227 s
->bits_sent
+= (ulg
)len
<<3;
1230 put_byte(s
, *buf
++);