]> git.saurik.com Git - apple/security.git/blob - SecurityServer/MacYarrow/zlib/trees.c
Security-29.tar.gz
[apple/security.git] / SecurityServer / MacYarrow / zlib / trees.c
1 /*
2 * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved.
3 *
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
8 * using this file.
9 *
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
16 */
17
18
19 /* trees.c -- output deflated data using Huffman coding
20 * Copyright (C) 1995-1998 Jean-loup Gailly
21 * For conditions of distribution and use, see copyright notice in zlib.h
22 */
23
24 /*
25 * ALGORITHM
26 *
27 * The "deflation" process uses several Huffman trees. The more
28 * common source values are represented by shorter bit sequences.
29 *
30 * Each code tree is stored in a compressed form which is itself
31 * a Huffman encoding of the lengths of all the code strings (in
32 * ascending order by source values). The actual code strings are
33 * reconstructed from the lengths in the inflate process, as described
34 * in the deflate specification.
35 *
36 * REFERENCES
37 *
38 * Deutsch, L.P.,"'Deflate' Compressed Data Format Specification".
39 * Available in ftp.uu.net:/pub/archiving/zip/doc/deflate-1.1.doc
40 *
41 * Storer, James A.
42 * Data Compression: Methods and Theory, pp. 49-50.
43 * Computer Science Press, 1988. ISBN 0-7167-8156-5.
44 *
45 * Sedgewick, R.
46 * Algorithms, p290.
47 * Addison-Wesley, 1983. ISBN 0-201-06672-6.
48 */
49
50 /* @(#) $Id: trees.c,v 1.1.1.1 2001/05/18 23:14:03 mb Exp $ */
51
52 /* #define GEN_TREES_H */
53
54 #include "deflate.h"
55
56 #ifdef DEBUG
57 # include <ctype.h>
58 #endif
59
60 /* ===========================================================================
61 * Constants
62 */
63
64 #define MAX_BL_BITS 7
65 /* Bit length codes must not exceed MAX_BL_BITS bits */
66
67 #define END_BLOCK 256
68 /* end of block literal code */
69
70 #define REP_3_6 16
71 /* repeat previous bit length 3-6 times (2 bits of repeat count) */
72
73 #define REPZ_3_10 17
74 /* repeat a zero length 3-10 times (3 bits of repeat count) */
75
76 #define REPZ_11_138 18
77 /* repeat a zero length 11-138 times (7 bits of repeat count) */
78
79 local const int extra_lbits[LENGTH_CODES] /* extra bits for each length code */
80 = {0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0};
81
82 local const int extra_dbits[D_CODES] /* extra bits for each distance code */
83 = {0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
84
85 local const int extra_blbits[BL_CODES]/* extra bits for each bit length code */
86 = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,7};
87
88 local const uch bl_order[BL_CODES]
89 = {16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15};
90 /* The lengths of the bit length codes are sent in order of decreasing
91 * probability, to avoid transmitting the lengths for unused bit length codes.
92 */
93
94 #define Buf_size (8 * 2*sizeof(char))
95 /* Number of bits used within bi_buf. (bi_buf might be implemented on
96 * more than 16 bits on some systems.)
97 */
98
99 /* ===========================================================================
100 * Local data. These are initialized only once.
101 */
102
103 #define DIST_CODE_LEN 512 /* see definition of array dist_code below */
104
105 #if defined(GEN_TREES_H) || !defined(STDC)
106 /* non ANSI compilers may not accept trees.h */
107
108 local ct_data static_ltree[L_CODES+2];
109 /* The static literal tree. Since the bit lengths are imposed, there is no
110 * need for the L_CODES extra codes used during heap construction. However
111 * The codes 286 and 287 are needed to build a canonical tree (see _tr_init
112 * below).
113 */
114
115 local ct_data static_dtree[D_CODES];
116 /* The static distance tree. (Actually a trivial tree since all codes use
117 * 5 bits.)
118 */
119
120 uch _dist_code[DIST_CODE_LEN];
121 /* Distance codes. The first 256 values correspond to the distances
122 * 3 .. 258, the last 256 values correspond to the top 8 bits of
123 * the 15 bit distances.
124 */
125
126 uch _length_code[MAX_MATCH-MIN_MATCH+1];
127 /* length code for each normalized match length (0 == MIN_MATCH) */
128
129 local int base_length[LENGTH_CODES];
130 /* First normalized length for each code (0 = MIN_MATCH) */
131
132 local int base_dist[D_CODES];
133 /* First normalized distance for each code (0 = distance of 1) */
134
135 #else
136 # include "trees.h"
137 #endif /* GEN_TREES_H */
138
139 struct static_tree_desc_s {
140 const ct_data *static_tree; /* static tree or NULL */
141 const intf *extra_bits; /* extra bits for each code or NULL */
142 int extra_base; /* base index for extra_bits */
143 int elems; /* max number of elements in the tree */
144 int max_length; /* max bit length for the codes */
145 };
146
147 local static_tree_desc static_l_desc =
148 {static_ltree, extra_lbits, LITERALS+1, L_CODES, MAX_BITS};
149
150 local static_tree_desc static_d_desc =
151 {static_dtree, extra_dbits, 0, D_CODES, MAX_BITS};
152
153 local static_tree_desc static_bl_desc =
154 {(const ct_data *)0, extra_blbits, 0, BL_CODES, MAX_BL_BITS};
155
156 /* ===========================================================================
157 * Local (static) routines in this file.
158 */
159
160 local void tr_static_init OF((void));
161 local void init_block OF((deflate_state *s));
162 local void pqdownheap OF((deflate_state *s, ct_data *tree, int k));
163 local void gen_bitlen OF((deflate_state *s, tree_desc *desc));
164 local void gen_codes OF((ct_data *tree, int max_code, ushf *bl_count));
165 local void build_tree OF((deflate_state *s, tree_desc *desc));
166 local void scan_tree OF((deflate_state *s, ct_data *tree, int max_code));
167 local void send_tree OF((deflate_state *s, ct_data *tree, int max_code));
168 local int build_bl_tree OF((deflate_state *s));
169 local void send_all_trees OF((deflate_state *s, int lcodes, int dcodes,
170 int blcodes));
171 local void compress_block OF((deflate_state *s, ct_data *ltree,
172 ct_data *dtree));
173 local void set_data_type OF((deflate_state *s));
174 local unsigned bi_reverse OF((unsigned value, int length));
175 local void bi_windup OF((deflate_state *s));
176 local void bi_flush OF((deflate_state *s));
177 local void copy_block OF((deflate_state *s, charf *buf, unsigned len,
178 int header));
179
180 #ifdef GEN_TREES_H
181 local void gen_trees_header OF((void));
182 #endif
183
184 #ifndef DEBUG
185 # define send_code(s, c, tree) send_bits(s, tree[c].Code, tree[c].Len)
186 /* Send a code of the given tree. c and tree must not have side effects */
187
188 #else /* DEBUG */
189 # define send_code(s, c, tree) \
190 { if (z_verbose>2) fprintf(stderr,"\ncd %3d ",(c)); \
191 send_bits(s, tree[c].Code, tree[c].Len); }
192 #endif
193
194 /* ===========================================================================
195 * Output a short LSB first on the stream.
196 * IN assertion: there is enough room in pendingBuf.
197 */
198 #define put_short(s, w) { \
199 put_byte(s, (uch)((w) & 0xff)); \
200 put_byte(s, (uch)((ush)(w) >> 8)); \
201 }
202
203 /* ===========================================================================
204 * Send a value on a given number of bits.
205 * IN assertion: length <= 16 and value fits in length bits.
206 */
207 #ifdef DEBUG
208 local void send_bits OF((deflate_state *s, int value, int length));
209
210 local void send_bits(s, value, length)
211 deflate_state *s;
212 int value; /* value to send */
213 int length; /* number of bits */
214 {
215 Tracevv((stderr," l %2d v %4x ", length, value));
216 Assert(length > 0 && length <= 15, "invalid length");
217 s->bits_sent += (ulg)length;
218
219 /* If not enough room in bi_buf, use (valid) bits from bi_buf and
220 * (16 - bi_valid) bits from value, leaving (width - (16-bi_valid))
221 * unused bits in value.
222 */
223 if (s->bi_valid > (int)Buf_size - length) {
224 s->bi_buf |= (value << s->bi_valid);
225 put_short(s, s->bi_buf);
226 s->bi_buf = (ush)value >> (Buf_size - s->bi_valid);
227 s->bi_valid += length - Buf_size;
228 } else {
229 s->bi_buf |= value << s->bi_valid;
230 s->bi_valid += length;
231 }
232 }
233 #else /* !DEBUG */
234
235 #define send_bits(s, value, length) \
236 { int len = length;\
237 if (s->bi_valid > (int)Buf_size - len) {\
238 int val = value;\
239 s->bi_buf |= (val << s->bi_valid);\
240 put_short(s, s->bi_buf);\
241 s->bi_buf = (ush)val >> (Buf_size - s->bi_valid);\
242 s->bi_valid += len - Buf_size;\
243 } else {\
244 s->bi_buf |= (value) << s->bi_valid;\
245 s->bi_valid += len;\
246 }\
247 }
248 #endif /* DEBUG */
249
250
251 #define MAX(a,b) (a >= b ? a : b)
252 /* the arguments must not have side effects */
253
254 /* ===========================================================================
255 * Initialize the various 'constant' tables.
256 */
257 local void tr_static_init()
258 {
259 #if defined(GEN_TREES_H) || !defined(STDC)
260 static int static_init_done = 0;
261 int n; /* iterates over tree elements */
262 int bits; /* bit counter */
263 int length; /* length value */
264 int code; /* code value */
265 int dist; /* distance index */
266 ush bl_count[MAX_BITS+1];
267 /* number of codes at each bit length for an optimal tree */
268
269 if (static_init_done) return;
270
271 /* For some embedded targets, global variables are not initialized: */
272 static_l_desc.static_tree = static_ltree;
273 static_l_desc.extra_bits = extra_lbits;
274 static_d_desc.static_tree = static_dtree;
275 static_d_desc.extra_bits = extra_dbits;
276 static_bl_desc.extra_bits = extra_blbits;
277
278 /* Initialize the mapping length (0..255) -> length code (0..28) */
279 length = 0;
280 for (code = 0; code < LENGTH_CODES-1; code++) {
281 base_length[code] = length;
282 for (n = 0; n < (1<<extra_lbits[code]); n++) {
283 _length_code[length++] = (uch)code;
284 }
285 }
286 Assert (length == 256, "tr_static_init: length != 256");
287 /* Note that the length 255 (match length 258) can be represented
288 * in two different ways: code 284 + 5 bits or code 285, so we
289 * overwrite length_code[255] to use the best encoding:
290 */
291 _length_code[length-1] = (uch)code;
292
293 /* Initialize the mapping dist (0..32K) -> dist code (0..29) */
294 dist = 0;
295 for (code = 0 ; code < 16; code++) {
296 base_dist[code] = dist;
297 for (n = 0; n < (1<<extra_dbits[code]); n++) {
298 _dist_code[dist++] = (uch)code;
299 }
300 }
301 Assert (dist == 256, "tr_static_init: dist != 256");
302 dist >>= 7; /* from now on, all distances are divided by 128 */
303 for ( ; code < D_CODES; code++) {
304 base_dist[code] = dist << 7;
305 for (n = 0; n < (1<<(extra_dbits[code]-7)); n++) {
306 _dist_code[256 + dist++] = (uch)code;
307 }
308 }
309 Assert (dist == 256, "tr_static_init: 256+dist != 512");
310
311 /* Construct the codes of the static literal tree */
312 for (bits = 0; bits <= MAX_BITS; bits++) bl_count[bits] = 0;
313 n = 0;
314 while (n <= 143) static_ltree[n++].Len = 8, bl_count[8]++;
315 while (n <= 255) static_ltree[n++].Len = 9, bl_count[9]++;
316 while (n <= 279) static_ltree[n++].Len = 7, bl_count[7]++;
317 while (n <= 287) static_ltree[n++].Len = 8, bl_count[8]++;
318 /* Codes 286 and 287 do not exist, but we must include them in the
319 * tree construction to get a canonical Huffman tree (longest code
320 * all ones)
321 */
322 gen_codes((ct_data *)static_ltree, L_CODES+1, bl_count);
323
324 /* The static distance tree is trivial: */
325 for (n = 0; n < D_CODES; n++) {
326 static_dtree[n].Len = 5;
327 static_dtree[n].Code = bi_reverse((unsigned)n, 5);
328 }
329 static_init_done = 1;
330
331 # ifdef GEN_TREES_H
332 gen_trees_header();
333 # endif
334 #endif /* defined(GEN_TREES_H) || !defined(STDC) */
335 }
336
337 /* ===========================================================================
338 * Genererate the file trees.h describing the static trees.
339 */
340 #ifdef GEN_TREES_H
341 # ifndef DEBUG
342 # include <stdio.h>
343 # endif
344
345 # define SEPARATOR(i, last, width) \
346 ((i) == (last)? "\n};\n\n" : \
347 ((i) % (width) == (width)-1 ? ",\n" : ", "))
348
349 void gen_trees_header()
350 {
351 FILE *header = fopen("trees.h", "w");
352 int i;
353
354 Assert (header != NULL, "Can't open trees.h");
355 fprintf(header,
356 "/* header created automatically with -DGEN_TREES_H */\n\n");
357
358 fprintf(header, "local const ct_data static_ltree[L_CODES+2] = {\n");
359 for (i = 0; i < L_CODES+2; i++) {
360 fprintf(header, "{{%3u},{%3u}}%s", static_ltree[i].Code,
361 static_ltree[i].Len, SEPARATOR(i, L_CODES+1, 5));
362 }
363
364 fprintf(header, "local const ct_data static_dtree[D_CODES] = {\n");
365 for (i = 0; i < D_CODES; i++) {
366 fprintf(header, "{{%2u},{%2u}}%s", static_dtree[i].Code,
367 static_dtree[i].Len, SEPARATOR(i, D_CODES-1, 5));
368 }
369
370 fprintf(header, "const uch _dist_code[DIST_CODE_LEN] = {\n");
371 for (i = 0; i < DIST_CODE_LEN; i++) {
372 fprintf(header, "%2u%s", _dist_code[i],
373 SEPARATOR(i, DIST_CODE_LEN-1, 20));
374 }
375
376 fprintf(header, "const uch _length_code[MAX_MATCH-MIN_MATCH+1]= {\n");
377 for (i = 0; i < MAX_MATCH-MIN_MATCH+1; i++) {
378 fprintf(header, "%2u%s", _length_code[i],
379 SEPARATOR(i, MAX_MATCH-MIN_MATCH, 20));
380 }
381
382 fprintf(header, "local const int base_length[LENGTH_CODES] = {\n");
383 for (i = 0; i < LENGTH_CODES; i++) {
384 fprintf(header, "%1u%s", base_length[i],
385 SEPARATOR(i, LENGTH_CODES-1, 20));
386 }
387
388 fprintf(header, "local const int base_dist[D_CODES] = {\n");
389 for (i = 0; i < D_CODES; i++) {
390 fprintf(header, "%5u%s", base_dist[i],
391 SEPARATOR(i, D_CODES-1, 10));
392 }
393
394 fclose(header);
395 }
396 #endif /* GEN_TREES_H */
397
398 /* ===========================================================================
399 * Initialize the tree data structures for a new zlib stream.
400 */
401 void _tr_init(s)
402 deflate_state *s;
403 {
404 tr_static_init();
405
406 s->l_desc.dyn_tree = s->dyn_ltree;
407 s->l_desc.stat_desc = &static_l_desc;
408
409 s->d_desc.dyn_tree = s->dyn_dtree;
410 s->d_desc.stat_desc = &static_d_desc;
411
412 s->bl_desc.dyn_tree = s->bl_tree;
413 s->bl_desc.stat_desc = &static_bl_desc;
414
415 s->bi_buf = 0;
416 s->bi_valid = 0;
417 s->last_eob_len = 8; /* enough lookahead for inflate */
418 #ifdef DEBUG
419 s->compressed_len = 0L;
420 s->bits_sent = 0L;
421 #endif
422
423 /* Initialize the first block of the first file: */
424 init_block(s);
425 }
426
427 /* ===========================================================================
428 * Initialize a new block.
429 */
430 local void init_block(s)
431 deflate_state *s;
432 {
433 int n; /* iterates over tree elements */
434
435 /* Initialize the trees. */
436 for (n = 0; n < L_CODES; n++) s->dyn_ltree[n].Freq = 0;
437 for (n = 0; n < D_CODES; n++) s->dyn_dtree[n].Freq = 0;
438 for (n = 0; n < BL_CODES; n++) s->bl_tree[n].Freq = 0;
439
440 s->dyn_ltree[END_BLOCK].Freq = 1;
441 s->opt_len = s->static_len = 0L;
442 s->last_lit = s->matches = 0;
443 }
444
445 #define SMALLEST 1
446 /* Index within the heap array of least frequent node in the Huffman tree */
447
448
449 /* ===========================================================================
450 * Remove the smallest element from the heap and recreate the heap with
451 * one less element. Updates heap and heap_len.
452 */
453 #define pqremove(s, tree, top) \
454 {\
455 top = s->heap[SMALLEST]; \
456 s->heap[SMALLEST] = s->heap[s->heap_len--]; \
457 pqdownheap(s, tree, SMALLEST); \
458 }
459
460 /* ===========================================================================
461 * Compares to subtrees, using the tree depth as tie breaker when
462 * the subtrees have equal frequency. This minimizes the worst case length.
463 */
464 #define smaller(tree, n, m, depth) \
465 (tree[n].Freq < tree[m].Freq || \
466 (tree[n].Freq == tree[m].Freq && depth[n] <= depth[m]))
467
468 /* ===========================================================================
469 * Restore the heap property by moving down the tree starting at node k,
470 * exchanging a node with the smallest of its two sons if necessary, stopping
471 * when the heap property is re-established (each father smaller than its
472 * two sons).
473 */
474 local void pqdownheap(s, tree, k)
475 deflate_state *s;
476 ct_data *tree; /* the tree to restore */
477 int k; /* node to move down */
478 {
479 int v = s->heap[k];
480 int j = k << 1; /* left son of k */
481 while (j <= s->heap_len) {
482 /* Set j to the smallest of the two sons: */
483 if (j < s->heap_len &&
484 smaller(tree, s->heap[j+1], s->heap[j], s->depth)) {
485 j++;
486 }
487 /* Exit if v is smaller than both sons */
488 if (smaller(tree, v, s->heap[j], s->depth)) break;
489
490 /* Exchange v with the smallest son */
491 s->heap[k] = s->heap[j]; k = j;
492
493 /* And continue down the tree, setting j to the left son of k */
494 j <<= 1;
495 }
496 s->heap[k] = v;
497 }
498
499 /* ===========================================================================
500 * Compute the optimal bit lengths for a tree and update the total bit length
501 * for the current block.
502 * IN assertion: the fields freq and dad are set, heap[heap_max] and
503 * above are the tree nodes sorted by increasing frequency.
504 * OUT assertions: the field len is set to the optimal bit length, the
505 * array bl_count contains the frequencies for each bit length.
506 * The length opt_len is updated; static_len is also updated if stree is
507 * not null.
508 */
509 local void gen_bitlen(s, desc)
510 deflate_state *s;
511 tree_desc *desc; /* the tree descriptor */
512 {
513 ct_data *tree = desc->dyn_tree;
514 int max_code = desc->max_code;
515 const ct_data *stree = desc->stat_desc->static_tree;
516 const intf *extra = desc->stat_desc->extra_bits;
517 int base = desc->stat_desc->extra_base;
518 int max_length = desc->stat_desc->max_length;
519 int h; /* heap index */
520 int n, m; /* iterate over the tree elements */
521 int bits; /* bit length */
522 int xbits; /* extra bits */
523 ush f; /* frequency */
524 int overflow = 0; /* number of elements with bit length too large */
525
526 for (bits = 0; bits <= MAX_BITS; bits++) s->bl_count[bits] = 0;
527
528 /* In a first pass, compute the optimal bit lengths (which may
529 * overflow in the case of the bit length tree).
530 */
531 tree[s->heap[s->heap_max]].Len = 0; /* root of the heap */
532
533 for (h = s->heap_max+1; h < HEAP_SIZE; h++) {
534 n = s->heap[h];
535 bits = tree[tree[n].Dad].Len + 1;
536 if (bits > max_length) bits = max_length, overflow++;
537 tree[n].Len = (ush)bits;
538 /* We overwrite tree[n].Dad which is no longer needed */
539
540 if (n > max_code) continue; /* not a leaf node */
541
542 s->bl_count[bits]++;
543 xbits = 0;
544 if (n >= base) xbits = extra[n-base];
545 f = tree[n].Freq;
546 s->opt_len += (ulg)f * (bits + xbits);
547 if (stree) s->static_len += (ulg)f * (stree[n].Len + xbits);
548 }
549 if (overflow == 0) return;
550
551 Trace((stderr,"\nbit length overflow\n"));
552 /* This happens for example on obj2 and pic of the Calgary corpus */
553
554 /* Find the first bit length which could increase: */
555 do {
556 bits = max_length-1;
557 while (s->bl_count[bits] == 0) bits--;
558 s->bl_count[bits]--; /* move one leaf down the tree */
559 s->bl_count[bits+1] += 2; /* move one overflow item as its brother */
560 s->bl_count[max_length]--;
561 /* The brother of the overflow item also moves one step up,
562 * but this does not affect bl_count[max_length]
563 */
564 overflow -= 2;
565 } while (overflow > 0);
566
567 /* Now recompute all bit lengths, scanning in increasing frequency.
568 * h is still equal to HEAP_SIZE. (It is simpler to reconstruct all
569 * lengths instead of fixing only the wrong ones. This idea is taken
570 * from 'ar' written by Haruhiko Okumura.)
571 */
572 for (bits = max_length; bits != 0; bits--) {
573 n = s->bl_count[bits];
574 while (n != 0) {
575 m = s->heap[--h];
576 if (m > max_code) continue;
577 if (tree[m].Len != (unsigned) bits) {
578 Trace((stderr,"code %d bits %d->%d\n", m, tree[m].Len, bits));
579 s->opt_len += ((long)bits - (long)tree[m].Len)
580 *(long)tree[m].Freq;
581 tree[m].Len = (ush)bits;
582 }
583 n--;
584 }
585 }
586 }
587
588 /* ===========================================================================
589 * Generate the codes for a given tree and bit counts (which need not be
590 * optimal).
591 * IN assertion: the array bl_count contains the bit length statistics for
592 * the given tree and the field len is set for all tree elements.
593 * OUT assertion: the field code is set for all tree elements of non
594 * zero code length.
595 */
596 local void gen_codes (tree, max_code, bl_count)
597 ct_data *tree; /* the tree to decorate */
598 int max_code; /* largest code with non zero frequency */
599 ushf *bl_count; /* number of codes at each bit length */
600 {
601 ush next_code[MAX_BITS+1]; /* next code value for each bit length */
602 ush code = 0; /* running code value */
603 int bits; /* bit index */
604 int n; /* code index */
605
606 /* The distribution counts are first used to generate the code values
607 * without bit reversal.
608 */
609 for (bits = 1; bits <= MAX_BITS; bits++) {
610 next_code[bits] = code = (code + bl_count[bits-1]) << 1;
611 }
612 /* Check that the bit counts in bl_count are consistent. The last code
613 * must be all ones.
614 */
615 Assert (code + bl_count[MAX_BITS]-1 == (1<<MAX_BITS)-1,
616 "inconsistent bit counts");
617 Tracev((stderr,"\ngen_codes: max_code %d ", max_code));
618
619 for (n = 0; n <= max_code; n++) {
620 int len = tree[n].Len;
621 if (len == 0) continue;
622 /* Now reverse the bits */
623 tree[n].Code = bi_reverse(next_code[len]++, len);
624
625 Tracecv(tree != static_ltree, (stderr,"\nn %3d %c l %2d c %4x (%x) ",
626 n, (isgraph(n) ? n : ' '), len, tree[n].Code, next_code[len]-1));
627 }
628 }
629
630 /* ===========================================================================
631 * Construct one Huffman tree and assigns the code bit strings and lengths.
632 * Update the total bit length for the current block.
633 * IN assertion: the field freq is set for all tree elements.
634 * OUT assertions: the fields len and code are set to the optimal bit length
635 * and corresponding code. The length opt_len is updated; static_len is
636 * also updated if stree is not null. The field max_code is set.
637 */
638 local void build_tree(s, desc)
639 deflate_state *s;
640 tree_desc *desc; /* the tree descriptor */
641 {
642 ct_data *tree = desc->dyn_tree;
643 const ct_data *stree = desc->stat_desc->static_tree;
644 int elems = desc->stat_desc->elems;
645 int n, m; /* iterate over heap elements */
646 int max_code = -1; /* largest code with non zero frequency */
647 int node; /* new node being created */
648
649 /* Construct the initial heap, with least frequent element in
650 * heap[SMALLEST]. The sons of heap[n] are heap[2*n] and heap[2*n+1].
651 * heap[0] is not used.
652 */
653 s->heap_len = 0, s->heap_max = HEAP_SIZE;
654
655 for (n = 0; n < elems; n++) {
656 if (tree[n].Freq != 0) {
657 s->heap[++(s->heap_len)] = max_code = n;
658 s->depth[n] = 0;
659 } else {
660 tree[n].Len = 0;
661 }
662 }
663
664 /* The pkzip format requires that at least one distance code exists,
665 * and that at least one bit should be sent even if there is only one
666 * possible code. So to avoid special checks later on we force at least
667 * two codes of non zero frequency.
668 */
669 while (s->heap_len < 2) {
670 node = s->heap[++(s->heap_len)] = (max_code < 2 ? ++max_code : 0);
671 tree[node].Freq = 1;
672 s->depth[node] = 0;
673 s->opt_len--; if (stree) s->static_len -= stree[node].Len;
674 /* node is 0 or 1 so it does not have extra bits */
675 }
676 desc->max_code = max_code;
677
678 /* The elements heap[heap_len/2+1 .. heap_len] are leaves of the tree,
679 * establish sub-heaps of increasing lengths:
680 */
681 for (n = s->heap_len/2; n >= 1; n--) pqdownheap(s, tree, n);
682
683 /* Construct the Huffman tree by repeatedly combining the least two
684 * frequent nodes.
685 */
686 node = elems; /* next internal node of the tree */
687 do {
688 pqremove(s, tree, n); /* n = node of least frequency */
689 m = s->heap[SMALLEST]; /* m = node of next least frequency */
690
691 s->heap[--(s->heap_max)] = n; /* keep the nodes sorted by frequency */
692 s->heap[--(s->heap_max)] = m;
693
694 /* Create a new node father of n and m */
695 tree[node].Freq = tree[n].Freq + tree[m].Freq;
696 s->depth[node] = (uch) (MAX(s->depth[n], s->depth[m]) + 1);
697 tree[n].Dad = tree[m].Dad = (ush)node;
698 #ifdef DUMP_BL_TREE
699 if (tree == s->bl_tree) {
700 fprintf(stderr,"\nnode %d(%d), sons %d(%d) %d(%d)",
701 node, tree[node].Freq, n, tree[n].Freq, m, tree[m].Freq);
702 }
703 #endif
704 /* and insert the new node in the heap */
705 s->heap[SMALLEST] = node++;
706 pqdownheap(s, tree, SMALLEST);
707
708 } while (s->heap_len >= 2);
709
710 s->heap[--(s->heap_max)] = s->heap[SMALLEST];
711
712 /* At this point, the fields freq and dad are set. We can now
713 * generate the bit lengths.
714 */
715 gen_bitlen(s, (tree_desc *)desc);
716
717 /* The field len is now set, we can generate the bit codes */
718 gen_codes ((ct_data *)tree, max_code, s->bl_count);
719 }
720
721 /* ===========================================================================
722 * Scan a literal or distance tree to determine the frequencies of the codes
723 * in the bit length tree.
724 */
725 local void scan_tree (s, tree, max_code)
726 deflate_state *s;
727 ct_data *tree; /* the tree to be scanned */
728 int max_code; /* and its largest code of non zero frequency */
729 {
730 int n; /* iterates over all tree elements */
731 int prevlen = -1; /* last emitted length */
732 int curlen; /* length of current code */
733 int nextlen = tree[0].Len; /* length of next code */
734 int count = 0; /* repeat count of the current code */
735 int max_count = 7; /* max repeat count */
736 int min_count = 4; /* min repeat count */
737
738 if (nextlen == 0) max_count = 138, min_count = 3;
739 tree[max_code+1].Len = (ush)0xffff; /* guard */
740
741 for (n = 0; n <= max_code; n++) {
742 curlen = nextlen; nextlen = tree[n+1].Len;
743 if (++count < max_count && curlen == nextlen) {
744 continue;
745 } else if (count < min_count) {
746 s->bl_tree[curlen].Freq += count;
747 } else if (curlen != 0) {
748 if (curlen != prevlen) s->bl_tree[curlen].Freq++;
749 s->bl_tree[REP_3_6].Freq++;
750 } else if (count <= 10) {
751 s->bl_tree[REPZ_3_10].Freq++;
752 } else {
753 s->bl_tree[REPZ_11_138].Freq++;
754 }
755 count = 0; prevlen = curlen;
756 if (nextlen == 0) {
757 max_count = 138, min_count = 3;
758 } else if (curlen == nextlen) {
759 max_count = 6, min_count = 3;
760 } else {
761 max_count = 7, min_count = 4;
762 }
763 }
764 }
765
766 /* ===========================================================================
767 * Send a literal or distance tree in compressed form, using the codes in
768 * bl_tree.
769 */
770 local void send_tree (s, tree, max_code)
771 deflate_state *s;
772 ct_data *tree; /* the tree to be scanned */
773 int max_code; /* and its largest code of non zero frequency */
774 {
775 int n; /* iterates over all tree elements */
776 int prevlen = -1; /* last emitted length */
777 int curlen; /* length of current code */
778 int nextlen = tree[0].Len; /* length of next code */
779 int count = 0; /* repeat count of the current code */
780 int max_count = 7; /* max repeat count */
781 int min_count = 4; /* min repeat count */
782
783 /* tree[max_code+1].Len = -1; */ /* guard already set */
784 if (nextlen == 0) max_count = 138, min_count = 3;
785
786 for (n = 0; n <= max_code; n++) {
787 curlen = nextlen; nextlen = tree[n+1].Len;
788 if (++count < max_count && curlen == nextlen) {
789 continue;
790 } else if (count < min_count) {
791 do { send_code(s, curlen, s->bl_tree); } while (--count != 0);
792
793 } else if (curlen != 0) {
794 if (curlen != prevlen) {
795 send_code(s, curlen, s->bl_tree); count--;
796 }
797 Assert(count >= 3 && count <= 6, " 3_6?");
798 send_code(s, REP_3_6, s->bl_tree); send_bits(s, count-3, 2);
799
800 } else if (count <= 10) {
801 send_code(s, REPZ_3_10, s->bl_tree); send_bits(s, count-3, 3);
802
803 } else {
804 send_code(s, REPZ_11_138, s->bl_tree); send_bits(s, count-11, 7);
805 }
806 count = 0; prevlen = curlen;
807 if (nextlen == 0) {
808 max_count = 138, min_count = 3;
809 } else if (curlen == nextlen) {
810 max_count = 6, min_count = 3;
811 } else {
812 max_count = 7, min_count = 4;
813 }
814 }
815 }
816
817 /* ===========================================================================
818 * Construct the Huffman tree for the bit lengths and return the index in
819 * bl_order of the last bit length code to send.
820 */
821 local int build_bl_tree(s)
822 deflate_state *s;
823 {
824 int max_blindex; /* index of last bit length code of non zero freq */
825
826 /* Determine the bit length frequencies for literal and distance trees */
827 scan_tree(s, (ct_data *)s->dyn_ltree, s->l_desc.max_code);
828 scan_tree(s, (ct_data *)s->dyn_dtree, s->d_desc.max_code);
829
830 /* Build the bit length tree: */
831 build_tree(s, (tree_desc *)(&(s->bl_desc)));
832 /* opt_len now includes the length of the tree representations, except
833 * the lengths of the bit lengths codes and the 5+5+4 bits for the counts.
834 */
835
836 /* Determine the number of bit length codes to send. The pkzip format
837 * requires that at least 4 bit length codes be sent. (appnote.txt says
838 * 3 but the actual value used is 4.)
839 */
840 for (max_blindex = BL_CODES-1; max_blindex >= 3; max_blindex--) {
841 if (s->bl_tree[bl_order[max_blindex]].Len != 0) break;
842 }
843 /* Update opt_len to include the bit length tree and counts */
844 s->opt_len += 3*(max_blindex+1) + 5+5+4;
845 Tracev((stderr, "\ndyn trees: dyn %ld, stat %ld",
846 s->opt_len, s->static_len));
847
848 return max_blindex;
849 }
850
851 /* ===========================================================================
852 * Send the header for a block using dynamic Huffman trees: the counts, the
853 * lengths of the bit length codes, the literal tree and the distance tree.
854 * IN assertion: lcodes >= 257, dcodes >= 1, blcodes >= 4.
855 */
856 local void send_all_trees(s, lcodes, dcodes, blcodes)
857 deflate_state *s;
858 int lcodes, dcodes, blcodes; /* number of codes for each tree */
859 {
860 int rank; /* index in bl_order */
861
862 Assert (lcodes >= 257 && dcodes >= 1 && blcodes >= 4, "not enough codes");
863 Assert (lcodes <= L_CODES && dcodes <= D_CODES && blcodes <= BL_CODES,
864 "too many codes");
865 Tracev((stderr, "\nbl counts: "));
866 send_bits(s, lcodes-257, 5); /* not +255 as stated in appnote.txt */
867 send_bits(s, dcodes-1, 5);
868 send_bits(s, blcodes-4, 4); /* not -3 as stated in appnote.txt */
869 for (rank = 0; rank < blcodes; rank++) {
870 Tracev((stderr, "\nbl code %2d ", bl_order[rank]));
871 send_bits(s, s->bl_tree[bl_order[rank]].Len, 3);
872 }
873 Tracev((stderr, "\nbl tree: sent %ld", s->bits_sent));
874
875 send_tree(s, (ct_data *)s->dyn_ltree, lcodes-1); /* literal tree */
876 Tracev((stderr, "\nlit tree: sent %ld", s->bits_sent));
877
878 send_tree(s, (ct_data *)s->dyn_dtree, dcodes-1); /* distance tree */
879 Tracev((stderr, "\ndist tree: sent %ld", s->bits_sent));
880 }
881
882 /* ===========================================================================
883 * Send a stored block
884 */
885 void _tr_stored_block(s, buf, stored_len, eof)
886 deflate_state *s;
887 charf *buf; /* input block */
888 ulg stored_len; /* length of input block */
889 int eof; /* true if this is the last block for a file */
890 {
891 send_bits(s, (STORED_BLOCK<<1)+eof, 3); /* send block type */
892 #ifdef DEBUG
893 s->compressed_len = (s->compressed_len + 3 + 7) & (ulg)~7L;
894 s->compressed_len += (stored_len + 4) << 3;
895 #endif
896 copy_block(s, buf, (unsigned)stored_len, 1); /* with header */
897 }
898
899 /* ===========================================================================
900 * Send one empty static block to give enough lookahead for inflate.
901 * This takes 10 bits, of which 7 may remain in the bit buffer.
902 * The current inflate code requires 9 bits of lookahead. If the
903 * last two codes for the previous block (real code plus EOB) were coded
904 * on 5 bits or less, inflate may have only 5+3 bits of lookahead to decode
905 * the last real code. In this case we send two empty static blocks instead
906 * of one. (There are no problems if the previous block is stored or fixed.)
907 * To simplify the code, we assume the worst case of last real code encoded
908 * on one bit only.
909 */
910 void _tr_align(s)
911 deflate_state *s;
912 {
913 send_bits(s, STATIC_TREES<<1, 3);
914 send_code(s, END_BLOCK, static_ltree);
915 #ifdef DEBUG
916 s->compressed_len += 10L; /* 3 for block type, 7 for EOB */
917 #endif
918 bi_flush(s);
919 /* Of the 10 bits for the empty block, we have already sent
920 * (10 - bi_valid) bits. The lookahead for the last real code (before
921 * the EOB of the previous block) was thus at least one plus the length
922 * of the EOB plus what we have just sent of the empty static block.
923 */
924 if (1 + s->last_eob_len + 10 - s->bi_valid < 9) {
925 send_bits(s, STATIC_TREES<<1, 3);
926 send_code(s, END_BLOCK, static_ltree);
927 #ifdef DEBUG
928 s->compressed_len += 10L;
929 #endif
930 bi_flush(s);
931 }
932 s->last_eob_len = 7;
933 }
934
935 /* ===========================================================================
936 * Determine the best encoding for the current block: dynamic trees, static
937 * trees or store, and output the encoded block to the zip file.
938 */
939 void _tr_flush_block(s, buf, stored_len, eof)
940 deflate_state *s;
941 charf *buf; /* input block, or NULL if too old */
942 ulg stored_len; /* length of input block */
943 int eof; /* true if this is the last block for a file */
944 {
945 ulg opt_lenb, static_lenb; /* opt_len and static_len in bytes */
946 int max_blindex = 0; /* index of last bit length code of non zero freq */
947
948 /* Build the Huffman trees unless a stored block is forced */
949 if (s->level > 0) {
950
951 /* Check if the file is ascii or binary */
952 if (s->data_type == Z_UNKNOWN) set_data_type(s);
953
954 /* Construct the literal and distance trees */
955 build_tree(s, (tree_desc *)(&(s->l_desc)));
956 Tracev((stderr, "\nlit data: dyn %ld, stat %ld", s->opt_len,
957 s->static_len));
958
959 build_tree(s, (tree_desc *)(&(s->d_desc)));
960 Tracev((stderr, "\ndist data: dyn %ld, stat %ld", s->opt_len,
961 s->static_len));
962 /* At this point, opt_len and static_len are the total bit lengths of
963 * the compressed block data, excluding the tree representations.
964 */
965
966 /* Build the bit length tree for the above two trees, and get the index
967 * in bl_order of the last bit length code to send.
968 */
969 max_blindex = build_bl_tree(s);
970
971 /* Determine the best encoding. Compute first the block length in bytes*/
972 opt_lenb = (s->opt_len+3+7)>>3;
973 static_lenb = (s->static_len+3+7)>>3;
974
975 Tracev((stderr, "\nopt %lu(%lu) stat %lu(%lu) stored %lu lit %u ",
976 opt_lenb, s->opt_len, static_lenb, s->static_len, stored_len,
977 s->last_lit));
978
979 if (static_lenb <= opt_lenb) opt_lenb = static_lenb;
980
981 } else {
982 Assert(buf != (char*)0, "lost buf");
983 opt_lenb = static_lenb = stored_len + 5; /* force a stored block */
984 }
985
986 #ifdef FORCE_STORED
987 if (buf != (char*)0) { /* force stored block */
988 #else
989 if (stored_len+4 <= opt_lenb && buf != (char*)0) {
990 /* 4: two words for the lengths */
991 #endif
992 /* The test buf != NULL is only necessary if LIT_BUFSIZE > WSIZE.
993 * Otherwise we can't have processed more than WSIZE input bytes since
994 * the last block flush, because compression would have been
995 * successful. If LIT_BUFSIZE <= WSIZE, it is never too late to
996 * transform a block into a stored block.
997 */
998 _tr_stored_block(s, buf, stored_len, eof);
999
1000 #ifdef FORCE_STATIC
1001 } else if (static_lenb >= 0) { /* force static trees */
1002 #else
1003 } else if (static_lenb == opt_lenb) {
1004 #endif
1005 send_bits(s, (STATIC_TREES<<1)+eof, 3);
1006 compress_block(s, (ct_data *)static_ltree, (ct_data *)static_dtree);
1007 #ifdef DEBUG
1008 s->compressed_len += 3 + s->static_len;
1009 #endif
1010 } else {
1011 send_bits(s, (DYN_TREES<<1)+eof, 3);
1012 send_all_trees(s, s->l_desc.max_code+1, s->d_desc.max_code+1,
1013 max_blindex+1);
1014 compress_block(s, (ct_data *)s->dyn_ltree, (ct_data *)s->dyn_dtree);
1015 #ifdef DEBUG
1016 s->compressed_len += 3 + s->opt_len;
1017 #endif
1018 }
1019 Assert (s->compressed_len == s->bits_sent, "bad compressed size");
1020 /* The above check is made mod 2^32, for files larger than 512 MB
1021 * and uLong implemented on 32 bits.
1022 */
1023 init_block(s);
1024
1025 if (eof) {
1026 bi_windup(s);
1027 #ifdef DEBUG
1028 s->compressed_len += 7; /* align on byte boundary */
1029 #endif
1030 }
1031 Tracev((stderr,"\ncomprlen %lu(%lu) ", s->compressed_len>>3,
1032 s->compressed_len-7*eof));
1033 }
1034
1035 /* ===========================================================================
1036 * Save the match info and tally the frequency counts. Return true if
1037 * the current block must be flushed.
1038 */
1039 int _tr_tally (s, dist, lc)
1040 deflate_state *s;
1041 unsigned dist; /* distance of matched string */
1042 unsigned lc; /* match length-MIN_MATCH or unmatched char (if dist==0) */
1043 {
1044 s->d_buf[s->last_lit] = (ush)dist;
1045 s->l_buf[s->last_lit++] = (uch)lc;
1046 if (dist == 0) {
1047 /* lc is the unmatched char */
1048 s->dyn_ltree[lc].Freq++;
1049 } else {
1050 s->matches++;
1051 /* Here, lc is the match length - MIN_MATCH */
1052 dist--; /* dist = match distance - 1 */
1053 Assert((ush)dist < (ush)MAX_DIST(s) &&
1054 (ush)lc <= (ush)(MAX_MATCH-MIN_MATCH) &&
1055 (ush)d_code(dist) < (ush)D_CODES, "_tr_tally: bad match");
1056
1057 s->dyn_ltree[_length_code[lc]+LITERALS+1].Freq++;
1058 s->dyn_dtree[d_code(dist)].Freq++;
1059 }
1060
1061 #ifdef TRUNCATE_BLOCK
1062 /* Try to guess if it is profitable to stop the current block here */
1063 if ((s->last_lit & 0x1fff) == 0 && s->level > 2) {
1064 /* Compute an upper bound for the compressed length */
1065 ulg out_length = (ulg)s->last_lit*8L;
1066 ulg in_length = (ulg)((long)s->strstart - s->block_start);
1067 int dcode;
1068 for (dcode = 0; dcode < D_CODES; dcode++) {
1069 out_length += (ulg)s->dyn_dtree[dcode].Freq *
1070 (5L+extra_dbits[dcode]);
1071 }
1072 out_length >>= 3;
1073 Tracev((stderr,"\nlast_lit %u, in %ld, out ~%ld(%ld%%) ",
1074 s->last_lit, in_length, out_length,
1075 100L - out_length*100L/in_length));
1076 if (s->matches < s->last_lit/2 && out_length < in_length/2) return 1;
1077 }
1078 #endif
1079 return (s->last_lit == s->lit_bufsize-1);
1080 /* We avoid equality with lit_bufsize because of wraparound at 64K
1081 * on 16 bit machines and because stored blocks are restricted to
1082 * 64K-1 bytes.
1083 */
1084 }
1085
1086 /* ===========================================================================
1087 * Send the block data compressed using the given Huffman trees
1088 */
1089 local void compress_block(s, ltree, dtree)
1090 deflate_state *s;
1091 ct_data *ltree; /* literal tree */
1092 ct_data *dtree; /* distance tree */
1093 {
1094 unsigned dist; /* distance of matched string */
1095 int lc; /* match length or unmatched char (if dist == 0) */
1096 unsigned lx = 0; /* running index in l_buf */
1097 unsigned code; /* the code to send */
1098 int extra; /* number of extra bits to send */
1099
1100 if (s->last_lit != 0) do {
1101 dist = s->d_buf[lx];
1102 lc = s->l_buf[lx++];
1103 if (dist == 0) {
1104 send_code(s, lc, ltree); /* send a literal byte */
1105 Tracecv(isgraph(lc), (stderr," '%c' ", lc));
1106 } else {
1107 /* Here, lc is the match length - MIN_MATCH */
1108 code = _length_code[lc];
1109 send_code(s, code+LITERALS+1, ltree); /* send the length code */
1110 extra = extra_lbits[code];
1111 if (extra != 0) {
1112 lc -= base_length[code];
1113 send_bits(s, lc, extra); /* send the extra length bits */
1114 }
1115 dist--; /* dist is now the match distance - 1 */
1116 code = d_code(dist);
1117 Assert (code < D_CODES, "bad d_code");
1118
1119 send_code(s, code, dtree); /* send the distance code */
1120 extra = extra_dbits[code];
1121 if (extra != 0) {
1122 dist -= base_dist[code];
1123 send_bits(s, dist, extra); /* send the extra distance bits */
1124 }
1125 } /* literal or match pair ? */
1126
1127 /* Check that the overlay between pending_buf and d_buf+l_buf is ok: */
1128 Assert(s->pending < s->lit_bufsize + 2*lx, "pendingBuf overflow");
1129
1130 } while (lx < s->last_lit);
1131
1132 send_code(s, END_BLOCK, ltree);
1133 s->last_eob_len = ltree[END_BLOCK].Len;
1134 }
1135
1136 /* ===========================================================================
1137 * Set the data type to ASCII or BINARY, using a crude approximation:
1138 * binary if more than 20% of the bytes are <= 6 or >= 128, ascii otherwise.
1139 * IN assertion: the fields freq of dyn_ltree are set and the total of all
1140 * frequencies does not exceed 64K (to fit in an int on 16 bit machines).
1141 */
1142 local void set_data_type(s)
1143 deflate_state *s;
1144 {
1145 int n = 0;
1146 unsigned ascii_freq = 0;
1147 unsigned bin_freq = 0;
1148 while (n < 7) bin_freq += s->dyn_ltree[n++].Freq;
1149 while (n < 128) ascii_freq += s->dyn_ltree[n++].Freq;
1150 while (n < LITERALS) bin_freq += s->dyn_ltree[n++].Freq;
1151 s->data_type = (Byte)(bin_freq > (ascii_freq >> 2) ? Z_BINARY : Z_ASCII);
1152 }
1153
1154 /* ===========================================================================
1155 * Reverse the first len bits of a code, using straightforward code (a faster
1156 * method would use a table)
1157 * IN assertion: 1 <= len <= 15
1158 */
1159 local unsigned bi_reverse(code, len)
1160 unsigned code; /* the value to invert */
1161 int len; /* its bit length */
1162 {
1163 register unsigned res = 0;
1164 do {
1165 res |= code & 1;
1166 code >>= 1, res <<= 1;
1167 } while (--len > 0);
1168 return res >> 1;
1169 }
1170
1171 /* ===========================================================================
1172 * Flush the bit buffer, keeping at most 7 bits in it.
1173 */
1174 local void bi_flush(s)
1175 deflate_state *s;
1176 {
1177 if (s->bi_valid == 16) {
1178 put_short(s, s->bi_buf);
1179 s->bi_buf = 0;
1180 s->bi_valid = 0;
1181 } else if (s->bi_valid >= 8) {
1182 put_byte(s, (Byte)s->bi_buf);
1183 s->bi_buf >>= 8;
1184 s->bi_valid -= 8;
1185 }
1186 }
1187
1188 /* ===========================================================================
1189 * Flush the bit buffer and align the output on a byte boundary
1190 */
1191 local void bi_windup(s)
1192 deflate_state *s;
1193 {
1194 if (s->bi_valid > 8) {
1195 put_short(s, s->bi_buf);
1196 } else if (s->bi_valid > 0) {
1197 put_byte(s, (Byte)s->bi_buf);
1198 }
1199 s->bi_buf = 0;
1200 s->bi_valid = 0;
1201 #ifdef DEBUG
1202 s->bits_sent = (s->bits_sent+7) & ~7;
1203 #endif
1204 }
1205
1206 /* ===========================================================================
1207 * Copy a stored block, storing first the length and its
1208 * one's complement if requested.
1209 */
1210 local void copy_block(s, buf, len, header)
1211 deflate_state *s;
1212 charf *buf; /* the input data */
1213 unsigned len; /* its length */
1214 int header; /* true if block header must be written */
1215 {
1216 bi_windup(s); /* align on byte boundary */
1217 s->last_eob_len = 8; /* enough lookahead for inflate */
1218
1219 if (header) {
1220 put_short(s, (ush)len);
1221 put_short(s, (ush)~len);
1222 #ifdef DEBUG
1223 s->bits_sent += 2*16;
1224 #endif
1225 }
1226 #ifdef DEBUG
1227 s->bits_sent += (ulg)len<<3;
1228 #endif
1229 while (len--) {
1230 put_byte(s, *buf++);
1231 }
1232 }