]> git.saurik.com Git - apple/security.git/blob - SecurityTests/cspxutils/hashTime/MD5.c
Security-57031.1.35.tar.gz
[apple/security.git] / SecurityTests / cspxutils / hashTime / MD5.c
1 /*
2 File: MD5.c
3
4 Written by: Colin Plumb
5
6 Copyright: Copyright (c) 1998,2004-2005 Apple Computer, Inc. All Rights Reserved.
7
8 Change History (most recent first):
9
10 <7> 10/06/98 ap Changed to compile with C++.
11
12 To Do:
13 */
14
15 /* Copyright (c) 1998,2004-2005 Apple Computer, Inc. All Rights Reserved.
16 *
17 * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT
18 * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE
19 * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE COMPUTER, INC. AND THE
20 * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE COMPUTER,
21 * INC. ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL
22 * EXPOSE YOU TO LIABILITY.
23 ***************************************************************************
24 *
25 * MD5.c
26 */
27
28 /*
29 * This code implements the MD5 message-digest algorithm.
30 * The algorithm is due to Ron Rivest. This code was
31 * written by Colin Plumb in 1993, no copyright is claimed.
32 * This code is in the public domain; do with it what you wish.
33 *
34 * Equivalent code is available from RSA Data Security, Inc.
35 * This code has been tested against that, and is equivalent,
36 * except that you don't need to include two pages of legalese
37 * with every copy.
38 *
39 * To compute the message digest of a chunk of bytes, declare an
40 * MD5Context structure, pass it to MD5Init, call MD5Update as
41 * needed on buffers full of bytes, and then call MD5Final, which
42 * will fill a supplied 16-byte array with the digest.
43 */
44
45 /*
46 * Revision History
47 * ----------------
48 * 06 Feb 1997 Doug Mitchell at Apple
49 * Fixed endian-dependent cast in MD5Final()
50 * Made byteReverse() tolerant of platform-dependent alignment
51 * restrictions
52 */
53
54 #include "MD5.h"
55 #undef __LITTLE_ENDIAN__
56 #undef __BIG_ENDIAN__
57 #define __BIG_ENDIAN__
58
59 #include <stdlib.h>
60 #include <strings.h>
61
62 static inline void intToByteRep(int i, unsigned char *buf)
63 {
64 *buf++ = (unsigned char)((i >> 24) & 0xff);
65 *buf++ = (unsigned char)((i >> 16) & 0xff);
66 *buf++ = (unsigned char)((i >> 8) & 0xff);
67 *buf = (unsigned char)(i & 0xff);
68 }
69
70 #define MD5_DEBUG 0
71
72 #if MD5_DEBUG
73 static inline void dumpCtx(struct MD5Context *ctx, char *label)
74 {
75 int i;
76
77 printf("%s\n", label);
78 printf("buf = ");
79 for(i=0; i<4; i++) {
80 printf("%x:", ctx->buf[i]);
81 }
82 printf("\nbits: %d:%d\n", ctx->bits[0], ctx->bits[1]);
83 printf("in[]:\n ");
84 for(i=0; i<64; i++) {
85 printf("%02x:", ctx->in[i]);
86 if((i % 16) == 15) {
87 printf("\n ");
88 }
89 }
90 printf("\n");
91 }
92 #else // MD5_DEBUG
93 #define dumpCtx(ctx, label)
94 #endif // MD5_DEBUG
95
96 static void MD5Transform(uint32 buf[4], uint32 const in[16]);
97
98 #ifdef __LITTLE_ENDIAN__
99 #define byteReverse(buf, len) /* Nothing */
100 #else
101 static void byteReverse(unsigned char *buf, unsigned longs);
102
103 #ifndef ASM_MD5
104 /*
105 * Note: this code is harmless on little-endian machines.
106 */
107 static void byteReverse(unsigned char *buf, unsigned longs)
108 {
109 #if old_way
110 /*
111 * this code is NOT harmless on big-endian machine which require
112 * natural alignment.
113 */
114 uint32 t;
115 do {
116 t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
117 ((unsigned) buf[1] << 8 | buf[0]);
118 *(uint32 *) buf = t;
119 buf += 4;
120 } while (--longs);
121 #else // new_way
122
123 unsigned char t;
124 do {
125 t = buf[0];
126 buf[0] = buf[3];
127 buf[3] = t;
128 t = buf[1];
129 buf[1] = buf[2];
130 buf[2] = t;
131 buf += 4;
132 } while (--longs);
133 #endif // old_way
134 }
135 #endif // ASM_MD5
136 #endif // __LITTLE_ENDIAN__
137
138 /*
139 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
140 * initialization constants.
141 */
142 void MD5Init(struct MD5Context *ctx)
143 {
144 ctx->buf[0] = 0x67452301;
145 ctx->buf[1] = 0xefcdab89;
146 ctx->buf[2] = 0x98badcfe;
147 ctx->buf[3] = 0x10325476;
148
149 ctx->bits[0] = 0;
150 ctx->bits[1] = 0;
151 }
152
153 /*
154 * Update context to reflect the concatenation of another buffer full
155 * of bytes.
156 */
157 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
158 {
159 uint32 t;
160
161 dumpCtx(ctx, "MD5.c update top");
162 /* Update bitcount */
163
164 t = ctx->bits[0];
165 if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
166 ctx->bits[1]++; /* Carry from low to high */
167 ctx->bits[1] += len >> 29;
168
169 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
170
171 /* Handle any leading odd-sized chunks */
172
173 if (t) {
174 unsigned char *p = (unsigned char *) ctx->in + t;
175
176 t = 64 - t;
177 if (len < t) {
178 memcpy(p, buf, len);
179 return;
180 }
181 memcpy(p, buf, t);
182 byteReverse(ctx->in, 16);
183 MD5Transform(ctx->buf, (uint32 *) ctx->in);
184 dumpCtx(ctx, "update - return from transform (1)");
185 buf += t;
186 len -= t;
187 }
188 /* Process data in 64-byte chunks */
189
190 while (len >= 64) {
191 memcpy(ctx->in, buf, 64);
192 byteReverse(ctx->in, 16);
193 MD5Transform(ctx->buf, (uint32 *) ctx->in);
194 dumpCtx(ctx, "update - return from transform (2)");
195 buf += 64;
196 len -= 64;
197 }
198
199 /* Handle any remaining bytes of data. */
200
201 memcpy(ctx->in, buf, len);
202 }
203
204 /*
205 * Final wrapup - pad to 64-byte boundary with the bit pattern
206 * 1 0* (64-bit count of bits processed, MSB-first)
207 */
208 void MD5Final(struct MD5Context *ctx, unsigned char *digest)
209 {
210 unsigned count;
211 unsigned char *p;
212
213 dumpCtx(ctx, "final top");
214
215 /* Compute number of bytes mod 64 */
216 count = (ctx->bits[0] >> 3) & 0x3F;
217
218 /* Set the first char of padding to 0x80. This is safe since there is
219 always at least one byte free */
220 p = ctx->in + count;
221 *p++ = 0x80;
222 #if MD5_DEBUG
223 printf("in[%d] = %x\n", count, ctx->in[count]);
224 #endif
225 /* Bytes of padding needed to make 64 bytes */
226 count = 64 - 1 - count;
227
228 /* Pad out to 56 mod 64 */
229 dumpCtx(ctx, "final, before pad");
230 if (count < 8) {
231 /* Two lots of padding: Pad the first block to 64 bytes */
232 bzero(p, count);
233 byteReverse(ctx->in, 16);
234 MD5Transform(ctx->buf, (uint32 *) ctx->in);
235
236 /* Now fill the next block with 56 bytes */
237 bzero(ctx->in, 56);
238 } else {
239 /* Pad block to 56 bytes */
240 bzero(p, count - 8);
241 }
242 byteReverse(ctx->in, 14);
243
244 /* Append length in bits and transform */
245 #ifdef __LITTLE_ENDIAN__
246 /* l.s. byte of bits[0] --> in[56] */
247 ((uint32 *) ctx->in)[14] = ctx->bits[0];
248 ((uint32 *) ctx->in)[15] = ctx->bits[1];
249 #else
250 /* l.s. byte of bits[0] --> in[60] */
251 intToByteRep(ctx->bits[0], &ctx->in[56]);
252 intToByteRep(ctx->bits[1], &ctx->in[60]);
253 #endif
254
255 dumpCtx(ctx, "last transform");
256 MD5Transform(ctx->buf, (uint32 *) ctx->in);
257 byteReverse((unsigned char *) ctx->buf, 4);
258 memcpy(digest, ctx->buf, MD5_DIGEST_SIZE);
259 dumpCtx(ctx, "final end");
260
261 bzero(ctx, sizeof(*ctx)); /* In case it's sensitive */
262 }
263
264 #ifndef ASM_MD5
265
266 /* The four core functions - F1 is optimized somewhat */
267
268 /* #define F1(x, y, z) (x & y | ~x & z) */
269 #define F1(x, y, z) (z ^ (x & (y ^ z)))
270 #define F2(x, y, z) F1(z, x, y)
271 #define F3(x, y, z) (x ^ y ^ z)
272 #define F4(x, y, z) (y ^ (x | ~z))
273
274 /* This is the central step in the MD5 algorithm. */
275 #define MD5STEP(f, w, x, y, z, data, s) \
276 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
277
278 /*
279 * The core of the MD5 algorithm, this alters an existing MD5 hash to
280 * reflect the addition of 16 longwords of new data. MD5Update blocks
281 * the data and converts bytes into longwords for this routine.
282 */
283 static void MD5Transform(uint32 buf[4], uint32 const in[16])
284 {
285 register uint32 a, b, c, d;
286
287 a = buf[0];
288 b = buf[1];
289 c = buf[2];
290 d = buf[3];
291
292 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
293 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
294 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
295 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
296 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
297 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
298 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
299 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
300 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
301 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
302 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
303 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
304 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
305 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
306 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
307 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
308
309 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
310 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
311 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
312 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
313 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
314 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
315 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
316 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
317 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
318 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
319 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
320 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
321 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
322 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
323 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
324 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
325
326 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
327 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
328 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
329 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
330 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
331 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
332 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
333 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
334 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
335 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
336 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
337 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
338 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
339 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
340 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
341 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
342
343 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
344 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
345 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
346 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
347 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
348 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
349 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
350 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
351 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
352 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
353 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
354 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
355 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
356 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
357 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
358 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
359
360 buf[0] += a;
361 buf[1] += b;
362 buf[2] += c;
363 buf[3] += d;
364 }
365
366 #endif // ASM_MD5