2 * The contents of this file are subject to the Mozilla Public
3 * License Version 1.1 (the "License"); you may not use this file
4 * except in compliance with the License. You may obtain a copy of
5 * the License at http://www.mozilla.org/MPL/
7 * Software distributed under the License is distributed on an "AS
8 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
9 * implied. See the License for the specific language governing
10 * rights and limitations under the License.
12 * The Original Code is the Netscape security libraries.
14 * The Initial Developer of the Original Code is Netscape
15 * Communications Corporation. Portions created by Netscape are
16 * Copyright (C) 1994-2000 Netscape Communications Corporation. All
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU General Public License Version 2 or later (the
23 * "GPL"), in which case the provisions of the GPL are applicable
24 * instead of those above. If you wish to allow use of your
25 * version of this file only under the terms of the GPL and not to
26 * allow others to use your version of this file under the MPL,
27 * indicate your decision by deleting the provisions above and
28 * replace them with the notice and other provisions required by
29 * the GPL. If you do not delete the provisions above, a recipient
30 * may use your version of this file under either the MPL or the
35 * Encryption/decryption routines for CMS implementation, none of which are exported.
42 #include <security_asn1/secerr.h>
43 #include <security_asn1/secasn1.h>
44 #include <Security/SecAsn1Templates.h>
45 #include <Security/cssmapi.h>
46 #include <Security/cssmapple.h>
47 #include <Security/SecKeyPriv.h>
50 * -------------------------------------------------------------------
55 typedef OSStatus (*nss_cms_cipher_function
) (void *, unsigned char *, unsigned int *,
56 unsigned int, const unsigned char *, unsigned int);
57 typedef OSStatus (*nss_cms_cipher_destroy
) (void *, Boolean
);
60 #define BLOCK_SIZE 4096
62 struct SecCmsCipherContextStr
{
64 CSSM_CC_HANDLE cc
; /* CSP CONTEXT */
65 Boolean encrypt
; /* encrypt / decrypt switch */
67 void * cx
; /* PK11 cipher context */
68 nss_cms_cipher_function doit
;
69 nss_cms_cipher_destroy destroy
;
70 Boolean encrypt
; /* encrypt / decrypt switch */
71 int block_size
; /* block & pad sizes for cipher */
73 int pending_count
; /* pending data (not yet en/decrypted */
74 unsigned char pending_buf
[BLOCK_SIZE
];/* because of blocking */
78 typedef struct sec_rc2cbcParameterStr
{
79 SECItem rc2ParameterVersion
;
81 } sec_rc2cbcParameter
;
83 static const SecAsn1Template sec_rc2cbc_parameter_template
[] = {
85 0, NULL
, sizeof(sec_rc2cbcParameter
) },
86 { SEC_ASN1_INTEGER
| SEC_ASN1_SIGNED_INT
,
87 offsetof(sec_rc2cbcParameter
,rc2ParameterVersion
) },
88 { SEC_ASN1_OCTET_STRING
,
89 offsetof(sec_rc2cbcParameter
,iv
) },
94 ** Convert a der encoded *signed* integer into a machine integral value.
95 ** If an underflow/overflow occurs, sets error code and returns min/max.
98 DER_GetInteger(SECItem
*it
)
101 CSSM_SIZE len
= it
->Length
;
102 unsigned char *cp
= it
->Data
;
103 unsigned long overflow
= 0x1ffUL
<< (((sizeof(ival
) - 1) * 8) - 1);
104 unsigned long ofloinit
;
108 ofloinit
= ival
& overflow
;
111 if ((ival
& overflow
) != ofloinit
) {
112 PORT_SetError(SEC_ERROR_BAD_DER
);
125 /* S/MIME picked id values to represent differnt keysizes */
126 /* I do have a formula, but it ain't pretty, and it only works because you
127 * can always match three points to a parabola:) */
128 static unsigned char rc2_map(SECItem
*version
)
132 x
= DER_GetInteger(version
);
142 static unsigned long rc2_unmap(unsigned long x
)
152 /* default IV size in bytes */
153 #define DEFAULT_IV_SIZE 8
154 /* IV/block size for AES */
155 #define AES_BLOCK_SIZE 16
156 /* max IV size in bytes */
157 #define MAX_IV_SIZE AES_BLOCK_SIZE
159 static SecCmsCipherContextRef
160 SecCmsCipherContextStart(PRArenaPool
*poolp
, SecSymmetricKeyRef key
, SECAlgorithmID
*algid
, Boolean encrypt
)
162 SecCmsCipherContextRef cc
;
163 CSSM_CC_HANDLE ciphercc
= 0;
166 CSSM_ALGORITHMS algorithm
;
167 CSSM_PADDING padding
= CSSM_PADDING_PKCS7
;
168 CSSM_ENCRYPT_MODE mode
;
169 CSSM_CSP_HANDLE cspHandle
;
170 const CSSM_KEY
*cssmKey
;
172 uint8 ivbuf
[MAX_IV_SIZE
];
173 CSSM_DATA initVector
= { DEFAULT_IV_SIZE
, ivbuf
};
174 //CSSM_CONTEXT_ATTRIBUTE contextAttribute = { CSSM_ATTRIBUTE_ALG_PARAMS, sizeof(CSSM_DATA_PTR) };
176 rv
= SecKeyGetCSPHandle(key
, &cspHandle
);
179 rv
= SecKeyGetCSSMKey(key
, &cssmKey
);
183 // @@@ Add support for PBE based stuff
185 oidData
= SECOID_FindOID(&algid
->algorithm
);
188 algtag
= oidData
->offset
;
189 algorithm
= oidData
->cssmAlgorithm
;
195 case SEC_OID_RC2_CBC
:
197 case SEC_OID_DES_EDE3_CBC
:
198 case SEC_OID_DES_EDE
:
199 case SEC_OID_DES_CBC
:
200 case SEC_OID_RC5_CBC_PAD
:
201 case SEC_OID_FORTEZZA_SKIPJACK
:
202 mode
= CSSM_ALGMODE_CBCPadIV8
;
205 /* RFC 3565 says that these sizes refer to key size, NOT block size */
206 case SEC_OID_AES_128_CBC
:
207 case SEC_OID_AES_192_CBC
:
208 case SEC_OID_AES_256_CBC
:
209 initVector
.Length
= AES_BLOCK_SIZE
;
210 mode
= CSSM_ALGMODE_CBCPadIV8
;
213 case SEC_OID_DES_ECB
:
214 case SEC_OID_AES_128_ECB
:
215 case SEC_OID_AES_192_ECB
:
216 case SEC_OID_AES_256_ECB
:
217 mode
= CSSM_ALGMODE_ECBPad
;
220 case SEC_OID_DES_OFB
:
221 mode
= CSSM_ALGMODE_OFBPadIV8
;
224 case SEC_OID_DES_CFB
:
225 mode
= CSSM_ALGMODE_CFBPadIV8
;
234 CSSM_CC_HANDLE randomcc
;
235 //SECItem *parameters;
237 // Generate random initVector
238 if (CSSM_CSP_CreateRandomGenContext(cspHandle
,
239 CSSM_ALGID_APPLE_YARROW
,
245 if (CSSM_GenerateRandom(randomcc
, &initVector
))
247 CSSM_DeleteContext(randomcc
);
249 // Put IV into algid.parameters
253 case SEC_OID_DES_EDE3_CBC
:
254 case SEC_OID_DES_EDE
:
255 case SEC_OID_DES_CBC
:
256 case SEC_OID_AES_128_CBC
:
257 case SEC_OID_AES_192_CBC
:
258 case SEC_OID_AES_256_CBC
:
259 case SEC_OID_FORTEZZA_SKIPJACK
:
260 case SEC_OID_DES_ECB
:
261 case SEC_OID_AES_128_ECB
:
262 case SEC_OID_AES_192_ECB
:
263 case SEC_OID_AES_256_ECB
:
264 case SEC_OID_DES_OFB
:
265 case SEC_OID_DES_CFB
:
266 /* Just encode the initVector as an octet string. */
267 if (!SEC_ASN1EncodeItem(poolp
, &algid
->parameters
,
268 &initVector
, kSecAsn1OctetStringTemplate
))
272 case SEC_OID_RC2_CBC
:
274 sec_rc2cbcParameter rc2
= {};
275 unsigned long rc2version
;
279 rc2version
= rc2_unmap(cssmKey
->KeyHeader
.LogicalKeySizeInBits
);
280 if (!SEC_ASN1EncodeUnsignedInteger (NULL
, &(rc2
.rc2ParameterVersion
),
283 newParams
= SEC_ASN1EncodeItem (poolp
, &algid
->parameters
, &rc2
,
284 sec_rc2cbc_parameter_template
);
285 PORT_Free(rc2
.rc2ParameterVersion
.Data
);
286 if (newParams
== NULL
)
290 case SEC_OID_RC5_CBC_PAD
:
292 // @@@ Implement rc5 params stuff.
299 // Extract IV from algid.parameters
300 // Put IV into algid.parameters
304 case SEC_OID_DES_EDE3_CBC
:
305 case SEC_OID_DES_EDE
:
306 case SEC_OID_DES_CBC
:
307 case SEC_OID_AES_128_CBC
:
308 case SEC_OID_AES_192_CBC
:
309 case SEC_OID_AES_256_CBC
:
310 case SEC_OID_FORTEZZA_SKIPJACK
:
311 case SEC_OID_DES_ECB
:
312 case SEC_OID_AES_128_ECB
:
313 case SEC_OID_AES_192_ECB
:
314 case SEC_OID_AES_256_ECB
:
315 case SEC_OID_DES_OFB
:
316 case SEC_OID_DES_CFB
:
319 /* Just decode the initVector from an octet string. */
320 rv
= SEC_ASN1DecodeItem(NULL
, &iv
, kSecAsn1OctetStringTemplate
, &(algid
->parameters
));
323 if (initVector
.Length
!= iv
.Length
) {
327 memcpy(initVector
.Data
, iv
.Data
, initVector
.Length
);
331 case SEC_OID_RC2_CBC
:
333 sec_rc2cbcParameter rc2
= {};
334 unsigned long ulEffectiveBits
;
336 rv
= SEC_ASN1DecodeItem(NULL
, &rc2
,sec_rc2cbc_parameter_template
,
337 &(algid
->parameters
));
341 if (initVector
.Length
!= rc2
.iv
.Length
) {
342 PORT_Free(rc2
.iv
.Data
);
343 PORT_Free(rc2
.rc2ParameterVersion
.Data
);
346 memcpy(initVector
.Data
, rc2
.iv
.Data
, initVector
.Length
);
347 PORT_Free(rc2
.iv
.Data
);
349 ulEffectiveBits
= rc2_map(&rc2
.rc2ParameterVersion
);
350 PORT_Free(rc2
.rc2ParameterVersion
.Data
);
351 if (ulEffectiveBits
!= cssmKey
->KeyHeader
.LogicalKeySizeInBits
)
355 case SEC_OID_RC5_CBC_PAD
:
357 // @@@ Implement rc5 params stuff.
363 if (CSSM_CSP_CreateSymmetricContext(cspHandle
,
366 NULL
, /* accessCred */
375 rv
= CSSM_EncryptDataInit(ciphercc
);
377 rv
= CSSM_DecryptDataInit(ciphercc
);
381 cc
= (SecCmsCipherContextRef
)PORT_ZAlloc(sizeof(SecCmsCipherContext
));
386 cc
->encrypt
= encrypt
;
391 CSSM_DeleteContext(ciphercc
);
397 * SecCmsCipherContextStartDecrypt - create a cipher context to do decryption
398 * based on the given bulk * encryption key and algorithm identifier (which may include an iv).
400 * XXX Once both are working, it might be nice to combine this and the
401 * function below (for starting up encryption) into one routine, and just
402 * have two simple cover functions which call it.
404 SecCmsCipherContextRef
405 SecCmsCipherContextStartDecrypt(SecSymmetricKeyRef key
, SECAlgorithmID
*algid
)
407 return SecCmsCipherContextStart(NULL
, key
, algid
, PR_FALSE
);
409 SecCmsCipherContextRef cc
;
411 CK_MECHANISM_TYPE mechanism
;
416 algtag
= SECOID_GetAlgorithmTag(algid
);
418 /* set param and mechanism */
419 if (SEC_PKCS5IsAlgorithmPBEAlg(algid
)) {
420 CK_MECHANISM pbeMech
, cryptoMech
;
421 CSSM_DATA_PTR pbeParams
;
422 SEC_PKCS5KeyAndPassword
*keyPwd
;
424 PORT_Memset(&pbeMech
, 0, sizeof(CK_MECHANISM
));
425 PORT_Memset(&cryptoMech
, 0, sizeof(CK_MECHANISM
));
428 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
430 keyPwd
= (SEC_PKCS5KeyAndPassword
*)key
;
433 /* find correct PK11 mechanism and parameters to initialize pbeMech */
434 pbeMech
.mechanism
= PK11_AlgtagToMechanism(algtag
);
435 pbeParams
= PK11_ParamFromAlgid(algid
);
438 pbeMech
.pParameter
= pbeParams
->Data
;
439 pbeMech
.ulParameterLen
= pbeParams
->Length
;
441 /* now map pbeMech to cryptoMech */
442 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech
, &cryptoMech
, keyPwd
->pwitem
,
443 PR_FALSE
) != CKR_OK
) {
444 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
447 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
449 /* and use it to initialize param & mechanism */
450 if ((param
= (CSSM_DATA_PTR
)PORT_ZAlloc(sizeof(CSSM_DATA
))) == NULL
)
453 param
->Data
= (unsigned char *)cryptoMech
.pParameter
;
454 param
->Length
= cryptoMech
.ulParameterLen
;
455 mechanism
= cryptoMech
.mechanism
;
457 mechanism
= PK11_AlgtagToMechanism(algtag
);
458 if ((param
= PK11_ParamFromAlgid(algid
)) == NULL
)
462 cc
= (SecCmsCipherContextRef
)PORT_ZAlloc(sizeof(SecCmsCipherContext
));
464 SECITEM_FreeItem(param
,PR_TRUE
);
468 /* figure out pad and block sizes */
469 cc
->pad_size
= PK11_GetBlockSize(mechanism
, param
);
470 slot
= PK11_GetSlotFromKey(key
);
471 cc
->block_size
= PK11_IsHW(slot
) ? BLOCK_SIZE
: cc
->pad_size
;
474 /* create PK11 cipher context */
475 ciphercx
= PK11_CreateContextBySymKey(mechanism
, CKA_DECRYPT
, key
, param
);
476 SECITEM_FreeItem(param
, PR_TRUE
);
477 if (ciphercx
== NULL
) {
483 cc
->doit
= (nss_cms_cipher_function
) PK11_CipherOp
;
484 cc
->destroy
= (nss_cms_cipher_destroy
) PK11_DestroyContext
;
485 cc
->encrypt
= PR_FALSE
;
486 cc
->pending_count
= 0;
493 * SecCmsCipherContextStartEncrypt - create a cipher object to do encryption,
494 * based on the given bulk encryption key and algorithm tag. Fill in the algorithm
495 * identifier (which may include an iv) appropriately.
497 * XXX Once both are working, it might be nice to combine this and the
498 * function above (for starting up decryption) into one routine, and just
499 * have two simple cover functions which call it.
501 SecCmsCipherContextRef
502 SecCmsCipherContextStartEncrypt(PRArenaPool
*poolp
, SecSymmetricKeyRef key
, SECAlgorithmID
*algid
)
504 return SecCmsCipherContextStart(poolp
, key
, algid
, PR_TRUE
);
506 SecCmsCipherContextRef cc
;
510 CK_MECHANISM_TYPE mechanism
;
512 Boolean needToEncodeAlgid
= PR_FALSE
;
513 SECOidTag algtag
= SECOID_GetAlgorithmTag(algid
);
515 /* set param and mechanism */
516 if (SEC_PKCS5IsAlgorithmPBEAlg(algid
)) {
517 CK_MECHANISM pbeMech
, cryptoMech
;
518 CSSM_DATA_PTR pbeParams
;
519 SEC_PKCS5KeyAndPassword
*keyPwd
;
521 PORT_Memset(&pbeMech
, 0, sizeof(CK_MECHANISM
));
522 PORT_Memset(&cryptoMech
, 0, sizeof(CK_MECHANISM
));
525 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
527 keyPwd
= (SEC_PKCS5KeyAndPassword
*)key
;
530 /* find correct PK11 mechanism and parameters to initialize pbeMech */
531 pbeMech
.mechanism
= PK11_AlgtagToMechanism(algtag
);
532 pbeParams
= PK11_ParamFromAlgid(algid
);
535 pbeMech
.pParameter
= pbeParams
->Data
;
536 pbeMech
.ulParameterLen
= pbeParams
->Length
;
538 /* now map pbeMech to cryptoMech */
539 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech
, &cryptoMech
, keyPwd
->pwitem
,
540 PR_FALSE
) != CKR_OK
) {
541 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
544 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
546 /* and use it to initialize param & mechanism */
547 if ((param
= (CSSM_DATA_PTR
)PORT_ZAlloc(sizeof(CSSM_DATA
))) == NULL
)
550 param
->Data
= (unsigned char *)cryptoMech
.pParameter
;
551 param
->Length
= cryptoMech
.ulParameterLen
;
552 mechanism
= cryptoMech
.mechanism
;
554 mechanism
= PK11_AlgtagToMechanism(algtag
);
555 if ((param
= PK11_GenerateNewParam(mechanism
, key
)) == NULL
)
557 needToEncodeAlgid
= PR_TRUE
;
560 cc
= (SecCmsCipherContextRef
)PORT_ZAlloc(sizeof(SecCmsCipherContext
));
564 /* now find pad and block sizes for our mechanism */
565 cc
->pad_size
= PK11_GetBlockSize(mechanism
,param
);
566 slot
= PK11_GetSlotFromKey(key
);
567 cc
->block_size
= PK11_IsHW(slot
) ? BLOCK_SIZE
: cc
->pad_size
;
570 /* and here we go, creating a PK11 cipher context */
571 ciphercx
= PK11_CreateContextBySymKey(mechanism
, CKA_ENCRYPT
, key
, param
);
572 if (ciphercx
== NULL
) {
579 * These are placed after the CreateContextBySymKey() because some
580 * mechanisms have to generate their IVs from their card (i.e. FORTEZZA).
581 * Don't move it from here.
582 * XXX is that right? the purpose of this is to get the correct algid
583 * containing the IVs etc. for encoding. this means we need to set this up
584 * BEFORE encoding the algid in the contentInfo, right?
586 if (needToEncodeAlgid
) {
587 rv
= PK11_ParamToAlgid(algtag
, param
, poolp
, algid
);
588 if(rv
!= SECSuccess
) {
596 cc
->doit
= (nss_cms_cipher_function
)PK11_CipherOp
;
597 cc
->destroy
= (nss_cms_cipher_destroy
)PK11_DestroyContext
;
598 cc
->encrypt
= PR_TRUE
;
599 cc
->pending_count
= 0;
602 SECITEM_FreeItem(param
, PR_TRUE
);
609 SecCmsCipherContextDestroy(SecCmsCipherContextRef cc
)
611 PORT_Assert(cc
!= NULL
);
614 CSSM_DeleteContext(cc
->cc
);
619 SecCmsCipherContextLength(SecCmsCipherContextRef cc
, unsigned int input_len
, Boolean final
, Boolean encrypt
)
621 CSSM_QUERY_SIZE_DATA dataBlockSize
[2] = { { input_len
, 0 }, { input_len
, 0 } };
622 /* Hack CDSA treats the last block as the final one. So unless we are being asked to report the final size we ask for 2 block and ignore the second (final) one. */
623 OSStatus rv
= CSSM_QuerySize(cc
->cc
, cc
->encrypt
, final
? 1 : 2, dataBlockSize
);
630 return dataBlockSize
[0].SizeOutputBlock
;
634 * SecCmsCipherContextDecryptLength - find the output length of the next call to decrypt.
636 * cc - the cipher context
637 * input_len - number of bytes used as input
638 * final - true if this is the final chunk of data
640 * Result can be used to perform memory allocations. Note that the amount
641 * is exactly accurate only when not doing a block cipher or when final
642 * is false, otherwise it is an upper bound on the amount because until
643 * we see the data we do not know how many padding bytes there are
644 * (always between 1 and bsize).
646 * Note that this can return zero, which does not mean that the decrypt
647 * operation can be skipped! (It simply means that there are not enough
648 * bytes to make up an entire block; the bytes will be reserved until
649 * there are enough to encrypt/decrypt at least one block.) However,
650 * if zero is returned it *does* mean that no output buffer need be
651 * passed in to the subsequent decrypt operation, as no output bytes
655 SecCmsCipherContextDecryptLength(SecCmsCipherContextRef cc
, size_t input_len
, Boolean final
)
658 return SecCmsCipherContextLength(cc
, (unsigned int)input_len
, final
, PR_FALSE
);
660 int blocks
, block_size
;
662 PORT_Assert (! cc
->encrypt
);
664 block_size
= cc
->block_size
;
667 * If this is not a block cipher, then we always have the same
668 * number of output bytes as we had input bytes.
674 * On the final call, we will always use up all of the pending
675 * bytes plus all of the input bytes, *but*, there will be padding
676 * at the end and we cannot predict how many bytes of padding we
677 * will end up removing. The amount given here is actually known
678 * to be at least 1 byte too long (because we know we will have
679 * at least 1 byte of padding), but seemed clearer/better to me.
682 return cc
->pending_count
+ input_len
;
685 * Okay, this amount is exactly what we will output on the
686 * next cipher operation. We will always hang onto the last
687 * 1 - block_size bytes for non-final operations. That is,
688 * we will do as many complete blocks as we can *except* the
689 * last block (complete or partial). (This is because until
690 * we know we are at the end, we cannot know when to interpret
691 * and removing the padding byte(s), which are guaranteed to
694 blocks
= (cc
->pending_count
+ input_len
- 1) / block_size
;
695 return blocks
* block_size
;
700 * SecCmsCipherContextEncryptLength - find the output length of the next call to encrypt.
702 * cc - the cipher context
703 * input_len - number of bytes used as input
704 * final - true if this is the final chunk of data
706 * Result can be used to perform memory allocations.
708 * Note that this can return zero, which does not mean that the encrypt
709 * operation can be skipped! (It simply means that there are not enough
710 * bytes to make up an entire block; the bytes will be reserved until
711 * there are enough to encrypt/decrypt at least one block.) However,
712 * if zero is returned it *does* mean that no output buffer need be
713 * passed in to the subsequent encrypt operation, as no output bytes
717 SecCmsCipherContextEncryptLength(SecCmsCipherContextRef cc
, size_t input_len
, Boolean final
)
720 return SecCmsCipherContextLength(cc
, (unsigned int)input_len
, final
, PR_TRUE
);
722 int blocks
, block_size
;
725 PORT_Assert (cc
->encrypt
);
727 block_size
= cc
->block_size
;
728 pad_size
= cc
->pad_size
;
731 * If this is not a block cipher, then we always have the same
732 * number of output bytes as we had input bytes.
738 * On the final call, we only send out what we need for
739 * remaining bytes plus the padding. (There is always padding,
740 * so even if we have an exact number of blocks as input, we
741 * will add another full block that is just padding.)
745 return cc
->pending_count
+ input_len
;
747 blocks
= (cc
->pending_count
+ input_len
) / pad_size
;
749 return blocks
*pad_size
;
754 * Now, count the number of complete blocks of data we have.
756 blocks
= (cc
->pending_count
+ input_len
) / block_size
;
759 return blocks
* block_size
;
765 SecCmsCipherContextCrypt(SecCmsCipherContextRef cc
, unsigned char *output
,
766 size_t *output_len_p
, size_t max_output_len
,
767 const unsigned char *input
, size_t input_len
,
768 Boolean final
, Boolean encrypt
)
770 CSSM_DATA outputBuf
= { max_output_len
, output
};
771 CSSM_SIZE bytes_output
= 0;
776 CSSM_DATA inputBuf
= { input_len
, (uint8
*)input
};
779 rv
= CSSM_EncryptDataUpdate(cc
->cc
, &inputBuf
, 1, &outputBuf
, 1, &bytes_output
);
781 rv
= CSSM_DecryptDataUpdate(cc
->cc
, &inputBuf
, 1, &outputBuf
, 1, &bytes_output
);
786 CSSM_DATA remainderBuf
= { max_output_len
- bytes_output
, output
+ bytes_output
};
788 rv
= CSSM_EncryptDataFinal(cc
->cc
, &remainderBuf
);
790 rv
= CSSM_DecryptDataFinal(cc
->cc
, &remainderBuf
);
792 bytes_output
+= remainderBuf
.Length
;
796 PORT_SetError(SEC_ERROR_BAD_DATA
);
797 else if (output_len_p
)
798 *output_len_p
= bytes_output
;
804 * SecCmsCipherContextDecrypt - do the decryption
806 * cc - the cipher context
807 * output - buffer for decrypted result bytes
808 * output_len_p - number of bytes in output
809 * max_output_len - upper bound on bytes to put into output
810 * input - pointer to input bytes
811 * input_len - number of input bytes
812 * final - true if this is the final chunk of data
814 * Decrypts a given length of input buffer (starting at "input" and
815 * containing "input_len" bytes), placing the decrypted bytes in
816 * "output" and storing the output length in "*output_len_p".
817 * "cc" is the return value from SecCmsCipherStartDecrypt.
818 * When "final" is true, this is the last of the data to be decrypted.
820 * This is much more complicated than it sounds when the cipher is
821 * a block-type, meaning that the decryption function will only
822 * operate on whole blocks. But our caller is operating stream-wise,
823 * and can pass in any number of bytes. So we need to keep track
824 * of block boundaries. We save excess bytes between calls in "cc".
825 * We also need to determine which bytes are padding, and remove
826 * them from the output. We can only do this step when we know we
827 * have the final block of data. PKCS #7 specifies that the padding
828 * used for a block cipher is a string of bytes, each of whose value is
829 * the same as the length of the padding, and that all data is padded.
830 * (Even data that starts out with an exact multiple of blocks gets
831 * added to it another block, all of which is padding.)
834 SecCmsCipherContextDecrypt(SecCmsCipherContextRef cc
, unsigned char *output
,
835 size_t *output_len_p
, size_t max_output_len
,
836 const unsigned char *input
, size_t input_len
,
840 return SecCmsCipherContextCrypt(cc
, output
,
841 output_len_p
, max_output_len
,
845 int blocks
, bsize
, pcount
, padsize
;
846 unsigned int max_needed
, ifraglen
, ofraglen
, output_len
;
850 PORT_Assert (! cc
->encrypt
);
853 * Check that we have enough room for the output. Our caller should
854 * already handle this; failure is really an internal error (i.e. bug).
856 max_needed
= SecCmsCipherContextDecryptLength(cc
, input_len
, final
);
857 PORT_Assert (max_output_len
>= max_needed
);
858 if (max_output_len
< max_needed
) {
859 /* PORT_SetError (XXX); */
864 * hardware encryption does not like small decryption sizes here, so we
865 * allow both blocking and padding.
867 bsize
= cc
->block_size
;
868 padsize
= cc
->pad_size
;
871 * When no blocking or padding work to do, we can simply call the
872 * cipher function and we are done.
875 return (* cc
->doit
) (cc
->cx
, output
, output_len_p
, max_output_len
,
879 pcount
= cc
->pending_count
;
880 pbuf
= cc
->pending_buf
;
886 * Try to fill in an entire block, starting with the bytes
887 * we already have saved away.
889 while (input_len
&& pcount
< bsize
) {
890 pbuf
[pcount
++] = *input
++;
894 * If we have at most a whole block and this is not our last call,
895 * then we are done for now. (We do not try to decrypt a lone
896 * single block because we cannot interpret the padding bytes
897 * until we know we are handling the very last block of all input.)
899 if (input_len
== 0 && !final
) {
900 cc
->pending_count
= pcount
;
906 * Given the logic above, we expect to have a full block by now.
907 * If we do not, there is something wrong, either with our own
908 * logic or with (length of) the data given to us.
910 if ((padsize
!= 0) && (pcount
% padsize
) != 0) {
912 PORT_SetError (SEC_ERROR_BAD_DATA
);
918 rv
= (*cc
->doit
)(cc
->cx
, output
, &ofraglen
, max_output_len
,
920 if (rv
!= SECSuccess
)
924 * For now anyway, all of our ciphers have the same number of
925 * bytes of output as they do input. If this ever becomes untrue,
926 * then SecCmsCipherContextDecryptLength needs to be made smarter!
928 PORT_Assert(ofraglen
== pcount
);
931 * Account for the bytes now in output.
933 max_output_len
-= ofraglen
;
934 output_len
+= ofraglen
;
939 * If this is our last call, we expect to have an exact number of
940 * blocks left to be decrypted; we will decrypt them all.
942 * If not our last call, we always save between 1 and bsize bytes
943 * until next time. (We must do this because we cannot be sure
944 * that none of the decrypted bytes are padding bytes until we
945 * have at least another whole block of data. You cannot tell by
946 * looking -- the data could be anything -- you can only tell by
947 * context, knowing you are looking at the last block.) We could
948 * decrypt a whole block now but it is easier if we just treat it
949 * the same way we treat partial block bytes.
953 blocks
= input_len
/ padsize
;
954 ifraglen
= blocks
* padsize
;
955 } else ifraglen
= input_len
;
956 PORT_Assert (ifraglen
== input_len
);
958 if (ifraglen
!= input_len
) {
959 PORT_SetError(SEC_ERROR_BAD_DATA
);
963 blocks
= (input_len
- 1) / bsize
;
964 ifraglen
= blocks
* bsize
;
965 PORT_Assert (ifraglen
< input_len
);
967 pcount
= input_len
- ifraglen
;
968 PORT_Memcpy (pbuf
, input
+ ifraglen
, pcount
);
969 cc
->pending_count
= pcount
;
973 rv
= (* cc
->doit
)(cc
->cx
, output
, &ofraglen
, max_output_len
,
975 if (rv
!= SECSuccess
)
979 * For now anyway, all of our ciphers have the same number of
980 * bytes of output as they do input. If this ever becomes untrue,
981 * then sec_PKCS7DecryptLength needs to be made smarter!
983 PORT_Assert (ifraglen
== ofraglen
);
984 if (ifraglen
!= ofraglen
) {
985 PORT_SetError(SEC_ERROR_BAD_DATA
);
989 output_len
+= ofraglen
;
995 * If we just did our very last block, "remove" the padding by
996 * adjusting the output length.
998 if (final
&& (padsize
!= 0)) {
999 unsigned int padlen
= *(output
+ ofraglen
- 1);
1001 if (padlen
== 0 || padlen
> padsize
) {
1002 PORT_SetError(SEC_ERROR_BAD_DATA
);
1005 output_len
-= padlen
;
1008 PORT_Assert (output_len_p
!= NULL
|| output_len
== 0);
1009 if (output_len_p
!= NULL
)
1010 *output_len_p
= output_len
;
1017 * SecCmsCipherContextEncrypt - do the encryption
1019 * cc - the cipher context
1020 * output - buffer for decrypted result bytes
1021 * output_len_p - number of bytes in output
1022 * max_output_len - upper bound on bytes to put into output
1023 * input - pointer to input bytes
1024 * input_len - number of input bytes
1025 * final - true if this is the final chunk of data
1027 * Encrypts a given length of input buffer (starting at "input" and
1028 * containing "input_len" bytes), placing the encrypted bytes in
1029 * "output" and storing the output length in "*output_len_p".
1030 * "cc" is the return value from SecCmsCipherStartEncrypt.
1031 * When "final" is true, this is the last of the data to be encrypted.
1033 * This is much more complicated than it sounds when the cipher is
1034 * a block-type, meaning that the encryption function will only
1035 * operate on whole blocks. But our caller is operating stream-wise,
1036 * and can pass in any number of bytes. So we need to keep track
1037 * of block boundaries. We save excess bytes between calls in "cc".
1038 * We also need to add padding bytes at the end. PKCS #7 specifies
1039 * that the padding used for a block cipher is a string of bytes,
1040 * each of whose value is the same as the length of the padding,
1041 * and that all data is padded. (Even data that starts out with
1042 * an exact multiple of blocks gets added to it another block,
1043 * all of which is padding.)
1045 * XXX I would kind of like to combine this with the function above
1046 * which does decryption, since they have a lot in common. But the
1047 * tricky parts about padding and filling blocks would be much
1048 * harder to read that way, so I left them separate. At least for
1049 * now until it is clear that they are right.
1052 SecCmsCipherContextEncrypt(SecCmsCipherContextRef cc
, unsigned char *output
,
1053 size_t *output_len_p
, size_t max_output_len
,
1054 const unsigned char *input
, size_t input_len
,
1058 return SecCmsCipherContextCrypt(cc
, output
,
1059 output_len_p
, max_output_len
,
1063 int blocks
, bsize
, padlen
, pcount
, padsize
;
1064 unsigned int max_needed
, ifraglen
, ofraglen
, output_len
;
1065 unsigned char *pbuf
;
1068 PORT_Assert (cc
->encrypt
);
1071 * Check that we have enough room for the output. Our caller should
1072 * already handle this; failure is really an internal error (i.e. bug).
1074 max_needed
= SecCmsCipherContextEncryptLength (cc
, input_len
, final
);
1075 PORT_Assert (max_output_len
>= max_needed
);
1076 if (max_output_len
< max_needed
) {
1077 /* PORT_SetError (XXX); */
1081 bsize
= cc
->block_size
;
1082 padsize
= cc
->pad_size
;
1085 * When no blocking and padding work to do, we can simply call the
1086 * cipher function and we are done.
1089 return (*cc
->doit
)(cc
->cx
, output
, output_len_p
, max_output_len
,
1093 pcount
= cc
->pending_count
;
1094 pbuf
= cc
->pending_buf
;
1100 * Try to fill in an entire block, starting with the bytes
1101 * we already have saved away.
1103 while (input_len
&& pcount
< bsize
) {
1104 pbuf
[pcount
++] = *input
++;
1108 * If we do not have a full block and we know we will be
1109 * called again, then we are done for now.
1111 if (pcount
< bsize
&& !final
) {
1112 cc
->pending_count
= pcount
;
1113 if (output_len_p
!= NULL
)
1118 * If we have a whole block available, encrypt it.
1120 if ((padsize
== 0) || (pcount
% padsize
) == 0) {
1121 rv
= (* cc
->doit
) (cc
->cx
, output
, &ofraglen
, max_output_len
,
1123 if (rv
!= SECSuccess
)
1127 * For now anyway, all of our ciphers have the same number of
1128 * bytes of output as they do input. If this ever becomes untrue,
1129 * then sec_PKCS7EncryptLength needs to be made smarter!
1131 PORT_Assert (ofraglen
== pcount
);
1134 * Account for the bytes now in output.
1136 max_output_len
-= ofraglen
;
1137 output_len
+= ofraglen
;
1145 PORT_Assert (pcount
== 0);
1147 blocks
= input_len
/ bsize
;
1148 ifraglen
= blocks
* bsize
;
1151 rv
= (* cc
->doit
) (cc
->cx
, output
, &ofraglen
, max_output_len
,
1153 if (rv
!= SECSuccess
)
1157 * For now anyway, all of our ciphers have the same number of
1158 * bytes of output as they do input. If this ever becomes untrue,
1159 * then sec_PKCS7EncryptLength needs to be made smarter!
1161 PORT_Assert (ifraglen
== ofraglen
);
1163 max_output_len
-= ofraglen
;
1164 output_len
+= ofraglen
;
1168 pcount
= input_len
- ifraglen
;
1169 PORT_Assert (pcount
< bsize
);
1171 PORT_Memcpy (pbuf
, input
+ ifraglen
, pcount
);
1175 padlen
= padsize
- (pcount
% padsize
);
1176 PORT_Memset (pbuf
+ pcount
, padlen
, padlen
);
1177 rv
= (* cc
->doit
) (cc
->cx
, output
, &ofraglen
, max_output_len
,
1178 pbuf
, pcount
+padlen
);
1179 if (rv
!= SECSuccess
)
1183 * For now anyway, all of our ciphers have the same number of
1184 * bytes of output as they do input. If this ever becomes untrue,
1185 * then sec_PKCS7EncryptLength needs to be made smarter!
1187 PORT_Assert (ofraglen
== (pcount
+padlen
));
1188 output_len
+= ofraglen
;
1190 cc
->pending_count
= pcount
;
1193 PORT_Assert (output_len_p
!= NULL
|| output_len
== 0);
1194 if (output_len_p
!= NULL
)
1195 *output_len_p
= output_len
;