]>
git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_utilities/lib/alloc.h
2 * Copyright (c) 2000-2004,2011-2012,2014 Apple Inc. All Rights Reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
21 * @APPLE_LICENSE_HEADER_END@
26 // alloc - abstract malloc-like allocator abstraction
31 #include <security_utilities/utilities.h>
39 // An abstract allocator superclass, based on the simple malloc/realloc/free paradigm
40 // that CDSA loves so much. If you have an allocation strategy and want objects
41 // to be allocated through it, inherit from this.
46 virtual void *malloc(size_t)= 0;
47 virtual void free(void *) _NOEXCEPT
= 0;
48 virtual void *realloc(void *, size_t)= 0;
51 // Template versions for added expressiveness.
52 // Note that the integers are element counts, not byte sizes.
54 template <class T
> T
*alloc()
55 { return reinterpret_cast<T
*>(malloc(sizeof(T
))); }
57 template <class T
> T
*alloc(UInt32 count
)
60 if (__builtin_mul_overflow(sizeof(T
), count
, &bytes
)) {
61 throw std::bad_alloc();
63 return reinterpret_cast<T
*>(malloc(bytes
));
67 template <class T
> T
*alloc(T
*old
, UInt32 count
)
70 if (__builtin_mul_overflow(sizeof(T
), count
, &bytes
)) {
71 throw std::bad_alloc();
73 return reinterpret_cast<T
*>(realloc(old
, bytes
));
78 // Happier malloc/realloc for any type. Note that these still have
79 // the original (byte-sized) argument profile.
81 template <class T
> T
*malloc(size_t size
)
82 { return reinterpret_cast<T
*>(malloc(size
)); }
84 template <class T
> T
*realloc(void *addr
, size_t size
)
85 { return reinterpret_cast<T
*>(realloc(addr
, size
)); }
87 // All right, if you *really* have to have calloc...
88 void *calloc(size_t size
, size_t count
)
91 if(__builtin_mul_overflow(size
, count
, &bytes
)) {
92 // Multiplication overflowed.
93 throw std::bad_alloc();
95 void *addr
= malloc(bytes
);
96 memset(addr
, 0, bytes
);
100 // compare Allocators for identity
101 virtual bool operator == (const Allocator
&alloc
) const _NOEXCEPT
;
104 // allocator chooser options
110 static Allocator
&standard(UInt32 request
= normal
);
115 // You'd think that this is operator delete(const T *, Allocator &), but you'd
116 // be wrong. Specialized operator delete is only called during constructor cleanup.
117 // Use this to cleanly destroy things.
120 inline void destroy(T
*obj
, Allocator
&alloc
) _NOEXCEPT
126 // untyped (release memory only, no destructor call)
127 inline void destroy(void *obj
, Allocator
&alloc
) _NOEXCEPT
134 // A mixin class to automagically manage your allocator.
135 // To allow allocation (of your object) from any instance of Allocator,
136 // inherit from CssmHeap. Your users can then create heap instances of your thing by
137 // new (an-allocator) YourClass(...)
139 // new YourClass(...)
140 // for the default allocation source. The beauty is that when someone does a
141 // delete pointer-to-your-instance
142 // then the magic fairies will find the allocator that created the object and ask it
143 // to free the memory (by calling its free() method).
144 // The price of all that glory is memory overhead - typically one pointer per object.
148 void *operator new (size_t size
, Allocator
*alloc
= NULL
);
149 void operator delete (void *addr
, size_t size
) _NOEXCEPT
;
150 void operator delete (void *addr
, size_t size
, Allocator
*alloc
) _NOEXCEPT
;
155 // Here is a version of unique_ptr that works with Allocators. It is designed
156 // to be pretty much a drop-in replacement. It requires an allocator as a constructor
157 // argument, of course.
158 // Note that CssmAutoPtr<void> is perfectly valid, unlike its unique_ptr look-alike.
159 // You can't dereference it, naturally.
164 Allocator
&allocator
;
166 CssmAutoPtr(Allocator
&alloc
= Allocator::standard())
167 : allocator(alloc
), mine(NULL
) { }
168 CssmAutoPtr(Allocator
&alloc
, T
*p
)
169 : allocator(alloc
), mine(p
) { }
171 : allocator(Allocator::standard()), mine(p
) { }
172 template <class T1
> CssmAutoPtr(CssmAutoPtr
<T1
> &src
)
173 : allocator(src
.allocator
), mine(src
.release()) { }
174 template <class T1
> CssmAutoPtr(Allocator
&alloc
, CssmAutoPtr
<T1
> &src
)
175 : allocator(alloc
), mine(src
.release()) { assert(allocator
== src
.allocator
); }
177 ~CssmAutoPtr() { allocator
.free(mine
); }
179 T
*get() const _NOEXCEPT
{ return mine
; }
180 T
*release() { T
*result
= mine
; mine
= NULL
; return result
; }
181 void reset() { allocator
.free(mine
); mine
= NULL
; }
183 operator T
* () const { return mine
; }
184 T
*operator -> () const { return mine
; }
185 T
&operator * () const { assert(mine
); return *mine
; }
191 // specialization for void (i.e. void *), omitting the troublesome dereferencing ops.
193 class CssmAutoPtr
<void> {
195 Allocator
&allocator
;
197 CssmAutoPtr(Allocator
&alloc
) : allocator(alloc
), mine(NULL
) { }
198 CssmAutoPtr(Allocator
&alloc
, void *p
) : allocator(alloc
), mine(p
) { }
199 template <class T1
> CssmAutoPtr(CssmAutoPtr
<T1
> &src
)
200 : allocator(src
.allocator
), mine(src
.release()) { }
201 template <class T1
> CssmAutoPtr(Allocator
&alloc
, CssmAutoPtr
<T1
> &src
)
202 : allocator(alloc
), mine(src
.release()) { assert(allocator
== src
.allocator
); }
204 ~CssmAutoPtr() { destroy(mine
, allocator
); }
206 void *get() _NOEXCEPT
{ return mine
; }
207 void *release() { void *result
= mine
; mine
= NULL
; return result
; }
208 void reset() { allocator
.free(mine
); mine
= NULL
; }
216 // Convenience forms of CssmAutoPtr that automatically make their (initial) object.
219 class CssmNewAutoPtr
: public CssmAutoPtr
<T
> {
221 CssmNewAutoPtr(Allocator
&alloc
= Allocator::standard())
222 : CssmAutoPtr
<T
>(alloc
, new(alloc
) T
) { }
225 CssmNewAutoPtr(Allocator
&alloc
, A1
&arg1
) : CssmAutoPtr
<T
>(alloc
, new(alloc
) T(arg1
)) { }
227 CssmNewAutoPtr(Allocator
&alloc
, const A1
&arg1
)
228 : CssmAutoPtr
<T
>(alloc
, new(alloc
) T(arg1
)) { }
230 template <class A1
, class A2
>
231 CssmNewAutoPtr(Allocator
&alloc
, A1
&arg1
, A2
&arg2
)
232 : CssmAutoPtr
<T
>(alloc
, new(alloc
) T(arg1
, arg2
)) { }
233 template <class A1
, class A2
>
234 CssmNewAutoPtr(Allocator
&alloc
, const A1
&arg1
, A2
&arg2
)
235 : CssmAutoPtr
<T
>(alloc
, new(alloc
) T(arg1
, arg2
)) { }
236 template <class A1
, class A2
>
237 CssmNewAutoPtr(Allocator
&alloc
, A1
&arg1
, const A2
&arg2
)
238 : CssmAutoPtr
<T
>(alloc
, new(alloc
) T(arg1
, arg2
)) { }
239 template <class A1
, class A2
>
240 CssmNewAutoPtr(Allocator
&alloc
, const A1
&arg1
, const A2
&arg2
)
241 : CssmAutoPtr
<T
>(alloc
, new(alloc
) T(arg1
, arg2
)) { }
245 } // end namespace Security
249 // Global C++ allocation hooks to use Allocators (global namespace)
251 inline void *operator new (size_t size
, Allocator
&allocator
)
252 { return allocator
.malloc(size
); }
254 inline void *operator new[] (size_t size
, Allocator
&allocator
)
255 { return allocator
.malloc(size
); }