]> git.saurik.com Git - apple/security.git/blob - AppleCSP/open_ssl/bn/bn_prime.c
Security-28.tar.gz
[apple/security.git] / AppleCSP / open_ssl / bn / bn_prime.c
1 /*
2 * Copyright (c) 2000-2001 Apple Computer, Inc. All Rights Reserved.
3 *
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
8 * using this file.
9 *
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
16 */
17
18
19 /* crypto/bn/bn_prime.c */
20 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
21 * All rights reserved.
22 *
23 * This package is an SSL implementation written
24 * by Eric Young (eay@cryptsoft.com).
25 * The implementation was written so as to conform with Netscapes SSL.
26 *
27 * This library is free for commercial and non-commercial use as long as
28 * the following conditions are aheared to. The following conditions
29 * apply to all code found in this distribution, be it the RC4, RSA,
30 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
31 * included with this distribution is covered by the same copyright terms
32 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
33 *
34 * Copyright remains Eric Young's, and as such any Copyright notices in
35 * the code are not to be removed.
36 * If this package is used in a product, Eric Young should be given attribution
37 * as the author of the parts of the library used.
38 * This can be in the form of a textual message at program startup or
39 * in documentation (online or textual) provided with the package.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * "This product includes cryptographic software written by
52 * Eric Young (eay@cryptsoft.com)"
53 * The word 'cryptographic' can be left out if the rouines from the library
54 * being used are not cryptographic related :-).
55 * 4. If you include any Windows specific code (or a derivative thereof) from
56 * the apps directory (application code) you must include an acknowledgement:
57 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
58 *
59 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * The licence and distribution terms for any publically available version or
72 * derivative of this code cannot be changed. i.e. this code cannot simply be
73 * copied and put under another distribution licence
74 * [including the GNU Public Licence.]
75 */
76 /* ====================================================================
77 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
78 *
79 * Redistribution and use in source and binary forms, with or without
80 * modification, are permitted provided that the following conditions
81 * are met:
82 *
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 *
86 * 2. Redistributions in binary form must reproduce the above copyright
87 * notice, this list of conditions and the following disclaimer in
88 * the documentation and/or other materials provided with the
89 * distribution.
90 *
91 * 3. All advertising materials mentioning features or use of this
92 * software must display the following acknowledgment:
93 * "This product includes software developed by the OpenSSL Project
94 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
95 *
96 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
97 * endorse or promote products derived from this software without
98 * prior written permission. For written permission, please contact
99 * openssl-core@openssl.org.
100 *
101 * 5. Products derived from this software may not be called "OpenSSL"
102 * nor may "OpenSSL" appear in their names without prior written
103 * permission of the OpenSSL Project.
104 *
105 * 6. Redistributions of any form whatsoever must retain the following
106 * acknowledgment:
107 * "This product includes software developed by the OpenSSL Project
108 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
109 *
110 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
111 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
112 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
113 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
114 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
115 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
116 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
117 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
119 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
120 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
121 * OF THE POSSIBILITY OF SUCH DAMAGE.
122 * ====================================================================
123 *
124 * This product includes cryptographic software written by Eric Young
125 * (eay@cryptsoft.com). This product includes software written by Tim
126 * Hudson (tjh@cryptsoft.com).
127 *
128 */
129
130 #include <stdio.h>
131 #include <time.h>
132 #include "cryptlib.h"
133 #include "bn_lcl.h"
134 #include <openssl/rand.h>
135
136 /* The quick sieve algorithm approach to weeding out primes is
137 * Philip Zimmermann's, as implemented in PGP. I have had a read of
138 * his comments and implemented my own version.
139 */
140 #include "bn_prime.h"
141
142 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
143 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
144 static int probable_prime(BIGNUM *rnd, int bits);
145 static int probable_prime_dh(BIGNUM *rnd, int bits,
146 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
147 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
148 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
149
150 BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM *add,
151 BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg)
152 {
153 BIGNUM *rnd=NULL;
154 BIGNUM t;
155 int found=0;
156 int i,j,c1=0;
157 BN_CTX *ctx;
158 int checks = BN_prime_checks_for_size(bits);
159
160 ctx=BN_CTX_new();
161 if (ctx == NULL) goto err;
162 if (ret == NULL)
163 {
164 if ((rnd=BN_new()) == NULL) goto err;
165 }
166 else
167 rnd=ret;
168 BN_init(&t);
169 loop:
170 /* make a random number and set the top and bottom bits */
171 if (add == NULL)
172 {
173 if (!probable_prime(rnd,bits)) goto err;
174 }
175 else
176 {
177 if (safe)
178 {
179 if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx))
180 goto err;
181 }
182 else
183 {
184 if (!probable_prime_dh(rnd,bits,add,rem,ctx))
185 goto err;
186 }
187 }
188 /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
189 if (callback != NULL) callback(0,c1++,cb_arg);
190
191 if (!safe)
192 {
193 i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0);
194 if (i == -1) goto err;
195 if (i == 0) goto loop;
196 }
197 else
198 {
199 /* for "safe prime" generation,
200 * check that (p-1)/2 is prime.
201 * Since a prime is odd, We just
202 * need to divide by 2 */
203 if (!BN_rshift1(&t,rnd)) goto err;
204
205 for (i=0; i<checks; i++)
206 {
207 j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0);
208 if (j == -1) goto err;
209 if (j == 0) goto loop;
210
211 j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0);
212 if (j == -1) goto err;
213 if (j == 0) goto loop;
214
215 if (callback != NULL) callback(2,c1-1,cb_arg);
216 /* We have a safe prime test pass */
217 }
218 }
219 /* we have a prime :-) */
220 found = 1;
221 err:
222 if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
223 BN_free(&t);
224 if (ctx != NULL) BN_CTX_free(ctx);
225 return(found ? rnd : NULL);
226 }
227
228 int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
229 BN_CTX *ctx_passed, void *cb_arg)
230 {
231 return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
232 }
233
234 int BN_is_prime_fasttest(const BIGNUM *a, int checks,
235 void (*callback)(int,int,void *),
236 BN_CTX *ctx_passed, void *cb_arg,
237 int do_trial_division)
238 {
239 int i, j, ret = -1;
240 int k;
241 BN_CTX *ctx = NULL;
242 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
243 BN_MONT_CTX *mont = NULL;
244 const BIGNUM *A = NULL;
245
246 if (checks == BN_prime_checks)
247 checks = BN_prime_checks_for_size(BN_num_bits(a));
248
249 /* first look for small factors */
250 if (!BN_is_odd(a))
251 return(0);
252 if (do_trial_division)
253 {
254 for (i = 1; i < NUMPRIMES; i++)
255 if (BN_mod_word(a, primes[i]) == 0)
256 return 0;
257 if (callback != NULL) callback(1, -1, cb_arg);
258 }
259
260 if (ctx_passed != NULL)
261 ctx = ctx_passed;
262 else
263 if ((ctx=BN_CTX_new()) == NULL)
264 goto err;
265 BN_CTX_start(ctx);
266
267 /* A := abs(a) */
268 if (a->neg)
269 {
270 BIGNUM *t;
271 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
272 BN_copy(t, a);
273 t->neg = 0;
274 A = t;
275 }
276 else
277 A = a;
278 A1 = BN_CTX_get(ctx);
279 A1_odd = BN_CTX_get(ctx);
280 check = BN_CTX_get(ctx);
281 if (check == NULL) goto err;
282
283 /* compute A1 := A - 1 */
284 if (!BN_copy(A1, A))
285 goto err;
286 if (!BN_sub_word(A1, 1))
287 goto err;
288 if (BN_is_zero(A1))
289 {
290 ret = 0;
291 goto err;
292 }
293
294 /* write A1 as A1_odd * 2^k */
295 k = 1;
296 while (!BN_is_bit_set(A1, k))
297 k++;
298 if (!BN_rshift(A1_odd, A1, k))
299 goto err;
300
301 /* Montgomery setup for computations mod A */
302 mont = BN_MONT_CTX_new();
303 if (mont == NULL)
304 goto err;
305 if (!BN_MONT_CTX_set(mont, A, ctx))
306 goto err;
307
308 for (i = 0; i < checks; i++)
309 {
310 if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0))
311 goto err;
312 if (BN_cmp(check, A1) >= 0)
313 if (!BN_sub(check, check, A1))
314 goto err;
315 if (!BN_add_word(check, 1))
316 goto err;
317 /* now 1 <= check < A */
318
319 j = witness(check, A, A1, A1_odd, k, ctx, mont);
320 if (j == -1) goto err;
321 if (j)
322 {
323 ret=0;
324 goto err;
325 }
326 if (callback != NULL) callback(1,i,cb_arg);
327 }
328 ret=1;
329 err:
330 if (ctx != NULL)
331 {
332 BN_CTX_end(ctx);
333 if (ctx_passed == NULL)
334 BN_CTX_free(ctx);
335 }
336 if (mont != NULL)
337 BN_MONT_CTX_free(mont);
338
339 return(ret);
340 }
341
342 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
343 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
344 {
345 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
346 return -1;
347 if (BN_is_one(w))
348 return 0; /* probably prime */
349 if (BN_cmp(w, a1) == 0)
350 return 0; /* w == -1 (mod a), 'a' is probably prime */
351 while (--k)
352 {
353 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
354 return -1;
355 if (BN_is_one(w))
356 return 1; /* 'a' is composite, otherwise a previous 'w' would
357 * have been == -1 (mod 'a') */
358 if (BN_cmp(w, a1) == 0)
359 return 0; /* w == -1 (mod a), 'a' is probably prime */
360 }
361 /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
362 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
363 return 1;
364 }
365
366 static int probable_prime(BIGNUM *rnd, int bits)
367 {
368 int i;
369 BN_ULONG mods[NUMPRIMES];
370 BN_ULONG delta,d;
371
372 again:
373 if (!BN_rand(rnd,bits,1,1)) return(0);
374 /* we now have a random number 'rand' to test. */
375 for (i=1; i<NUMPRIMES; i++)
376 mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
377 delta=0;
378 loop: for (i=1; i<NUMPRIMES; i++)
379 {
380 /* check that rnd is not a prime and also
381 * that gcd(rnd-1,primes) == 1 (except for 2) */
382 if (((mods[i]+delta)%primes[i]) <= 1)
383 {
384 d=delta;
385 delta+=2;
386 /* perhaps need to check for overflow of
387 * delta (but delta can be up to 2^32)
388 * 21-May-98 eay - added overflow check */
389 if (delta < d) goto again;
390 goto loop;
391 }
392 }
393 if (!BN_add_word(rnd,delta)) return(0);
394 return(1);
395 }
396
397 static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem,
398 BN_CTX *ctx)
399 {
400 int i,ret=0;
401 BIGNUM *t1;
402
403 BN_CTX_start(ctx);
404 if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
405
406 if (!BN_rand(rnd,bits,0,1)) goto err;
407
408 /* we need ((rnd-rem) % add) == 0 */
409
410 if (!BN_mod(t1,rnd,add,ctx)) goto err;
411 if (!BN_sub(rnd,rnd,t1)) goto err;
412 if (rem == NULL)
413 { if (!BN_add_word(rnd,1)) goto err; }
414 else
415 { if (!BN_add(rnd,rnd,rem)) goto err; }
416
417 /* we now have a random number 'rand' to test. */
418
419 loop: for (i=1; i<NUMPRIMES; i++)
420 {
421 /* check that rnd is a prime */
422 if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
423 {
424 if (!BN_add(rnd,rnd,add)) goto err;
425 goto loop;
426 }
427 }
428 ret=1;
429 err:
430 BN_CTX_end(ctx);
431 return(ret);
432 }
433
434 static int probable_prime_dh_safe(BIGNUM *p, int bits, BIGNUM *padd,
435 BIGNUM *rem, BN_CTX *ctx)
436 {
437 int i,ret=0;
438 BIGNUM *t1,*qadd,*q;
439
440 bits--;
441 BN_CTX_start(ctx);
442 t1 = BN_CTX_get(ctx);
443 q = BN_CTX_get(ctx);
444 qadd = BN_CTX_get(ctx);
445 if (qadd == NULL) goto err;
446
447 if (!BN_rshift1(qadd,padd)) goto err;
448
449 if (!BN_rand(q,bits,0,1)) goto err;
450
451 /* we need ((rnd-rem) % add) == 0 */
452 if (!BN_mod(t1,q,qadd,ctx)) goto err;
453 if (!BN_sub(q,q,t1)) goto err;
454 if (rem == NULL)
455 { if (!BN_add_word(q,1)) goto err; }
456 else
457 {
458 if (!BN_rshift1(t1,rem)) goto err;
459 if (!BN_add(q,q,t1)) goto err;
460 }
461
462 /* we now have a random number 'rand' to test. */
463 if (!BN_lshift1(p,q)) goto err;
464 if (!BN_add_word(p,1)) goto err;
465
466 loop: for (i=1; i<NUMPRIMES; i++)
467 {
468 /* check that p and q are prime */
469 /* check that for p and q
470 * gcd(p-1,primes) == 1 (except for 2) */
471 if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
472 (BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
473 {
474 if (!BN_add(p,p,padd)) goto err;
475 if (!BN_add(q,q,qadd)) goto err;
476 goto loop;
477 }
478 }
479 ret=1;
480 err:
481 BN_CTX_end(ctx);
482 return(ret);
483 }