]> git.saurik.com Git - apple/security.git/blob - libsecurity_smime/lib/cmscipher.c
Security-59754.80.3.tar.gz
[apple/security.git] / libsecurity_smime / lib / cmscipher.c
1 /*
2 * The contents of this file are subject to the Mozilla Public
3 * License Version 1.1 (the "License"); you may not use this file
4 * except in compliance with the License. You may obtain a copy of
5 * the License at http://www.mozilla.org/MPL/
6 *
7 * Software distributed under the License is distributed on an "AS
8 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
9 * implied. See the License for the specific language governing
10 * rights and limitations under the License.
11 *
12 * The Original Code is the Netscape security libraries.
13 *
14 * The Initial Developer of the Original Code is Netscape
15 * Communications Corporation. Portions created by Netscape are
16 * Copyright (C) 1994-2000 Netscape Communications Corporation. All
17 * Rights Reserved.
18 *
19 * Contributor(s):
20 *
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU General Public License Version 2 or later (the
23 * "GPL"), in which case the provisions of the GPL are applicable
24 * instead of those above. If you wish to allow use of your
25 * version of this file only under the terms of the GPL and not to
26 * allow others to use your version of this file under the MPL,
27 * indicate your decision by deleting the provisions above and
28 * replace them with the notice and other provisions required by
29 * the GPL. If you do not delete the provisions above, a recipient
30 * may use your version of this file under either the MPL or the
31 * GPL.
32 */
33
34 /*
35 * Encryption/decryption routines for CMS implementation, none of which are exported.
36 *
37 */
38 #include <limits.h>
39
40 #include "cmslocal.h"
41
42 #include "secoid.h"
43 #include <security_asn1/secerr.h>
44 #include <security_asn1/secasn1.h>
45 #include <security_asn1/secport.h>
46
47 #include <Security/SecAsn1Templates.h>
48 #if USE_CDSA_CRYPTO
49 #include <Security/cssmapi.h>
50 #include <Security/cssmapple.h>
51 #include <Security/SecKeyPriv.h>
52 #else
53 #include <Security/SecRandom.h>
54 #include <CommonCrypto/CommonCryptor.h>
55 #endif
56
57 /*
58 * -------------------------------------------------------------------
59 * Cipher stuff.
60 */
61
62 #if 0
63 typedef OSStatus (*nss_cms_cipher_function) (void *, unsigned char *, unsigned int *,
64 unsigned int, const unsigned char *, unsigned int);
65 typedef OSStatus (*nss_cms_cipher_destroy) (void *, Boolean);
66 #endif
67
68 #define BLOCK_SIZE 4096
69
70 struct SecCmsCipherContextStr {
71 #if 1
72 void * cc; /* CSP CONTEXT */
73 Boolean encrypt; /* encrypt / decrypt switch */
74 int block_size; /* block & pad sizes for cipher */
75 #else
76 void * cx; /* PK11 cipher context */
77 nss_cms_cipher_function doit;
78 nss_cms_cipher_destroy destroy;
79 Boolean encrypt; /* encrypt / decrypt switch */
80 int pad_size;
81 int pending_count; /* pending data (not yet en/decrypted */
82 unsigned char pending_buf[BLOCK_SIZE];/* because of blocking */
83 #endif
84 };
85
86 typedef struct sec_rc2cbcParameterStr {
87 SecAsn1Item rc2ParameterVersion;
88 SecAsn1Item iv;
89 } sec_rc2cbcParameter;
90
91 __unused static const SecAsn1Template sec_rc2cbc_parameter_template[] = {
92 { SEC_ASN1_SEQUENCE,
93 0, NULL, sizeof(sec_rc2cbcParameter) },
94 { SEC_ASN1_INTEGER | SEC_ASN1_SIGNED_INT,
95 offsetof(sec_rc2cbcParameter,rc2ParameterVersion) },
96 { SEC_ASN1_OCTET_STRING,
97 offsetof(sec_rc2cbcParameter,iv) },
98 { 0 }
99 };
100
101 // TODO: get rid of this?
102 #if USE_CDSA_CRYPTO
103 /*
104 ** Convert a der encoded *signed* integer into a machine integral value.
105 ** If an underflow/overflow occurs, sets error code and returns min/max.
106 */
107 static long
108 DER_GetInteger(SecAsn1Item *it)
109 {
110 long ival = 0;
111 unsigned len = it->Length;
112 unsigned char *cp = it->Data;
113 unsigned long overflow = 0x1ffUL << (((sizeof(ival) - 1) * 8) - 1);
114 unsigned long ofloinit;
115
116 if (*cp & 0x80)
117 ival = -1L;
118 ofloinit = ival & overflow;
119
120 while (len) {
121 if ((ival & overflow) != ofloinit) {
122 PORT_SetError(SEC_ERROR_BAD_DER);
123 if (ival < 0) {
124 return LONG_MIN;
125 }
126 return LONG_MAX;
127 }
128 ival = ival << 8;
129 ival |= *cp++;
130 --len;
131 }
132 return ival;
133 }
134
135 /* S/MIME picked id values to represent differnt keysizes */
136 /* I do have a formula, but it ain't pretty, and it only works because you
137 * can always match three points to a parabola:) */
138 static unsigned char rc2_map(SecAsn1Item *version)
139 {
140 long x;
141
142 x = DER_GetInteger(version);
143
144 switch (x) {
145 case 58: return 128;
146 case 120: return 64;
147 case 160: return 40;
148 }
149 return 128;
150 }
151
152 static unsigned long rc2_unmap(unsigned long x)
153 {
154 switch (x) {
155 case 128: return 58;
156 case 64: return 120;
157 case 40: return 160;
158 }
159 return 58;
160 }
161 #endif /* USE_CDSA_CRYPTO */
162
163 /* default IV size in bytes */
164 #define DEFAULT_IV_SIZE 8
165 /* IV/block size for AES */
166 #define AES_BLOCK_SIZE 16
167 /* max IV size in bytes */
168 #define MAX_IV_SIZE AES_BLOCK_SIZE
169
170 #if !USE_CDSA_CRYPTO
171 #ifndef kCCKeySizeMaxRC2
172 #define kCCKeySizeMaxRC2 16
173 #endif
174 #ifndef kCCBlockSizeRC2
175 #define kCCBlockSizeRC2 8
176 #endif
177 #endif
178
179 static SecCmsCipherContextRef
180 SecCmsCipherContextStart(PRArenaPool *poolp, SecSymmetricKeyRef key, SECAlgorithmID *algid, Boolean encrypt)
181 {
182 SecCmsCipherContextRef cc;
183 SECOidData *oidData;
184 SECOidTag algtag;
185 OSStatus rv;
186 uint8_t ivbuf[MAX_IV_SIZE];
187 SecAsn1Item initVector = { DEFAULT_IV_SIZE, ivbuf };
188 #if USE_CDSA_CRYPTO
189 CSSM_CC_HANDLE ciphercc = 0;
190 CSSM_ALGORITHMS algorithm;
191 CSSM_PADDING padding = CSSM_PADDING_PKCS7;
192 CSSM_ENCRYPT_MODE mode;
193 CSSM_CSP_HANDLE cspHandle;
194 const CSSM_KEY *cssmKey;
195 //CSSM_CONTEXT_ATTRIBUTE contextAttribute = { CSSM_ATTRIBUTE_ALG_PARAMS, sizeof(SecAsn1Item *) };
196 #else
197 CCCryptorRef ciphercc = NULL;
198 CCOptions cipheroptions = kCCOptionPKCS7Padding;
199 int cipher_blocksize = 0;
200 #endif
201
202 #if USE_CDSA_CRYPTO
203 rv = SecKeyGetCSPHandle(key, &cspHandle);
204 if (rv)
205 goto loser;
206 rv = SecKeyGetCSSMKey(key, &cssmKey);
207 if (rv)
208 goto loser;
209 #endif
210
211 // @@@ Add support for PBE based stuff
212
213 oidData = SECOID_FindOID(&algid->algorithm);
214 if (!oidData)
215 goto loser;
216 algtag = oidData->offset;
217 #if USE_CDSA_CRYPTO
218 algorithm = oidData->cssmAlgorithm;
219 if (!algorithm)
220 goto loser;
221
222 switch (algtag)
223 {
224 case SEC_OID_RC2_CBC:
225 case SEC_OID_RC4:
226 case SEC_OID_DES_EDE3_CBC:
227 case SEC_OID_DES_EDE:
228 case SEC_OID_DES_CBC:
229 case SEC_OID_RC5_CBC_PAD:
230 case SEC_OID_FORTEZZA_SKIPJACK:
231 mode = CSSM_ALGMODE_CBCPadIV8;
232 break;
233
234 /* RFC 3565 says that these sizes refer to key size, NOT block size */
235 case SEC_OID_AES_128_CBC:
236 case SEC_OID_AES_192_CBC:
237 case SEC_OID_AES_256_CBC:
238 initVector.Length = AES_BLOCK_SIZE;
239 mode = CSSM_ALGMODE_CBCPadIV8;
240 break;
241
242 case SEC_OID_DES_ECB:
243 case SEC_OID_AES_128_ECB:
244 case SEC_OID_AES_192_ECB:
245 case SEC_OID_AES_256_ECB:
246 mode = CSSM_ALGMODE_ECBPad;
247 break;
248
249 case SEC_OID_DES_OFB:
250 mode = CSSM_ALGMODE_OFBPadIV8;
251 break;
252
253 case SEC_OID_DES_CFB:
254 mode = CSSM_ALGMODE_CFBPadIV8;
255 break;
256
257 default:
258 goto loser;
259 }
260 #else
261 CCAlgorithm alg = -1;
262 switch (algtag) {
263 case SEC_OID_DES_CBC:
264 alg = kCCAlgorithmDES;
265 cipher_blocksize = kCCBlockSizeDES;
266 break;
267 case SEC_OID_DES_EDE3_CBC:
268 alg = kCCAlgorithm3DES;
269 cipher_blocksize = kCCBlockSize3DES;
270 break;
271 case SEC_OID_RC2_CBC:
272 alg = kCCAlgorithmRC2;
273 cipher_blocksize = kCCBlockSizeRC2;
274 break;
275 case SEC_OID_AES_128_CBC:
276 case SEC_OID_AES_192_CBC:
277 case SEC_OID_AES_256_CBC:
278 alg = kCCAlgorithmAES128;
279 cipher_blocksize = kCCBlockSizeAES128;
280 initVector.Length = AES_BLOCK_SIZE;
281 break;
282 default:
283 goto loser;
284 }
285 #endif
286
287 if (encrypt)
288 {
289 #if USE_CDSA_CRYPTO
290 CSSM_CC_HANDLE randomcc;
291 //SecAsn1Item *parameters;
292
293 // Generate random initVector
294 if (CSSM_CSP_CreateRandomGenContext(cspHandle,
295 CSSM_ALGID_APPLE_YARROW,
296 NULL, /* seed*/
297 initVector.Length,
298 &randomcc))
299 goto loser;
300
301 if (CSSM_GenerateRandom(randomcc, &initVector))
302 goto loser;
303 CSSM_DeleteContext(randomcc);
304 #else
305 if (SecRandomCopyBytes(kSecRandomDefault,
306 initVector.Length, initVector.Data))
307 goto loser;
308 #endif
309
310 // Put IV into algid.parameters
311 switch (algtag)
312 {
313 case SEC_OID_RC4:
314 case SEC_OID_DES_EDE3_CBC:
315 case SEC_OID_DES_EDE:
316 case SEC_OID_DES_CBC:
317 case SEC_OID_AES_128_CBC:
318 case SEC_OID_AES_192_CBC:
319 case SEC_OID_AES_256_CBC:
320 case SEC_OID_FORTEZZA_SKIPJACK:
321 case SEC_OID_DES_ECB:
322 case SEC_OID_AES_128_ECB:
323 case SEC_OID_AES_192_ECB:
324 case SEC_OID_AES_256_ECB:
325 case SEC_OID_DES_OFB:
326 case SEC_OID_DES_CFB:
327 /* Just encode the initVector as an octet string. */
328 if (!SEC_ASN1EncodeItem(poolp, &algid->parameters,
329 &initVector, kSecAsn1OctetStringTemplate))
330 goto loser;
331 break;
332 case SEC_OID_RC2_CBC:
333 #if USE_CDSA_CRYPTO
334 {
335 sec_rc2cbcParameter rc2 = {};
336 unsigned long rc2version;
337 SecAsn1Item *newParams;
338
339 rc2.iv = initVector;
340 rc2version = rc2_unmap(cssmKey->KeyHeader.LogicalKeySizeInBits);
341 if (!SEC_ASN1EncodeUnsignedInteger (NULL, &(rc2.rc2ParameterVersion),
342 rc2version))
343 goto loser;
344 newParams = SEC_ASN1EncodeItem (poolp, &algid->parameters, &rc2,
345 sec_rc2cbc_parameter_template);
346 PORT_Free(rc2.rc2ParameterVersion.Data);
347 if (newParams == NULL)
348 goto loser;
349 break;
350 }
351 #endif
352 case SEC_OID_RC5_CBC_PAD:
353 default:
354 // @@@ Implement rc5 params stuff.
355 goto loser;
356 }
357 }
358 else
359 {
360 // Extract IV from algid.parameters
361 // Put IV into algid.parameters
362 switch (algtag)
363 {
364 case SEC_OID_RC4:
365 case SEC_OID_DES_EDE3_CBC:
366 case SEC_OID_DES_EDE:
367 case SEC_OID_DES_CBC:
368 case SEC_OID_AES_128_CBC:
369 case SEC_OID_AES_192_CBC:
370 case SEC_OID_AES_256_CBC:
371 case SEC_OID_FORTEZZA_SKIPJACK:
372 case SEC_OID_DES_ECB:
373 case SEC_OID_AES_128_ECB:
374 case SEC_OID_AES_192_ECB:
375 case SEC_OID_AES_256_ECB:
376 case SEC_OID_DES_OFB:
377 case SEC_OID_DES_CFB:
378 {
379 SecAsn1Item iv = {};
380 /* Just decode the initVector from an octet string. */
381 rv = SEC_ASN1DecodeItem(NULL, &iv, kSecAsn1OctetStringTemplate, &(algid->parameters));
382 if (rv)
383 goto loser;
384 if (initVector.Length != iv.Length) {
385 PORT_Free(iv.Data);
386 goto loser;
387 }
388 memcpy(initVector.Data, iv.Data, initVector.Length);
389 PORT_Free(iv.Data);
390 break;
391 }
392 case SEC_OID_RC2_CBC:
393 #if USE_CDSA_CRYPTO
394 {
395 sec_rc2cbcParameter rc2 = {};
396 unsigned long ulEffectiveBits;
397
398 rv = SEC_ASN1DecodeItem(NULL, &rc2 ,sec_rc2cbc_parameter_template,
399 &(algid->parameters));
400 if (rv)
401 goto loser;
402
403 if (initVector.Length != rc2.iv.Length) {
404 PORT_Free(rc2.iv.Data);
405 PORT_Free(rc2.rc2ParameterVersion.Data);
406 goto loser;
407 }
408 memcpy(initVector.Data, rc2.iv.Data, initVector.Length);
409 PORT_Free(rc2.iv.Data);
410
411 ulEffectiveBits = rc2_map(&rc2.rc2ParameterVersion);
412 PORT_Free(rc2.rc2ParameterVersion.Data);
413 if (ulEffectiveBits != cssmKey->KeyHeader.LogicalKeySizeInBits)
414 goto loser;
415 break;
416 }
417 #endif
418 case SEC_OID_RC5_CBC_PAD:
419 default:
420 // @@@ Implement rc5 params stuff.
421 goto loser;
422 }
423 }
424
425 #if USE_CDSA_CRYPTO
426 if (CSSM_CSP_CreateSymmetricContext(cspHandle,
427 algorithm,
428 mode,
429 NULL, /* accessCred */
430 cssmKey,
431 &initVector,
432 padding,
433 NULL, /* reserved */
434 &ciphercc))
435 goto loser;
436
437 if (encrypt)
438 rv = CSSM_EncryptDataInit(ciphercc);
439 else
440 rv = CSSM_DecryptDataInit(ciphercc);
441 if (rv)
442 goto loser;
443 #else
444 if (CCCryptorCreate(encrypt ? kCCEncrypt : kCCDecrypt,
445 alg, cipheroptions, CFDataGetBytePtr(key), CFDataGetLength(key),
446 initVector.Data, &ciphercc))
447 goto loser;
448 #endif
449
450 cc = (SecCmsCipherContextRef)PORT_ZAlloc(sizeof(SecCmsCipherContext));
451 if (cc == NULL)
452 goto loser;
453
454 cc->cc = ciphercc;
455 cc->encrypt = encrypt;
456 #if !USE_CDSA_CRYPTO
457 cc->block_size =cipher_blocksize;
458 #endif
459 return cc;
460 loser:
461 if (ciphercc)
462 #if USE_CDSA_CRYPTO
463 CSSM_DeleteContext(ciphercc);
464 #else
465 CCCryptorRelease(ciphercc);
466 #endif
467
468 return NULL;
469 }
470
471 /*
472 * SecCmsCipherContextStartDecrypt - create a cipher context to do decryption
473 * based on the given bulk * encryption key and algorithm identifier (which may include an iv).
474 *
475 * XXX Once both are working, it might be nice to combine this and the
476 * function below (for starting up encryption) into one routine, and just
477 * have two simple cover functions which call it.
478 */
479 SecCmsCipherContextRef
480 SecCmsCipherContextStartDecrypt(SecSymmetricKeyRef key, SECAlgorithmID *algid)
481 {
482 return SecCmsCipherContextStart(NULL, key, algid, PR_FALSE);
483 #if 0
484 SecCmsCipherContextRef cc;
485 void *ciphercx;
486 CK_MECHANISM_TYPE mechanism;
487 SecAsn1Item * param;
488 PK11SlotInfo *slot;
489 SECOidTag algtag;
490
491 algtag = SECOID_GetAlgorithmTag(algid);
492
493 /* set param and mechanism */
494 if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
495 CK_MECHANISM pbeMech, cryptoMech;
496 SecAsn1Item * pbeParams;
497 SEC_PKCS5KeyAndPassword *keyPwd;
498
499 PORT_Memset(&pbeMech, 0, sizeof(CK_MECHANISM));
500 PORT_Memset(&cryptoMech, 0, sizeof(CK_MECHANISM));
501
502 /* HACK ALERT!
503 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
504 */
505 keyPwd = (SEC_PKCS5KeyAndPassword *)key;
506 key = keyPwd->key;
507
508 /* find correct PK11 mechanism and parameters to initialize pbeMech */
509 pbeMech.mechanism = PK11_AlgtagToMechanism(algtag);
510 pbeParams = PK11_ParamFromAlgid(algid);
511 if (!pbeParams)
512 return NULL;
513 pbeMech.pParameter = pbeParams->Data;
514 pbeMech.ulParameterLen = pbeParams->Length;
515
516 /* now map pbeMech to cryptoMech */
517 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech, &cryptoMech, keyPwd->pwitem,
518 PR_FALSE) != CKR_OK) {
519 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
520 return NULL;
521 }
522 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
523
524 /* and use it to initialize param & mechanism */
525 if ((param = (SecAsn1Item *)PORT_ZAlloc(sizeof(SecAsn1Item))) == NULL)
526 return NULL;
527
528 param->Data = (unsigned char *)cryptoMech.pParameter;
529 param->Length = cryptoMech.ulParameterLen;
530 mechanism = cryptoMech.mechanism;
531 } else {
532 mechanism = PK11_AlgtagToMechanism(algtag);
533 if ((param = PK11_ParamFromAlgid(algid)) == NULL)
534 return NULL;
535 }
536
537 cc = (SecCmsCipherContextRef)PORT_ZAlloc(sizeof(SecCmsCipherContext));
538 if (cc == NULL) {
539 SECITEM_FreeItem(param,PR_TRUE);
540 return NULL;
541 }
542
543 /* figure out pad and block sizes */
544 cc->pad_size = PK11_GetBlockSize(mechanism, param);
545 slot = PK11_GetSlotFromKey(key);
546 cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
547 PK11_FreeSlot(slot);
548
549 /* create PK11 cipher context */
550 ciphercx = PK11_CreateContextBySymKey(mechanism, CKA_DECRYPT, key, param);
551 SECITEM_FreeItem(param, PR_TRUE);
552 if (ciphercx == NULL) {
553 PORT_Free (cc);
554 return NULL;
555 }
556
557 cc->cx = ciphercx;
558 cc->doit = (nss_cms_cipher_function) PK11_CipherOp;
559 cc->destroy = (nss_cms_cipher_destroy) PK11_DestroyContext;
560 cc->encrypt = PR_FALSE;
561 cc->pending_count = 0;
562
563 return cc;
564 #endif
565 }
566
567 /*
568 * SecCmsCipherContextStartEncrypt - create a cipher object to do encryption,
569 * based on the given bulk encryption key and algorithm tag. Fill in the algorithm
570 * identifier (which may include an iv) appropriately.
571 *
572 * XXX Once both are working, it might be nice to combine this and the
573 * function above (for starting up decryption) into one routine, and just
574 * have two simple cover functions which call it.
575 */
576 SecCmsCipherContextRef
577 SecCmsCipherContextStartEncrypt(PRArenaPool *poolp, SecSymmetricKeyRef key, SECAlgorithmID *algid)
578 {
579 return SecCmsCipherContextStart(poolp, key, algid, PR_TRUE);
580 #if 0
581 SecCmsCipherContextRef cc;
582 void *ciphercx;
583 SecAsn1Item * param;
584 OSStatus rv;
585 CK_MECHANISM_TYPE mechanism;
586 PK11SlotInfo *slot;
587 Boolean needToEncodeAlgid = PR_FALSE;
588 SECOidTag algtag = SECOID_GetAlgorithmTag(algid);
589
590 /* set param and mechanism */
591 if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
592 CK_MECHANISM pbeMech, cryptoMech;
593 SecAsn1Item * pbeParams;
594 SEC_PKCS5KeyAndPassword *keyPwd;
595
596 PORT_Memset(&pbeMech, 0, sizeof(CK_MECHANISM));
597 PORT_Memset(&cryptoMech, 0, sizeof(CK_MECHANISM));
598
599 /* HACK ALERT!
600 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
601 */
602 keyPwd = (SEC_PKCS5KeyAndPassword *)key;
603 key = keyPwd->key;
604
605 /* find correct PK11 mechanism and parameters to initialize pbeMech */
606 pbeMech.mechanism = PK11_AlgtagToMechanism(algtag);
607 pbeParams = PK11_ParamFromAlgid(algid);
608 if (!pbeParams)
609 return NULL;
610 pbeMech.pParameter = pbeParams->Data;
611 pbeMech.ulParameterLen = pbeParams->Length;
612
613 /* now map pbeMech to cryptoMech */
614 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech, &cryptoMech, keyPwd->pwitem,
615 PR_FALSE) != CKR_OK) {
616 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
617 return NULL;
618 }
619 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
620
621 /* and use it to initialize param & mechanism */
622 if ((param = (SecAsn1Item *)PORT_ZAlloc(sizeof(SecAsn1Item))) == NULL)
623 return NULL;
624
625 param->Data = (unsigned char *)cryptoMech.pParameter;
626 param->Length = cryptoMech.ulParameterLen;
627 mechanism = cryptoMech.mechanism;
628 } else {
629 mechanism = PK11_AlgtagToMechanism(algtag);
630 if ((param = PK11_GenerateNewParam(mechanism, key)) == NULL)
631 return NULL;
632 needToEncodeAlgid = PR_TRUE;
633 }
634
635 cc = (SecCmsCipherContextRef)PORT_ZAlloc(sizeof(SecCmsCipherContext));
636 if (cc == NULL)
637 return NULL;
638
639 /* now find pad and block sizes for our mechanism */
640 cc->pad_size = PK11_GetBlockSize(mechanism,param);
641 slot = PK11_GetSlotFromKey(key);
642 cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
643 PK11_FreeSlot(slot);
644
645 /* and here we go, creating a PK11 cipher context */
646 ciphercx = PK11_CreateContextBySymKey(mechanism, CKA_ENCRYPT, key, param);
647 if (ciphercx == NULL) {
648 PORT_Free(cc);
649 cc = NULL;
650 goto loser;
651 }
652
653 /*
654 * These are placed after the CreateContextBySymKey() because some
655 * mechanisms have to generate their IVs from their card (i.e. FORTEZZA).
656 * Don't move it from here.
657 * XXX is that right? the purpose of this is to get the correct algid
658 * containing the IVs etc. for encoding. this means we need to set this up
659 * BEFORE encoding the algid in the contentInfo, right?
660 */
661 if (needToEncodeAlgid) {
662 rv = PK11_ParamToAlgid(algtag, param, poolp, algid);
663 if(rv != SECSuccess) {
664 PORT_Free(cc);
665 cc = NULL;
666 goto loser;
667 }
668 }
669
670 cc->cx = ciphercx;
671 cc->doit = (nss_cms_cipher_function)PK11_CipherOp;
672 cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext;
673 cc->encrypt = PR_TRUE;
674 cc->pending_count = 0;
675
676 loser:
677 SECITEM_FreeItem(param, PR_TRUE);
678
679 return cc;
680 #endif
681 }
682
683 void
684 SecCmsCipherContextDestroy(SecCmsCipherContextRef cc)
685 {
686 PORT_Assert(cc != NULL);
687 if (cc == NULL)
688 return;
689 #if USE_CDSA_CRYPTO
690 CSSM_DeleteContext(cc->cc);
691 #else
692 CCCryptorRelease(cc->cc);
693 #endif
694 PORT_Free(cc);
695 }
696
697 static unsigned int
698 SecCmsCipherContextLength(SecCmsCipherContextRef cc, unsigned int input_len, Boolean final, Boolean encrypt)
699 {
700 #if USE_CDSA_CRYPTO
701 CSSM_QUERY_SIZE_DATA dataBlockSize[2] = { { input_len, 0 }, { input_len, 0 } };
702 /* Hack CDSA treats the last block as the final one. So unless we are being asked to report the final size we ask for 2 block and ignore the second (final) one. */
703 OSStatus rv = CSSM_QuerySize(cc->cc, cc->encrypt, final ? 1 : 2, dataBlockSize);
704 if (rv)
705 {
706 PORT_SetError(rv);
707 return 0;
708 }
709
710 return dataBlockSize[0].SizeOutputBlock;
711 #else
712 return ((input_len + cc->block_size - 1) / cc->block_size * cc->block_size) + (final ? cc->block_size : 0);
713 #endif
714 }
715
716 /*
717 * SecCmsCipherContextDecryptLength - find the output length of the next call to decrypt.
718 *
719 * cc - the cipher context
720 * input_len - number of bytes used as input
721 * final - true if this is the final chunk of data
722 *
723 * Result can be used to perform memory allocations. Note that the amount
724 * is exactly accurate only when not doing a block cipher or when final
725 * is false, otherwise it is an upper bound on the amount because until
726 * we see the data we do not know how many padding bytes there are
727 * (always between 1 and bsize).
728 *
729 * Note that this can return zero, which does not mean that the decrypt
730 * operation can be skipped! (It simply means that there are not enough
731 * bytes to make up an entire block; the bytes will be reserved until
732 * there are enough to encrypt/decrypt at least one block.) However,
733 * if zero is returned it *does* mean that no output buffer need be
734 * passed in to the subsequent decrypt operation, as no output bytes
735 * will be stored.
736 */
737 unsigned int
738 SecCmsCipherContextDecryptLength(SecCmsCipherContextRef cc, unsigned int input_len, Boolean final)
739 {
740 #if 1
741 return SecCmsCipherContextLength(cc, input_len, final, PR_FALSE);
742 #else
743 int blocks, block_size;
744
745 PORT_Assert (! cc->encrypt);
746
747 block_size = cc->block_size;
748
749 /*
750 * If this is not a block cipher, then we always have the same
751 * number of output bytes as we had input bytes.
752 */
753 if (block_size == 0)
754 return input_len;
755
756 /*
757 * On the final call, we will always use up all of the pending
758 * bytes plus all of the input bytes, *but*, there will be padding
759 * at the end and we cannot predict how many bytes of padding we
760 * will end up removing. The amount given here is actually known
761 * to be at least 1 byte too long (because we know we will have
762 * at least 1 byte of padding), but seemed clearer/better to me.
763 */
764 if (final)
765 return cc->pending_count + input_len;
766
767 /*
768 * Okay, this amount is exactly what we will output on the
769 * next cipher operation. We will always hang onto the last
770 * 1 - block_size bytes for non-final operations. That is,
771 * we will do as many complete blocks as we can *except* the
772 * last block (complete or partial). (This is because until
773 * we know we are at the end, we cannot know when to interpret
774 * and removing the padding byte(s), which are guaranteed to
775 * be there.)
776 */
777 blocks = (cc->pending_count + input_len - 1) / block_size;
778 return blocks * block_size;
779 #endif
780 }
781
782 /*
783 * SecCmsCipherContextEncryptLength - find the output length of the next call to encrypt.
784 *
785 * cc - the cipher context
786 * input_len - number of bytes used as input
787 * final - true if this is the final chunk of data
788 *
789 * Result can be used to perform memory allocations.
790 *
791 * Note that this can return zero, which does not mean that the encrypt
792 * operation can be skipped! (It simply means that there are not enough
793 * bytes to make up an entire block; the bytes will be reserved until
794 * there are enough to encrypt/decrypt at least one block.) However,
795 * if zero is returned it *does* mean that no output buffer need be
796 * passed in to the subsequent encrypt operation, as no output bytes
797 * will be stored.
798 */
799 unsigned int
800 SecCmsCipherContextEncryptLength(SecCmsCipherContextRef cc, unsigned int input_len, Boolean final)
801 {
802 #if 1
803 return SecCmsCipherContextLength(cc, input_len, final, PR_TRUE);
804 #else
805 int blocks, block_size;
806 int pad_size;
807
808 PORT_Assert (cc->encrypt);
809
810 block_size = cc->block_size;
811 pad_size = cc->pad_size;
812
813 /*
814 * If this is not a block cipher, then we always have the same
815 * number of output bytes as we had input bytes.
816 */
817 if (block_size == 0)
818 return input_len;
819
820 /*
821 * On the final call, we only send out what we need for
822 * remaining bytes plus the padding. (There is always padding,
823 * so even if we have an exact number of blocks as input, we
824 * will add another full block that is just padding.)
825 */
826 if (final) {
827 if (pad_size == 0) {
828 return cc->pending_count + input_len;
829 } else {
830 blocks = (cc->pending_count + input_len) / pad_size;
831 blocks++;
832 return blocks*pad_size;
833 }
834 }
835
836 /*
837 * Now, count the number of complete blocks of data we have.
838 */
839 blocks = (cc->pending_count + input_len) / block_size;
840
841
842 return blocks * block_size;
843 #endif
844 }
845
846
847 static OSStatus
848 SecCmsCipherContextCrypt(SecCmsCipherContextRef cc, unsigned char *output,
849 unsigned int *output_len_p, unsigned int max_output_len,
850 const unsigned char *input, unsigned int input_len,
851 Boolean final, Boolean encrypt)
852 {
853 size_t bytes_output = 0;
854 OSStatus rv = 0;
855
856 if (input_len)
857 {
858
859 #if USE_CDSA_CRYPTO
860 SecAsn1Item inputBuf = { input_len, (uint8_t *)input };
861 SecAsn1Item outputBuf = { max_output_len, output };
862 if (encrypt)
863 rv = CSSM_EncryptDataUpdate(cc->cc, &inputBuf, 1, &outputBuf, 1, &bytes_output);
864 else
865 rv = CSSM_DecryptDataUpdate(cc->cc, &inputBuf, 1, &outputBuf, 1, &bytes_output);
866 #else
867 rv = CCCryptorUpdate(cc->cc, input, input_len, output, max_output_len, &bytes_output);
868 #endif
869 }
870
871 if (!rv && final)
872 {
873 #if USE_CDSA_CRYPTO
874 SecAsn1Item remainderBuf = { max_output_len - bytes_output, output + bytes_output };
875 if (encrypt)
876 rv = CSSM_EncryptDataFinal(cc->cc, &remainderBuf);
877 else
878 rv = CSSM_DecryptDataFinal(cc->cc, &remainderBuf);
879 bytes_output += remainderBuf.Length;
880 #else
881 size_t bytes_output_final = 0;
882 rv = CCCryptorFinal(cc->cc, output+bytes_output, max_output_len-bytes_output, &bytes_output_final);
883 bytes_output += bytes_output_final;
884 #endif
885 }
886 if (rv)
887 PORT_SetError(SEC_ERROR_BAD_DATA);
888 else if (output_len_p)
889 *output_len_p = (unsigned int)bytes_output; /* This cast is safe since bytes_output can't be bigger than max_output_len */
890
891 return rv;
892 }
893
894 /*
895 * SecCmsCipherContextDecrypt - do the decryption
896 *
897 * cc - the cipher context
898 * output - buffer for decrypted result bytes
899 * output_len_p - number of bytes in output
900 * max_output_len - upper bound on bytes to put into output
901 * input - pointer to input bytes
902 * input_len - number of input bytes
903 * final - true if this is the final chunk of data
904 *
905 * Decrypts a given length of input buffer (starting at "input" and
906 * containing "input_len" bytes), placing the decrypted bytes in
907 * "output" and storing the output length in "*output_len_p".
908 * "cc" is the return value from SecCmsCipherStartDecrypt.
909 * When "final" is true, this is the last of the data to be decrypted.
910 *
911 * This is much more complicated than it sounds when the cipher is
912 * a block-type, meaning that the decryption function will only
913 * operate on whole blocks. But our caller is operating stream-wise,
914 * and can pass in any number of bytes. So we need to keep track
915 * of block boundaries. We save excess bytes between calls in "cc".
916 * We also need to determine which bytes are padding, and remove
917 * them from the output. We can only do this step when we know we
918 * have the final block of data. PKCS #7 specifies that the padding
919 * used for a block cipher is a string of bytes, each of whose value is
920 * the same as the length of the padding, and that all data is padded.
921 * (Even data that starts out with an exact multiple of blocks gets
922 * added to it another block, all of which is padding.)
923 */
924 OSStatus
925 SecCmsCipherContextDecrypt(SecCmsCipherContextRef cc, unsigned char *output,
926 unsigned int *output_len_p, unsigned int max_output_len,
927 const unsigned char *input, unsigned int input_len,
928 Boolean final)
929 {
930 #if 1
931 return SecCmsCipherContextCrypt(cc, output,
932 output_len_p, max_output_len,
933 input, input_len,
934 final, PR_FALSE);
935 #else
936 int blocks, bsize, pcount, padsize;
937 unsigned int max_needed, ifraglen, ofraglen, output_len;
938 unsigned char *pbuf;
939 OSStatus rv;
940
941 PORT_Assert (! cc->encrypt);
942
943 /*
944 * Check that we have enough room for the output. Our caller should
945 * already handle this; failure is really an internal error (i.e. bug).
946 */
947 max_needed = SecCmsCipherContextDecryptLength(cc, input_len, final);
948 PORT_Assert (max_output_len >= max_needed);
949 if (max_output_len < max_needed) {
950 /* PORT_SetError (XXX); */
951 return SECFailure;
952 }
953
954 /*
955 * hardware encryption does not like small decryption sizes here, so we
956 * allow both blocking and padding.
957 */
958 bsize = cc->block_size;
959 padsize = cc->pad_size;
960
961 /*
962 * When no blocking or padding work to do, we can simply call the
963 * cipher function and we are done.
964 */
965 if (bsize == 0) {
966 return (* cc->doit) (cc->cx, output, output_len_p, max_output_len,
967 input, input_len);
968 }
969
970 pcount = cc->pending_count;
971 pbuf = cc->pending_buf;
972
973 output_len = 0;
974
975 if (pcount) {
976 /*
977 * Try to fill in an entire block, starting with the bytes
978 * we already have saved away.
979 */
980 while (input_len && pcount < bsize) {
981 pbuf[pcount++] = *input++;
982 input_len--;
983 }
984 /*
985 * If we have at most a whole block and this is not our last call,
986 * then we are done for now. (We do not try to decrypt a lone
987 * single block because we cannot interpret the padding bytes
988 * until we know we are handling the very last block of all input.)
989 */
990 if (input_len == 0 && !final) {
991 cc->pending_count = pcount;
992 if (output_len_p)
993 *output_len_p = 0;
994 return SECSuccess;
995 }
996 /*
997 * Given the logic above, we expect to have a full block by now.
998 * If we do not, there is something wrong, either with our own
999 * logic or with (length of) the data given to us.
1000 */
1001 if ((padsize != 0) && (pcount % padsize) != 0) {
1002 PORT_Assert (final);
1003 PORT_SetError (SEC_ERROR_BAD_DATA);
1004 return SECFailure;
1005 }
1006 /*
1007 * Decrypt the block.
1008 */
1009 rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
1010 pbuf, pcount);
1011 if (rv != SECSuccess)
1012 return rv;
1013
1014 /*
1015 * For now anyway, all of our ciphers have the same number of
1016 * bytes of output as they do input. If this ever becomes untrue,
1017 * then SecCmsCipherContextDecryptLength needs to be made smarter!
1018 */
1019 PORT_Assert(ofraglen == pcount);
1020
1021 /*
1022 * Account for the bytes now in output.
1023 */
1024 max_output_len -= ofraglen;
1025 output_len += ofraglen;
1026 output += ofraglen;
1027 }
1028
1029 /*
1030 * If this is our last call, we expect to have an exact number of
1031 * blocks left to be decrypted; we will decrypt them all.
1032 *
1033 * If not our last call, we always save between 1 and bsize bytes
1034 * until next time. (We must do this because we cannot be sure
1035 * that none of the decrypted bytes are padding bytes until we
1036 * have at least another whole block of data. You cannot tell by
1037 * looking -- the data could be anything -- you can only tell by
1038 * context, knowing you are looking at the last block.) We could
1039 * decrypt a whole block now but it is easier if we just treat it
1040 * the same way we treat partial block bytes.
1041 */
1042 if (final) {
1043 if (padsize) {
1044 blocks = input_len / padsize;
1045 ifraglen = blocks * padsize;
1046 } else ifraglen = input_len;
1047 PORT_Assert (ifraglen == input_len);
1048
1049 if (ifraglen != input_len) {
1050 PORT_SetError(SEC_ERROR_BAD_DATA);
1051 return SECFailure;
1052 }
1053 } else {
1054 blocks = (input_len - 1) / bsize;
1055 ifraglen = blocks * bsize;
1056 PORT_Assert (ifraglen < input_len);
1057
1058 pcount = input_len - ifraglen;
1059 PORT_Memcpy (pbuf, input + ifraglen, pcount);
1060 cc->pending_count = pcount;
1061 }
1062
1063 if (ifraglen) {
1064 rv = (* cc->doit)(cc->cx, output, &ofraglen, max_output_len,
1065 input, ifraglen);
1066 if (rv != SECSuccess)
1067 return rv;
1068
1069 /*
1070 * For now anyway, all of our ciphers have the same number of
1071 * bytes of output as they do input. If this ever becomes untrue,
1072 * then sec_PKCS7DecryptLength needs to be made smarter!
1073 */
1074 PORT_Assert (ifraglen == ofraglen);
1075 if (ifraglen != ofraglen) {
1076 PORT_SetError(SEC_ERROR_BAD_DATA);
1077 return SECFailure;
1078 }
1079
1080 output_len += ofraglen;
1081 } else {
1082 ofraglen = 0;
1083 }
1084
1085 /*
1086 * If we just did our very last block, "remove" the padding by
1087 * adjusting the output length.
1088 */
1089 if (final && (padsize != 0)) {
1090 unsigned int padlen = *(output + ofraglen - 1);
1091
1092 if (padlen == 0 || padlen > padsize) {
1093 PORT_SetError(SEC_ERROR_BAD_DATA);
1094 return SECFailure;
1095 }
1096 output_len -= padlen;
1097 }
1098
1099 PORT_Assert (output_len_p != NULL || output_len == 0);
1100 if (output_len_p != NULL)
1101 *output_len_p = output_len;
1102
1103 return SECSuccess;
1104 #endif
1105 }
1106
1107 /*
1108 * SecCmsCipherContextEncrypt - do the encryption
1109 *
1110 * cc - the cipher context
1111 * output - buffer for decrypted result bytes
1112 * output_len_p - number of bytes in output
1113 * max_output_len - upper bound on bytes to put into output
1114 * input - pointer to input bytes
1115 * input_len - number of input bytes
1116 * final - true if this is the final chunk of data
1117 *
1118 * Encrypts a given length of input buffer (starting at "input" and
1119 * containing "input_len" bytes), placing the encrypted bytes in
1120 * "output" and storing the output length in "*output_len_p".
1121 * "cc" is the return value from SecCmsCipherStartEncrypt.
1122 * When "final" is true, this is the last of the data to be encrypted.
1123 *
1124 * This is much more complicated than it sounds when the cipher is
1125 * a block-type, meaning that the encryption function will only
1126 * operate on whole blocks. But our caller is operating stream-wise,
1127 * and can pass in any number of bytes. So we need to keep track
1128 * of block boundaries. We save excess bytes between calls in "cc".
1129 * We also need to add padding bytes at the end. PKCS #7 specifies
1130 * that the padding used for a block cipher is a string of bytes,
1131 * each of whose value is the same as the length of the padding,
1132 * and that all data is padded. (Even data that starts out with
1133 * an exact multiple of blocks gets added to it another block,
1134 * all of which is padding.)
1135 *
1136 * XXX I would kind of like to combine this with the function above
1137 * which does decryption, since they have a lot in common. But the
1138 * tricky parts about padding and filling blocks would be much
1139 * harder to read that way, so I left them separate. At least for
1140 * now until it is clear that they are right.
1141 */
1142 OSStatus
1143 SecCmsCipherContextEncrypt(SecCmsCipherContextRef cc, unsigned char *output,
1144 unsigned int *output_len_p, unsigned int max_output_len,
1145 const unsigned char *input, unsigned int input_len,
1146 Boolean final)
1147 {
1148 #if 1
1149 return SecCmsCipherContextCrypt(cc, output,
1150 output_len_p, max_output_len,
1151 input, input_len,
1152 final, PR_TRUE);
1153 #else
1154 int blocks, bsize, padlen, pcount, padsize;
1155 unsigned int max_needed, ifraglen, ofraglen, output_len;
1156 unsigned char *pbuf;
1157 OSStatus rv;
1158
1159 PORT_Assert (cc->encrypt);
1160
1161 /*
1162 * Check that we have enough room for the output. Our caller should
1163 * already handle this; failure is really an internal error (i.e. bug).
1164 */
1165 max_needed = SecCmsCipherContextEncryptLength (cc, input_len, final);
1166 PORT_Assert (max_output_len >= max_needed);
1167 if (max_output_len < max_needed) {
1168 /* PORT_SetError (XXX); */
1169 return SECFailure;
1170 }
1171
1172 bsize = cc->block_size;
1173 padsize = cc->pad_size;
1174
1175 /*
1176 * When no blocking and padding work to do, we can simply call the
1177 * cipher function and we are done.
1178 */
1179 if (bsize == 0) {
1180 return (*cc->doit)(cc->cx, output, output_len_p, max_output_len,
1181 input, input_len);
1182 }
1183
1184 pcount = cc->pending_count;
1185 pbuf = cc->pending_buf;
1186
1187 output_len = 0;
1188
1189 if (pcount) {
1190 /*
1191 * Try to fill in an entire block, starting with the bytes
1192 * we already have saved away.
1193 */
1194 while (input_len && pcount < bsize) {
1195 pbuf[pcount++] = *input++;
1196 input_len--;
1197 }
1198 /*
1199 * If we do not have a full block and we know we will be
1200 * called again, then we are done for now.
1201 */
1202 if (pcount < bsize && !final) {
1203 cc->pending_count = pcount;
1204 if (output_len_p != NULL)
1205 *output_len_p = 0;
1206 return SECSuccess;
1207 }
1208 /*
1209 * If we have a whole block available, encrypt it.
1210 */
1211 if ((padsize == 0) || (pcount % padsize) == 0) {
1212 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
1213 pbuf, pcount);
1214 if (rv != SECSuccess)
1215 return rv;
1216
1217 /*
1218 * For now anyway, all of our ciphers have the same number of
1219 * bytes of output as they do input. If this ever becomes untrue,
1220 * then sec_PKCS7EncryptLength needs to be made smarter!
1221 */
1222 PORT_Assert (ofraglen == pcount);
1223
1224 /*
1225 * Account for the bytes now in output.
1226 */
1227 max_output_len -= ofraglen;
1228 output_len += ofraglen;
1229 output += ofraglen;
1230
1231 pcount = 0;
1232 }
1233 }
1234
1235 if (input_len) {
1236 PORT_Assert (pcount == 0);
1237
1238 blocks = input_len / bsize;
1239 ifraglen = blocks * bsize;
1240
1241 if (ifraglen) {
1242 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
1243 input, ifraglen);
1244 if (rv != SECSuccess)
1245 return rv;
1246
1247 /*
1248 * For now anyway, all of our ciphers have the same number of
1249 * bytes of output as they do input. If this ever becomes untrue,
1250 * then sec_PKCS7EncryptLength needs to be made smarter!
1251 */
1252 PORT_Assert (ifraglen == ofraglen);
1253
1254 max_output_len -= ofraglen;
1255 output_len += ofraglen;
1256 output += ofraglen;
1257 }
1258
1259 pcount = input_len - ifraglen;
1260 PORT_Assert (pcount < bsize);
1261 if (pcount)
1262 PORT_Memcpy (pbuf, input + ifraglen, pcount);
1263 }
1264
1265 if (final) {
1266 padlen = padsize - (pcount % padsize);
1267 PORT_Memset (pbuf + pcount, padlen, padlen);
1268 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
1269 pbuf, pcount+padlen);
1270 if (rv != SECSuccess)
1271 return rv;
1272
1273 /*
1274 * For now anyway, all of our ciphers have the same number of
1275 * bytes of output as they do input. If this ever becomes untrue,
1276 * then sec_PKCS7EncryptLength needs to be made smarter!
1277 */
1278 PORT_Assert (ofraglen == (pcount+padlen));
1279 output_len += ofraglen;
1280 } else {
1281 cc->pending_count = pcount;
1282 }
1283
1284 PORT_Assert (output_len_p != NULL || output_len == 0);
1285 if (output_len_p != NULL)
1286 *output_len_p = output_len;
1287
1288 return SECSuccess;
1289 #endif
1290 }