]> git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_cryptkit/lib/HmacSha1Legacy.c
Security-59754.80.3.tar.gz
[apple/security.git] / OSX / libsecurity_cryptkit / lib / HmacSha1Legacy.c
1 /*
2 * Copyright (c) 2000-2001,2011-2014 Apple Inc. All Rights Reserved.
3 *
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
8 * using this file.
9 *
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
16 */
17
18
19 /*
20 File: HmacSha1Legacy.c
21 Contains: HMAC/SHA1, bug-for-bug compatible with BSAFE 4.0.
22 Copyright (c) 2001,2011-2014 Apple Inc. All Rights Reserved.
23 */
24
25 #include "ckconfig.h"
26
27 #include "HmacSha1Legacy.h"
28 #include "ckSHA1.h"
29 #include <string.h>
30 #include <stdlib.h>
31 #include <Security/SecBase.h>
32 #define kHMACSHA1DigestSize 20
33
34 /* XXX These should really be in ckSHA1.h */
35 #define kSHA1DigestSize 20
36 #define kSHA1BlockSize 64
37
38 /*
39 * bug-for-bug compatible with BSAFE 4.0. See
40 * BSafe/bsource/algs/ahchhmac.c.
41 *
42 * This implementation, and the BSAFE implementation it emulates, work fine
43 * when calculating a MAC in a single update (init, update, final). They
44 * generate nonconforming MACs when performing multiple updates because
45 * the entire algorithm - both inner and outer digests - are performed
46 * in the update() step. As a result, if one e.g. calculates a MAC of
47 * a block of text with one update, and then calculates the MAC over the
48 * same block of text via two updates, different results will obtain.ÊThe
49 * incorrect result from the multiple-update scenario is repeatable if and
50 * only if the same boundaries (same update sizes) are observed on each operation.
51 *
52 * Because all of the data to be MAC'd is in fact protected by both levels of
53 * SHA1, and all of the key bits are used, this nonconforming implementation is
54 * believed to be as strong, cryptographically, as a conforming SHA1HMAC
55 * implementation.
56 */
57 struct hmacLegacyContext {
58 sha1Obj sha1Context;
59 UInt8 k_ipad[kSHA1BlockSize];
60 UInt8 k_opad[kSHA1BlockSize];
61 };
62
63 hmacLegacyContextRef hmacLegacyAlloc(void)
64 {
65 hmacLegacyContextRef hmac =
66 (hmacLegacyContextRef)malloc(sizeof(struct hmacLegacyContext));
67 memset(hmac, 0, sizeof(struct hmacLegacyContext));
68 return hmac;
69 }
70
71 void hmacLegacyFree(
72 hmacLegacyContextRef hmac)
73 {
74 if(hmac != NULL) {
75 if(hmac->sha1Context != NULL) {
76 sha1Free (hmac->sha1Context);
77 }
78 memset(hmac, 0, sizeof(struct hmacLegacyContext));
79 free(hmac);
80 }
81 }
82
83 /* reusable init */
84 OSStatus hmacLegacyInit(
85 hmacLegacyContextRef hmac,
86 const void *keyPtr,
87 UInt32 keyLen)
88 {
89 UInt8 *key;
90 UInt32 byte;
91
92 if(hmac->sha1Context == NULL) {
93 hmac->sha1Context = sha1Alloc();
94 if(hmac->sha1Context == NULL) {
95 return errSecAllocate;
96 }
97 }
98 else {
99 sha1Reinit(hmac->sha1Context);
100 }
101 /* this implementation requires a 20-byte key */
102 if (keyLen != kSHA1DigestSize) {
103 /* FIXME */
104 return errSecParam;
105 }
106 key = (UInt8*)keyPtr;
107
108 /* The HMAC_SHA_1 transform looks like:
109 SHA1 (K XOR opad || SHA1 (K XOR ipad || text))
110 Where K is a n byte key
111 ipad is the byte 0x36 repeated 64 times.
112 opad is the byte 0x5c repeated 64 times.
113 text is the data being protected.
114 */
115 /* Copy the key into k_ipad and k_opad while doing the XOR. */
116 for (byte = 0; byte < keyLen; byte++)
117 {
118 hmac->k_ipad[byte] = key[byte] ^ 0x36;
119 hmac->k_opad[byte] = key[byte] ^ 0x5c;
120 }
121
122 /* Fill the remainder of k_ipad and k_opad with 0 XORed with
123 * appropriate value. */
124 memset (hmac->k_ipad + keyLen, 0x36, kSHA1BlockSize - keyLen);
125 memset (hmac->k_opad + keyLen, 0x5c, kSHA1BlockSize - keyLen);
126
127 /* remainder happens in update */
128 return errSecSuccess;
129 }
130
131 OSStatus hmacLegacyUpdate(
132 hmacLegacyContextRef hmac,
133 const void *textPtr,
134 UInt32 textLen)
135 {
136 UInt8 innerDigest[kSHA1DigestSize];
137
138 /* compute SHA1(k_ipad || data) ==> innerDigest */
139 sha1AddData (hmac->sha1Context, hmac->k_ipad, kSHA1BlockSize);
140 sha1AddData (hmac->sha1Context, (UInt8*)textPtr, textLen);
141 memcpy (innerDigest, sha1Digest(hmac->sha1Context), kSHA1DigestSize);
142
143 /* reset context (BSAFE does this implicitly in a final() call) */
144 sha1Reinit(hmac->sha1Context);
145
146 /* compute SHA1(k_opad || innerDigest) */
147 sha1AddData (hmac->sha1Context, hmac->k_opad, kSHA1BlockSize);
148 sha1AddData (hmac->sha1Context, innerDigest, kSHA1DigestSize);
149
150 /* if there is another update coming, it gets added in to existing
151 * context; if the next step is a final, the current digest state is used. */
152 return errSecSuccess;
153 }
154
155 OSStatus hmacLegacyFinal(
156 hmacLegacyContextRef hmac,
157 void *resultPtr) // caller mallocs, must be HMACSHA1_OUT_SIZE bytes
158 {
159 memcpy (resultPtr, sha1Digest (hmac->sha1Context), kSHA1DigestSize);
160 return errSecSuccess;
161 }
162