]> git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_apple_csp/open_ssl/bn/bn_prime.c
Security-59754.80.3.tar.gz
[apple/security.git] / OSX / libsecurity_apple_csp / open_ssl / bn / bn_prime.c
1 /*
2 * Copyright (c) 2000-2001,2011,2014 Apple Inc. All Rights Reserved.
3 *
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
8 * using this file.
9 *
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
16 */
17
18
19 /* crypto/bn/bn_prime.c */
20 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
21 * All rights reserved.
22 *
23 * This package is an SSL implementation written
24 * by Eric Young (eay@cryptsoft.com).
25 * The implementation was written so as to conform with Netscapes SSL.
26 *
27 * This library is free for commercial and non-commercial use as long as
28 * the following conditions are aheared to. The following conditions
29 * apply to all code found in this distribution, be it the RC4, RSA,
30 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
31 * included with this distribution is covered by the same copyright terms
32 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
33 *
34 * Copyright remains Eric Young's, and as such any Copyright notices in
35 * the code are not to be removed.
36 * If this package is used in a product, Eric Young should be given attribution
37 * as the author of the parts of the library used.
38 * This can be in the form of a textual message at program startup or
39 * in documentation (online or textual) provided with the package.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * "This product includes cryptographic software written by
52 * Eric Young (eay@cryptsoft.com)"
53 * The word 'cryptographic' can be left out if the rouines from the library
54 * being used are not cryptographic related :-).
55 * 4. If you include any Windows specific code (or a derivative thereof) from
56 * the apps directory (application code) you must include an acknowledgement:
57 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
58 *
59 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
69 * SUCH DAMAGE.
70 *
71 * The licence and distribution terms for any publically available version or
72 * derivative of this code cannot be changed. i.e. this code cannot simply be
73 * copied and put under another distribution licence
74 * [including the GNU Public Licence.]
75 */
76 /* ====================================================================
77 * Copyright (c) 1998-2000 The OpenSSL Project. All rights reserved.
78 *
79 * Redistribution and use in source and binary forms, with or without
80 * modification, are permitted provided that the following conditions
81 * are met:
82 *
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 *
86 * 2. Redistributions in binary form must reproduce the above copyright
87 * notice, this list of conditions and the following disclaimer in
88 * the documentation and/or other materials provided with the
89 * distribution.
90 *
91 * 3. All advertising materials mentioning features or use of this
92 * software must display the following acknowledgment:
93 * "This product includes software developed by the OpenSSL Project
94 * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
95 *
96 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
97 * endorse or promote products derived from this software without
98 * prior written permission. For written permission, please contact
99 * openssl-core@openssl.org.
100 *
101 * 5. Products derived from this software may not be called "OpenSSL"
102 * nor may "OpenSSL" appear in their names without prior written
103 * permission of the OpenSSL Project.
104 *
105 * 6. Redistributions of any form whatsoever must retain the following
106 * acknowledgment:
107 * "This product includes software developed by the OpenSSL Project
108 * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
109 *
110 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
111 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
112 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
113 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
114 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
115 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
116 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
117 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
118 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
119 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
120 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
121 * OF THE POSSIBILITY OF SUCH DAMAGE.
122 * ====================================================================
123 *
124 * This product includes cryptographic software written by Eric Young
125 * (eay@cryptsoft.com). This product includes software written by Tim
126 * Hudson (tjh@cryptsoft.com).
127 *
128 */
129
130 #include <stdio.h>
131 #include <time.h>
132 #include "cryptlib.h"
133 #include "bn_lcl.h"
134 #include <openssl/rand.h>
135
136 /* The quick sieve algorithm approach to weeding out primes is
137 * Philip Zimmermann's, as implemented in PGP. I have had a read of
138 * his comments and implemented my own version.
139 */
140 #include "bn_prime.h"
141
142 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
143 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont);
144 static int probable_prime(BIGNUM *rnd, int bits);
145 static int probable_prime_dh(BIGNUM *rnd, int bits,
146 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
147 static int probable_prime_dh_safe(BIGNUM *rnd, int bits,
148 BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
149
150 BIGNUM *BN_generate_prime(BIGNUM *ret, int bits, int safe, BIGNUM *add,
151 BIGNUM *rem, void (*callback)(int,int,void *), void *cb_arg)
152 {
153 BIGNUM *rnd=NULL;
154 BIGNUM t;
155 int found=0;
156 int i,j,c1=0;
157 BN_CTX *ctx;
158 int checks = BN_prime_checks_for_size(bits);
159
160 BN_init(&t);
161
162 ctx=BN_CTX_new();
163 if (ctx == NULL) goto err;
164 if (ret == NULL)
165 {
166 if ((rnd=BN_new()) == NULL) goto err;
167 }
168 else
169 rnd=ret;
170 loop:
171 /* make a random number and set the top and bottom bits */
172 if (add == NULL)
173 {
174 if (!probable_prime(rnd,bits)) goto err;
175 }
176 else
177 {
178 if (safe)
179 {
180 if (!probable_prime_dh_safe(rnd,bits,add,rem,ctx))
181 goto err;
182 }
183 else
184 {
185 if (!probable_prime_dh(rnd,bits,add,rem,ctx))
186 goto err;
187 }
188 }
189 /* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
190 if (callback != NULL) callback(0,c1++,cb_arg);
191
192 if (!safe)
193 {
194 i=BN_is_prime_fasttest(rnd,checks,callback,ctx,cb_arg,0);
195 if (i == -1) goto err;
196 if (i == 0) goto loop;
197 }
198 else
199 {
200 /* for "safe prime" generation,
201 * check that (p-1)/2 is prime.
202 * Since a prime is odd, We just
203 * need to divide by 2 */
204 if (!BN_rshift1(&t,rnd)) goto err;
205
206 for (i=0; i<checks; i++)
207 {
208 j=BN_is_prime_fasttest(rnd,1,callback,ctx,cb_arg,0);
209 if (j == -1) goto err;
210 if (j == 0) goto loop;
211
212 j=BN_is_prime_fasttest(&t,1,callback,ctx,cb_arg,0);
213 if (j == -1) goto err;
214 if (j == 0) goto loop;
215
216 if (callback != NULL) callback(2,c1-1,cb_arg);
217 /* We have a safe prime test pass */
218 }
219 }
220 /* we have a prime :-) */
221 found = 1;
222 err:
223 if (!found && (ret == NULL) && (rnd != NULL)) BN_free(rnd);
224 BN_free(&t);
225 if (ctx != NULL) BN_CTX_free(ctx);
226 return(found ? rnd : NULL);
227 }
228
229 int BN_is_prime(const BIGNUM *a, int checks, void (*callback)(int,int,void *),
230 BN_CTX *ctx_passed, void *cb_arg)
231 {
232 return BN_is_prime_fasttest(a, checks, callback, ctx_passed, cb_arg, 0);
233 }
234
235 int BN_is_prime_fasttest(const BIGNUM *a, int checks,
236 void (*callback)(int,int,void *),
237 BN_CTX *ctx_passed, void *cb_arg,
238 int do_trial_division)
239 {
240 int i, j, ret = -1;
241 int k;
242 BN_CTX *ctx = NULL;
243 BIGNUM *A1, *A1_odd, *check; /* taken from ctx */
244 BN_MONT_CTX *mont = NULL;
245 const BIGNUM *A = NULL;
246
247 if (checks == BN_prime_checks)
248 checks = BN_prime_checks_for_size(BN_num_bits(a));
249
250 /* first look for small factors */
251 if (!BN_is_odd(a))
252 return(0);
253 if (do_trial_division)
254 {
255 for (i = 1; i < NUMPRIMES; i++)
256 if (BN_mod_word(a, primes[i]) == 0)
257 return 0;
258 if (callback != NULL) callback(1, -1, cb_arg);
259 }
260
261 if (ctx_passed != NULL)
262 ctx = ctx_passed;
263 else
264 if ((ctx=BN_CTX_new()) == NULL)
265 goto err;
266 BN_CTX_start(ctx);
267
268 /* A := abs(a) */
269 if (a->neg)
270 {
271 BIGNUM *t;
272 if ((t = BN_CTX_get(ctx)) == NULL) goto err;
273 BN_copy(t, a);
274 t->neg = 0;
275 A = t;
276 }
277 else
278 A = a;
279 A1 = BN_CTX_get(ctx);
280 A1_odd = BN_CTX_get(ctx);
281 check = BN_CTX_get(ctx);
282 if (check == NULL) goto err;
283
284 /* compute A1 := A - 1 */
285 if (!BN_copy(A1, A))
286 goto err;
287 if (!BN_sub_word(A1, 1))
288 goto err;
289 if (BN_is_zero(A1))
290 {
291 ret = 0;
292 goto err;
293 }
294
295 /* write A1 as A1_odd * 2^k */
296 k = 1;
297 while (!BN_is_bit_set(A1, k))
298 k++;
299 if (!BN_rshift(A1_odd, A1, k))
300 goto err;
301
302 /* Montgomery setup for computations mod A */
303 mont = BN_MONT_CTX_new();
304 if (mont == NULL)
305 goto err;
306 if (!BN_MONT_CTX_set(mont, A, ctx))
307 goto err;
308
309 for (i = 0; i < checks; i++)
310 {
311 if (!BN_pseudo_rand(check, BN_num_bits(A1), 0, 0))
312 goto err;
313 if (BN_cmp(check, A1) >= 0)
314 if (!BN_sub(check, check, A1))
315 goto err;
316 if (!BN_add_word(check, 1))
317 goto err;
318 /* now 1 <= check < A */
319
320 j = witness(check, A, A1, A1_odd, k, ctx, mont);
321 if (j == -1) goto err;
322 if (j)
323 {
324 ret=0;
325 goto err;
326 }
327 if (callback != NULL) callback(1,i,cb_arg);
328 }
329 ret=1;
330 err:
331 if (ctx != NULL)
332 {
333 BN_CTX_end(ctx);
334 if (ctx_passed == NULL)
335 BN_CTX_free(ctx);
336 }
337 if (mont != NULL)
338 BN_MONT_CTX_free(mont);
339
340 return(ret);
341 }
342
343 static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1,
344 const BIGNUM *a1_odd, int k, BN_CTX *ctx, BN_MONT_CTX *mont)
345 {
346 if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */
347 return -1;
348 if (BN_is_one(w))
349 return 0; /* probably prime */
350 if (BN_cmp(w, a1) == 0)
351 return 0; /* w == -1 (mod a), 'a' is probably prime */
352 while (--k)
353 {
354 if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */
355 return -1;
356 if (BN_is_one(w))
357 return 1; /* 'a' is composite, otherwise a previous 'w' would
358 * have been == -1 (mod 'a') */
359 if (BN_cmp(w, a1) == 0)
360 return 0; /* w == -1 (mod a), 'a' is probably prime */
361 }
362 /* If we get here, 'w' is the (a-1)/2-th power of the original 'w',
363 * and it is neither -1 nor +1 -- so 'a' cannot be prime */
364 return 1;
365 }
366
367 static int probable_prime(BIGNUM *rnd, int bits)
368 {
369 int i;
370 BN_ULONG mods[NUMPRIMES];
371 BN_ULONG delta,d;
372
373 again:
374 if (!BN_rand(rnd,bits,1,1)) return(0);
375 /* we now have a random number 'rand' to test. */
376 for (i=1; i<NUMPRIMES; i++)
377 mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
378 delta=0;
379 loop: for (i=1; i<NUMPRIMES; i++)
380 {
381 /* check that rnd is not a prime and also
382 * that gcd(rnd-1,primes) == 1 (except for 2) */
383 if (((mods[i]+delta)%primes[i]) <= 1)
384 {
385 d=delta;
386 delta+=2;
387 /* perhaps need to check for overflow of
388 * delta (but delta can be up to 2^32)
389 * 21-May-98 eay - added overflow check */
390 if (delta < d) goto again;
391 goto loop;
392 }
393 }
394 if (!BN_add_word(rnd,delta)) return(0);
395 return(1);
396 }
397
398 static int probable_prime_dh(BIGNUM *rnd, int bits, BIGNUM *add, BIGNUM *rem,
399 BN_CTX *ctx)
400 {
401 int i,ret=0;
402 BIGNUM *t1;
403
404 BN_CTX_start(ctx);
405 if ((t1 = BN_CTX_get(ctx)) == NULL) goto err;
406
407 if (!BN_rand(rnd,bits,0,1)) goto err;
408
409 /* we need ((rnd-rem) % add) == 0 */
410
411 if (!BN_mod(t1,rnd,add,ctx)) goto err;
412 if (!BN_sub(rnd,rnd,t1)) goto err;
413 if (rem == NULL)
414 { if (!BN_add_word(rnd,1)) goto err; }
415 else
416 { if (!BN_add(rnd,rnd,rem)) goto err; }
417
418 /* we now have a random number 'rand' to test. */
419
420 loop: for (i=1; i<NUMPRIMES; i++)
421 {
422 /* check that rnd is a prime */
423 if (BN_mod_word(rnd,(BN_ULONG)primes[i]) <= 1)
424 {
425 if (!BN_add(rnd,rnd,add)) goto err;
426 goto loop;
427 }
428 }
429 ret=1;
430 err:
431 BN_CTX_end(ctx);
432 return(ret);
433 }
434
435 static int probable_prime_dh_safe(BIGNUM *p, int bits, BIGNUM *padd,
436 BIGNUM *rem, BN_CTX *ctx)
437 {
438 int i,ret=0;
439 BIGNUM *t1,*qadd,*q;
440
441 bits--;
442 BN_CTX_start(ctx);
443 t1 = BN_CTX_get(ctx);
444 q = BN_CTX_get(ctx);
445 qadd = BN_CTX_get(ctx);
446 if (qadd == NULL) goto err;
447
448 if (!BN_rshift1(qadd,padd)) goto err;
449
450 if (!BN_rand(q,bits,0,1)) goto err;
451
452 /* we need ((rnd-rem) % add) == 0 */
453 if (!BN_mod(t1,q,qadd,ctx)) goto err;
454 if (!BN_sub(q,q,t1)) goto err;
455 if (rem == NULL)
456 { if (!BN_add_word(q,1)) goto err; }
457 else
458 {
459 if (!BN_rshift1(t1,rem)) goto err;
460 if (!BN_add(q,q,t1)) goto err;
461 }
462
463 /* we now have a random number 'rand' to test. */
464 if (!BN_lshift1(p,q)) goto err;
465 if (!BN_add_word(p,1)) goto err;
466
467 loop: for (i=1; i<NUMPRIMES; i++)
468 {
469 /* check that p and q are prime */
470 /* check that for p and q
471 * gcd(p-1,primes) == 1 (except for 2) */
472 if ( (BN_mod_word(p,(BN_ULONG)primes[i]) == 0) ||
473 (BN_mod_word(q,(BN_ULONG)primes[i]) == 0))
474 {
475 if (!BN_add(p,p,padd)) goto err;
476 if (!BN_add(q,q,qadd)) goto err;
477 goto loop;
478 }
479 }
480 ret=1;
481 err:
482 BN_CTX_end(ctx);
483 return(ret);
484 }