]> git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_codesigning/lib/CSCommon.h
Security-58286.70.7.tar.gz
[apple/security.git] / OSX / libsecurity_codesigning / lib / CSCommon.h
1 /*
2 * Copyright (c) 2006-2014 Apple Inc. All Rights Reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 /*!
25 @header CSCommon
26 CSCommon is the common header of all Code Signing API headers.
27 It defines types, constants, and error codes.
28 */
29 #ifndef _H_CSCOMMON
30 #define _H_CSCOMMON
31
32 #ifdef __cplusplus
33 extern "C" {
34 #endif
35
36 #include <stdint.h>
37 #include <CoreFoundation/CoreFoundation.h>
38
39 CF_ASSUME_NONNULL_BEGIN
40
41 /*
42 Code Signing specific OSStatus codes.
43 [Assigned range 0xFFFE_FAxx].
44 */
45 CF_ENUM(OSStatus) {
46 errSecCSUnimplemented = -67072, /* unimplemented code signing feature */
47 errSecCSInvalidObjectRef = -67071, /* invalid API object reference */
48 errSecCSInvalidFlags = -67070, /* invalid or inappropriate API flag(s) specified */
49 errSecCSObjectRequired = -67069, /* a required pointer argument was NULL */
50 errSecCSStaticCodeNotFound = -67068, /* cannot find code object on disk */
51 errSecCSUnsupportedGuestAttributes = -67067, /* cannot locate guests using this attribute set */
52 errSecCSInvalidAttributeValues = -67066, /* given attribute values are invalid */
53 errSecCSNoSuchCode = -67065, /* host has no guest with the requested attributes */
54 errSecCSMultipleGuests = -67064, /* ambiguous guest specification (host has multiple guests with these attribute values) */
55 errSecCSGuestInvalid = -67063, /* code identity has been invalidated */
56 errSecCSUnsigned = -67062, /* code object is not signed at all */
57 errSecCSSignatureFailed = -67061, /* invalid signature (code or signature have been modified) */
58 errSecCSSignatureNotVerifiable = -67060, /* the code cannot be read by the verifier (file system permissions etc.) */
59 errSecCSSignatureUnsupported = -67059, /* unsupported type or version of signature */
60 errSecCSBadDictionaryFormat = -67058, /* a required plist file or resource is malformed */
61 errSecCSResourcesNotSealed = -67057, /* resources are present but not sealed by signature */
62 errSecCSResourcesNotFound = -67056, /* code has no resources but signature indicates they must be present */
63 errSecCSResourcesInvalid = -67055, /* the sealed resource directory is invalid */
64 errSecCSBadResource = -67054, /* a sealed resource is missing or invalid */
65 errSecCSResourceRulesInvalid = -67053, /* invalid resource specification rule(s) */
66 errSecCSReqInvalid = -67052, /* invalid or corrupted code requirement(s) */
67 errSecCSReqUnsupported = -67051, /* unsupported type or version of code requirement(s) */
68 errSecCSReqFailed = -67050, /* code failed to satisfy specified code requirement(s) */
69 errSecCSBadObjectFormat = -67049, /* object file format unrecognized, invalid, or unsuitable */
70 errSecCSInternalError = -67048, /* internal error in Code Signing subsystem */
71 errSecCSHostReject = -67047, /* code rejected its host */
72 errSecCSNotAHost = -67046, /* attempt to specify guest of code that is not a host */
73 errSecCSSignatureInvalid = -67045, /* invalid or unsupported format for signature */
74 errSecCSHostProtocolRelativePath = -67044, /* host protocol violation - absolute guest path required */
75 errSecCSHostProtocolContradiction = -67043, /* host protocol violation - contradictory hosting modes */
76 errSecCSHostProtocolDedicationError = -67042, /* host protocol violation - operation not allowed with/for a dedicated guest */
77 errSecCSHostProtocolNotProxy = -67041, /* host protocol violation - proxy hosting not engaged */
78 errSecCSHostProtocolStateError = -67040, /* host protocol violation - invalid guest state change request */
79 errSecCSHostProtocolUnrelated = -67039, /* host protocol violation - the given guest is not a guest of the given host */
80 /* -67038 obsolete (no longer issued) */
81 errSecCSNotSupported = -67037, /* operation inapplicable or not supported for this type of code */
82 errSecCSCMSTooLarge = -67036, /* signature too large to embed (size limitation of on-disk representation) */
83 errSecCSHostProtocolInvalidHash = -67035, /* host protocol violation - invalid guest hash */
84 errSecCSStaticCodeChanged = -67034, /* the code on disk does not match what is running */
85 errSecCSDBDenied = -67033, /* permission to use a database denied */
86 errSecCSDBAccess = -67032, /* cannot access a database */
87 errSecCSSigDBDenied = -67033, /* permission to use a database denied */
88 errSecCSSigDBAccess = -67032, /* cannot access a database */
89 errSecCSHostProtocolInvalidAttribute = -67031, /* host returned invalid or inconsistent guest attributes */
90 errSecCSInfoPlistFailed = -67030, /* invalid Info.plist (plist or signature have been modified) */
91 errSecCSNoMainExecutable = -67029, /* the code has no main executable file */
92 errSecCSBadBundleFormat = -67028, /* bundle format unrecognized, invalid, or unsuitable */
93 errSecCSNoMatches = -67027, /* no matches for search or update operation */
94 errSecCSFileHardQuarantined = -67026, /* File created by an AppSandbox, exec/open not allowed */
95 errSecCSOutdated = -67025, /* presented data is out of date */
96 errSecCSDbCorrupt = -67024, /* a system database or file is corrupt */
97 errSecCSResourceDirectoryFailed = -67023, /* invalid resource directory (directory or signature have been modified) */
98 errSecCSUnsignedNestedCode = -67022, /* nested code is unsigned */
99 errSecCSBadNestedCode = -67021, /* nested code is modified or invalid */
100 errSecCSBadCallbackValue = -67020, /* monitor callback returned invalid value */
101 errSecCSHelperFailed = -67019, /* the codesign_allocate helper tool cannot be found or used */
102 errSecCSVetoed = -67018,
103 errSecCSBadLVArch = -67017, /* library validation flag cannot be used with an i386 binary */
104 errSecCSResourceNotSupported = -67016, /* unsupported resource found (something not a directory, file or symlink) */
105 errSecCSRegularFile = -67015, /* the main executable or Info.plist must be a regular file (no symlinks, etc.) */
106 errSecCSUnsealedAppRoot = -67014, /* unsealed contents present in the bundle root */
107 errSecCSWeakResourceRules = -67013, /* resource envelope is obsolete (custom omit rules) */
108 errSecCSDSStoreSymlink = -67012, /* .DS_Store files cannot be a symlink */
109 errSecCSAmbiguousBundleFormat = -67011, /* bundle format is ambiguous (could be app or framework) */
110 errSecCSBadMainExecutable = -67010, /* main executable failed strict validation */
111 errSecCSBadFrameworkVersion = -67009, /* embedded framework contains modified or invalid version */
112 errSecCSUnsealedFrameworkRoot = -67008, /* unsealed contents present in the root directory of an embedded framework */
113 errSecCSWeakResourceEnvelope = -67007, /* resource envelope is obsolete (version 1 signature) */
114 errSecCSCancelled = -67006, /* operation was terminated by explicit cancelation */
115 errSecCSInvalidPlatform = -67005, /* invalid platform identifier or platform mismatch */
116 errSecCSTooBig = -67004, /* code is too big for current signing format */
117 errSecCSInvalidSymlink = -67003, /* invalid destination for symbolic link in bundle */
118 errSecCSNotAppLike = -67002, /* the code is valid but does not seem to be an app */
119 errSecCSBadDiskImageFormat = -67001, /* disk image format unrecognized, invalid, or unsuitable */
120 errSecCSUnsupportedDigestAlgorithm = -67000, /* a requested signature digest algorithm is not supported */
121 errSecCSInvalidAssociatedFileData = -66999, /* resource fork, Finder information, or similar detritus not allowed */
122 errSecCSInvalidTeamIdentifier = -66998, /* a Team Identifier string is invalid */
123 errSecCSBadTeamIdentifier = -66997, /* a Team Identifier is wrong or inappropriate */
124 errSecCSSignatureUntrusted = -66996, /* signature is valid but signer is not trusted */
125 errSecMultipleExecSegments = -66995, /* the image contains multiple executable segments */
126 errSecCSInvalidEntitlements = -66994, /* invalid entitlement plist */
127 errSecCSInvalidRuntimeVersion = -66993, /* an invalid runtime version was explicitly set */
128 };
129
130 /*
131 * Code Signing specific CFError "user info" keys.
132 * In calls that can return CFErrorRef indications, if a CFErrorRef is actually
133 * returned, its "user info" dictionary may contain some of the following keys
134 * to more closely describe the circumstances of the failure.
135 * Do not rely on the presence of any particular key to categorize a problem;
136 * always use the primary OSStatus return for that. The data contained under
137 * these keys is always supplemental and optional.
138 */
139 extern const CFStringRef kSecCFErrorArchitecture; /* CFStringRef: name of architecture causing the problem */
140 extern const CFStringRef kSecCFErrorPattern; /* CFStringRef: invalid resource selection pattern encountered */
141 extern const CFStringRef kSecCFErrorResourceSeal; /* CFTypeRef: invalid component in resource seal (CodeResources) */
142 extern const CFStringRef kSecCFErrorResourceAdded; /* CFURLRef: unsealed resource found */
143 extern const CFStringRef kSecCFErrorResourceAltered; /* CFURLRef: modified resource found */
144 extern const CFStringRef kSecCFErrorResourceMissing; /* CFURLRef: sealed (non-optional) resource missing */
145 extern const CFStringRef kSecCFErrorResourceSideband; /* CFURLRef: sealed resource has invalid sideband data (resource fork, etc.) */
146 extern const CFStringRef kSecCFErrorInfoPlist; /* CFTypeRef: Info.plist dictionary or component thereof found invalid */
147 extern const CFStringRef kSecCFErrorGuestAttributes; /* CFTypeRef: Guest attribute set of element not accepted */
148 extern const CFStringRef kSecCFErrorRequirementSyntax; /* CFStringRef: compilation error for Requirement source */
149 extern const CFStringRef kSecCFErrorPath; /* CFURLRef: subcomponent containing the error */
150
151 /*!
152 @typedef SecCodeRef
153 This is the type of a reference to running code.
154
155 In many (but not all) calls, this can be passed to a SecStaticCodeRef
156 argument, which performs an implicit SecCodeCopyStaticCode call and
157 operates on the result.
158 */
159 typedef struct CF_BRIDGED_TYPE(id) __SecCode *SecCodeRef; /* running code */
160
161 /*!
162 @typedef SecStaticCodeRef
163 This is the type of a reference to static code on disk.
164 */
165 typedef struct CF_BRIDGED_TYPE(id) __SecCode const *SecStaticCodeRef; /* code on disk */
166
167 /*!
168 @typedef SecRequirementRef
169 This is the type of a reference to a code requirement.
170 */
171 typedef struct CF_BRIDGED_TYPE(id) __SecRequirement *SecRequirementRef; /* code requirement */
172
173
174 /*!
175 @typedef SecGuestRef
176 An abstract handle to identify a particular Guest in the context of its Host.
177
178 Guest handles are assigned by the host at will, with kSecNoGuest (zero) being
179 reserved as the null value. They can be reused for new children if desired.
180 */
181 typedef u_int32_t SecGuestRef;
182
183 CF_ENUM(SecGuestRef) {
184 kSecNoGuest = 0, /* not a valid SecGuestRef */
185 };
186
187
188 /*!
189 @typedef SecCSFlags
190 This is the type of flags arguments to Code Signing API calls.
191 It provides a bit mask of request and option flags. All of the bits in these
192 masks are reserved to Apple; if you set any bits not defined in these headers,
193 the behavior is generally undefined.
194
195 This list describes the flags that are shared among several Code Signing API calls.
196 Flags that only apply to one call are defined and documented with that call.
197 Global flags are assigned from high order down (31 -> 0); call-specific flags
198 are assigned from the bottom up (0 -> 31).
199
200 @constant kSecCSDefaultFlags
201 When passed to a flags argument throughout, indicates that default behavior
202 is desired. Do not mix with other flags values.
203 @constant kSecCSConsiderExpiration
204 When passed to a call that performs code validation, requests that code signatures
205 made by expired certificates be rejected. By default, expiration of participating
206 certificates is not automatic grounds for rejection.
207 */
208 typedef CF_OPTIONS(uint32_t, SecCSFlags) {
209 kSecCSDefaultFlags = 0, /* no particular flags (default behavior) */
210
211 kSecCSConsiderExpiration = 1U << 31, /* consider expired certificates invalid */
212 kSecCSEnforceRevocationChecks = 1 << 30, /* force revocation checks regardless of preference settings */
213 kSecCSNoNetworkAccess = 1 << 29, /* do not use the network, cancels "kSecCSEnforceRevocationChecks" */
214 kSecCSReportProgress = 1 << 28, /* make progress report call-backs when configured */
215 kSecCSCheckTrustedAnchors = 1 << 27, /* build certificate chain to system trust anchors, not to any self-signed certificate */
216 kSecCSQuickCheck = 1 << 26, /* (internal) */
217 };
218
219
220 /*!
221 @typedef SecCodeSignatureFlags
222 This is the type of option flags that can be embedded in a code signature
223 during signing, and that govern the use of the signature thereafter.
224 Some of these flags can be set through the codesign(1) command's --options
225 argument; some are set implicitly based on signing circumstances; and all
226 can be set with the kSecCodeSignerFlags item of a signing information dictionary.
227
228 @constant kSecCodeSignatureHost
229 Indicates that the code may act as a host that controls and supervises guest
230 code. If this flag is not set in a code signature, the code is never considered
231 eligible to be a host, and any attempt to act like one will be ignored or rejected.
232 @constant kSecCodeSignatureAdhoc
233 The code has been sealed without a signing identity. No identity may be retrieved
234 from it, and any code requirement placing restrictions on the signing identity
235 will fail. This flag is set by the code signing API and cannot be set explicitly.
236 @constant kSecCodeSignatureForceHard
237 Implicitly set the "hard" status bit for the code when it starts running.
238 This bit indicates that the code prefers to be denied access to a resource
239 if gaining such access would cause its invalidation. Since the hard bit is
240 sticky, setting this option bit guarantees that the code will always have
241 it set.
242 @constant kSecCodeSignatureForceKill
243 Implicitly set the "kill" status bit for the code when it starts running.
244 This bit indicates that the code wishes to be terminated with prejudice if
245 it is ever invalidated. Since the kill bit is sticky, setting this option bit
246 guarantees that the code will always be dynamically valid, since it will die
247 immediately if it becomes invalid.
248 @constant kSecCodeSignatureForceExpiration
249 Forces the kSecCSConsiderExpiration flag on all validations of the code.
250 @constant kSecCodeSignatureRuntime
251 Instructs the kernel to apply runtime hardening policies as required by the
252 hardened runtime version
253 */
254 typedef CF_OPTIONS(uint32_t, SecCodeSignatureFlags) {
255 kSecCodeSignatureHost = 0x0001, /* may host guest code */
256 kSecCodeSignatureAdhoc = 0x0002, /* must be used without signer */
257 kSecCodeSignatureForceHard = 0x0100, /* always set HARD mode on launch */
258 kSecCodeSignatureForceKill = 0x0200, /* always set KILL mode on launch */
259 kSecCodeSignatureForceExpiration = 0x0400, /* force certificate expiration checks */
260 kSecCodeSignatureRestrict = 0x0800, /* restrict dyld loading */
261 kSecCodeSignatureEnforcement = 0x1000, /* enforce code signing */
262 kSecCodeSignatureLibraryValidation = 0x2000, /* library validation required */
263 kSecCodeSignatureRuntime = 0x10000, /* apply runtime hardening policies */
264 };
265
266 /*!
267 @typedef SecCodeStatus
268 The code signing system attaches a set of status flags to each running code.
269 These flags are maintained by the code's host, and can be read by anyone.
270 A code may change its own flags, a host may change its guests' flags,
271 and root may change anyone's flags. However, these flags are sticky in that
272 each can change in only one direction (and never back, for the lifetime of the code).
273 Not even root can violate this restriction.
274
275 There are other flags in SecCodeStatus that are not publicly documented.
276 Do not rely on them, and do not ever attempt to explicitly set them.
277
278 @constant kSecCodeStatusValid
279 Indicates that the code is dynamically valid, i.e. it started correctly
280 and has not been invalidated since then. The valid bit can only be cleared.
281
282 Warning: This bit is not your one-stop shortcut to determining the validity of code.
283 It represents the dynamic component of the full validity function; if this
284 bit is unset, the code is definitely invalid, but the converse is not always true.
285 In fact, code hosts may represent the outcome of some delayed static validation work in this bit,
286 and thus it strictly represents a blend of (all of) dynamic and (some of) static validity,
287 depending on the implementation of the particular host managing the code. You can (only)
288 rely that (1) dynamic invalidation will clear this bit; and (2) the combination
289 of static validation and dynamic validity (as performed by the SecCodeCheckValidity* APIs)
290 will give a correct answer.
291
292 @constant kSecCodeStatusHard
293 Indicates that the code prefers to be denied access to resources if gaining access
294 would invalidate it. This bit can only be set.
295 It is undefined whether code that is marked hard and is already invalid will still
296 be denied access to a resource that would invalidate it if it were still valid. That is,
297 the code may or may not get access to such a resource while being invalid, and that choice
298 may appear random.
299
300 @constant kSecCodeStatusKill
301 Indicates that the code wants to be killed (terminated) if it ever loses its validity.
302 This bit can only be set. Code that has the kill flag set will never be dynamically invalid
303 (and live). Note however that a change in static validity does not necessarily trigger instant
304 death.
305 */
306 typedef CF_OPTIONS(uint32_t, SecCodeStatus) {
307 kSecCodeStatusValid = 0x0001,
308 kSecCodeStatusHard = 0x0100,
309 kSecCodeStatusKill = 0x0200,
310 };
311
312
313 /*!
314 @typedef SecRequirementType
315 An enumeration indicating different types of internal requirements for code.
316 */
317 typedef CF_ENUM(uint32_t, SecRequirementType) {
318 kSecHostRequirementType = 1, /* what hosts may run us */
319 kSecGuestRequirementType = 2, /* what guests we may run */
320 kSecDesignatedRequirementType = 3, /* designated requirement */
321 kSecLibraryRequirementType = 4, /* what libraries we may link against */
322 kSecPluginRequirementType = 5, /* what plug-ins we may load */
323 kSecInvalidRequirementType, /* invalid type of Requirement (must be last) */
324 kSecRequirementTypeCount = kSecInvalidRequirementType /* number of valid requirement types */
325 };
326
327
328 /*!
329 Types of cryptographic digests (hashes) used to hold code signatures
330 together.
331
332 Each combination of type, length, and other parameters is a separate
333 hash type; we don't understand "families" here.
334
335 These type codes govern the digest links that connect a CodeDirectory
336 to its subordinate data structures (code pages, resources, etc.)
337 They do not directly control other uses of hashes (such as those used
338 within X.509 certificates and CMS blobs).
339 */
340 typedef CF_ENUM(uint32_t, SecCSDigestAlgorithm) {
341 kSecCodeSignatureNoHash = 0, /* null value */
342 kSecCodeSignatureHashSHA1 = 1, /* SHA-1 */
343 kSecCodeSignatureHashSHA256 = 2, /* SHA-256 */
344 kSecCodeSignatureHashSHA256Truncated = 3, /* SHA-256 truncated to first 20 bytes */
345 kSecCodeSignatureHashSHA384 = 4, /* SHA-384 */
346 };
347
348 CF_ASSUME_NONNULL_END
349
350 #ifdef __cplusplus
351 }
352 #endif
353
354 #endif //_H_CSCOMMON