]> git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_cryptkit/lib/CurveParamDocs/schoof.c
Security-57337.20.44.tar.gz
[apple/security.git] / OSX / libsecurity_cryptkit / lib / CurveParamDocs / schoof.c
1 /* schoof.c
2
3 Elliptic curve order calculator, for
4
5 y^2 = x^3 + a x + b (mod p)
6
7 Compile with:
8
9 % cc -O schoof.c giants.c tools.c ellproj.c -lm -o schoof
10
11 and run, entering p and the a,b parameters.
12 Eventually the curve order o is reported, together with
13 the twist order o'. The sum of these two orders is always
14 2p + 2. A final check is performed to verify that a
15 random point (x,y,z) enjoys the annihilation
16 o * (x,y,z) = point-at-infinity. This is not absolutely
17 definitive, rather it is a necessary condition on the oder o
18 (i.e. it is a sanity check of sorts).
19
20 * Change history:
21
22 18 Nov 99 REC fixed M. Scott bug (MAX_DIGS bumped by 2)
23 5 Jul 99 REC Installed improved (base-4) power ladder
24 5 Jul 99 REC Made use of binary segmentation square (per se)
25 5 Jul 99 REC Improved memory usage
26 2 May 99 REC Added initial primality check
27 30 Apr 99 REC Added actual order-annihilation test
28 29 Apr 99 REC Improvements due to A. Powell
29 2 Feb 99 REC Added explicit CRT result
30 12 Jan 99 REC Removed (hopefully) last of memory crashes
31 20 Jan 98 REC Creation
32
33 * c. 1998 Perfectly Scientific, Inc.
34 * All Rights Reserved.
35 *
36 *
37 *************************************************************/
38
39 #include <stdio.h>
40 #include<assert.h>
41 #include <math.h>
42 #include <stdlib.h>
43 #include "giants.h"
44 #include "tools.h"
45 #include "ellproj.h"
46
47 #define P_BREAK 32
48
49 #ifdef _WIN32
50 #include <string.h>
51 #define bzero(D, n) memset(D, 0x00, n)
52 #define bcopy(S, D, n) memcpy(D, S, n)
53 #endif
54
55 #define Q_MAX 256 /* Bits in largest primes handled. */
56 #define L_CEIL 100 /* Bound on Schoof L values (not all needed in general). */
57
58
59 typedef struct
60 {
61 int deg;
62 giant *coe;
63 } polystruct;
64 typedef polystruct *poly;
65
66 extern int *pr;
67
68 static int Q, L_MAX;
69 static int MAX_DIGS, MAX_COEFFS;
70
71 static giant *mcand, coe, tmp, err, aux, aux2, globx, globy, t1, t2,
72 t3, t4, t5;
73 static poly qscratch, rscratch, sscratch, tscratch, pbuff,
74 pbuff2, precip, cubic, powx, powy, kxn, kyn, kxd, kyd,
75 txn, txd, tyn, tyd, txn1, txd1, tyn1, tyd1,
76 nx, dx, ny, dy, mn, md, tmp1, tmp2, tmp3, tmp4;
77 static poly s[L_CEIL+2], smonic;
78 static giant p, a, b;
79 static int L;
80
81 void quickmodg(giant g, giant x)
82 { int sgn = x->sign;
83
84 if(sgn == 0) return;
85 if(sgn > 0) {
86 if(gcompg(x, g) >= 0) subg(g, x);
87 return;
88 }
89 addg(g,x);
90 return;
91 }
92
93 int
94 log_2(int n) {
95 int c = 1, d = -1;
96 while(c <= n) {
97 c <<= 1;
98 ++d;
99 }
100 return(d);
101 }
102
103 void
104 justifyp(poly x) {
105 int j;
106 for(j = x->deg; j >= 0; j--) {
107 if(!is0(x->coe[j])) break;
108 }
109 x->deg = (j>0)? j : 0;
110 }
111
112 void
113 polyrem(poly x) {
114 int j;
115 for(j=0; j <= x->deg; j++) {
116 modg(p, x->coe[j]);
117 }
118 justifyp(x);
119 }
120
121
122 giant *
123 newa(int n) {
124 giant *p = (giant *)malloc(n*sizeof(giant));
125 int j;
126 for(j=0; j<n; j++) {
127 p[j] = newgiant(MAX_DIGS);
128 }
129 return(p);
130 }
131
132 poly
133 newpoly(int coeffs) {
134 poly pol;
135 pol = (poly) malloc(sizeof(polystruct));
136 pol->coe = (giant *)newa(coeffs);
137 return(pol);
138 }
139
140 void
141 init_all() {
142 int j;
143
144 j = (2*Q + log_2(MAX_COEFFS) + 32 + 15)/16;
145 j = j * MAX_COEFFS;
146 globx = newgiant(j);
147 globy = newgiant(j);
148 s[0] = newpoly(MAX_COEFFS);
149
150 for(j=1; j<=L_MAX+1; j++) {
151 s[j] = newpoly(j*(j+1));
152 }
153 smonic = newpoly(MAX_COEFFS);
154 powx = newpoly(MAX_COEFFS);
155 powy = newpoly(MAX_COEFFS);
156 kxn = newpoly(MAX_COEFFS);
157 kxd = newpoly(MAX_COEFFS);
158 kyn = newpoly(MAX_COEFFS);
159 kyd = newpoly(MAX_COEFFS);
160 txn = newpoly(MAX_COEFFS);
161 txd = newpoly(MAX_COEFFS);
162 tyn = newpoly(MAX_COEFFS);
163 tyd = newpoly(MAX_COEFFS);
164 txn1 = newpoly(MAX_COEFFS);
165 txd1 = newpoly(MAX_COEFFS);
166 tyn1 = newpoly(MAX_COEFFS);
167 tyd1 = newpoly(MAX_COEFFS);
168 nx = newpoly(MAX_COEFFS);
169 ny = newpoly(MAX_COEFFS);
170 dx = newpoly(MAX_COEFFS);
171 dy = newpoly(MAX_COEFFS);
172 mn = newpoly(MAX_COEFFS);
173 md = newpoly(MAX_COEFFS);
174 tmp1 = newpoly(MAX_COEFFS);
175 tmp2 = newpoly(MAX_COEFFS);
176 tmp3 = newpoly(MAX_COEFFS);
177 tmp4 = newpoly(MAX_COEFFS);
178 mcand = (giant *)newa(MAX_COEFFS);
179 /* The next three need extra space for remaindering routines. */
180 qscratch = newpoly(2*MAX_COEFFS);
181 rscratch = newpoly(2*MAX_COEFFS);
182 pbuff = newpoly(2*MAX_COEFFS);
183 pbuff2 = newpoly(MAX_COEFFS);
184 sscratch = newpoly(MAX_COEFFS);
185 tscratch = newpoly(MAX_COEFFS);
186 tmp = newgiant(MAX_DIGS);
187 err = newgiant(MAX_DIGS);
188 coe = newgiant(MAX_DIGS);
189 aux = newgiant(MAX_DIGS);
190 aux2 = newgiant(MAX_DIGS);
191 t3 = newgiant(MAX_DIGS);
192 t4 = newgiant(MAX_DIGS);
193 t5 = newgiant(MAX_DIGS);
194 cubic = newpoly(4);
195 precip = newpoly(MAX_COEFFS);
196 }
197
198 void
199 atoa(giant *a, giant *b, int n) {
200 int j;
201 for(j=0; j<n; j++) gtog(a[j], b[j]);
202 }
203
204 void
205 ptop(poly x, poly y)
206 /* y := x. */
207 {
208 y->deg = x->deg;
209 atoa(x->coe, y->coe, y->deg+1);
210 }
211
212 void
213 negp(poly y)
214 /* y := -y. */
215 { int j;
216 for(j=0; j <= y->deg; j++) {
217 negg(y->coe[j]);
218 quickmodg(p, y->coe[j]);
219 }
220 }
221
222 int
223 iszer(giant a) {
224
225 if(a->sign == 0) return(1);
226 return(0);
227
228 }
229
230 int
231 iszerop(poly x) {
232 if(x->deg == 0 && iszer(x->coe[0])) return 1;
233 return 0;
234 }
235
236 int
237 is0(giant a) {
238 return(iszer(a));
239 }
240
241 int
242 is1(giant a) {
243 return(isone(a));
244 }
245
246
247 void
248 addp(poly x, poly y)
249 /* y += x. */
250 {
251 int d = x->deg, j;
252
253 if(y->deg > d) d = y->deg;
254 for(j = 0; j <= d; j++) {
255 if((j <= x->deg) && (j <= y->deg)) {
256 addg(x->coe[j], y->coe[j]);
257 quickmodg(p, y->coe[j]);
258 continue;
259 }
260 if((j <= x->deg) && (j > y->deg)) {
261 gtog(x->coe[j], y->coe[j]);
262 quickmodg(p, y->coe[j]);
263 continue;
264 }
265 }
266 y->deg = d;
267 justifyp(y);
268 }
269
270 void
271 subp(poly x, poly y)
272 /* y -= x. */
273 {
274 int d = x->deg, j;
275
276 if(y->deg > d) d = y->deg;
277 for(j = 0; j <= d; j++) {
278 if((j <= x->deg) && (j <= y->deg)) {
279 subg(x->coe[j], y->coe[j]);
280 quickmodg(p, y->coe[j]);
281 continue;
282 }
283 if((j <= x->deg) && (j > y->deg)) {
284 gtog(x->coe[j], y->coe[j]);
285 negg(y->coe[j]);
286 quickmodg(p, y->coe[j]);
287 continue;
288 }
289 }
290 y->deg = d;
291 justifyp(y);
292 }
293
294
295 void
296 grammarmulp(poly a, poly b)
297 /* b *= a. */
298 {
299 int dega = a->deg, degb = b->deg, deg = dega + degb;
300 register int d, kk, first, diffa;
301
302 for(d=deg; d>=0; d--) {
303 diffa = d-dega;
304 itog(0, coe);
305 for(kk=0; kk<=d; kk++) {
306 if((kk>degb)||(kk<diffa)) continue;
307 gtog(b->coe[kk], tmp);
308 mulg(a->coe[d-kk], tmp);
309 modg(p, tmp);
310 addg(tmp, coe);
311 quickmodg(p, coe);
312 }
313 gtog(coe, mcand[d]);
314 }
315 atoa(mcand, b->coe, deg+1);
316 b->deg = deg;
317 justifyp(b);
318 }
319
320 void
321 atop(giant *a, poly x, int deg)
322 /* Copy array to poly, with monic option. */
323 {
324 int adeg = abs(deg);
325 x->deg = adeg;
326 atoa(a, x->coe, adeg);
327 if(deg < 0) {
328 itog(1, x->coe[adeg]);
329 } else {
330 gtog(a[adeg], x->coe[adeg]);
331 }
332 }
333
334 void
335 just(giant g) {
336 while((g->n[g->sign-1] == 0) && (g->sign > 0)) --g->sign;
337 }
338
339 void
340 unstuff_partial(giant g, poly y, int words){
341 int j;
342 for(j=0; j < y->deg; j++) {
343 bcopy((g->n) + j*words, y->coe[j]->n, words*sizeof(short));
344 y->coe[j]->sign = words;
345 just(y->coe[j]);
346 }
347 }
348
349 void
350 stuff(poly x, giant g, int words) {
351 int deg = x->deg, j, coedigs;
352
353 g->sign = words*(1 + deg);
354 for(j=0; j <= deg; j++) {
355 coedigs = (x->coe[j])->sign;
356 bcopy(x->coe[j]->n, (g->n) + j*words, coedigs*sizeof(short));
357 bzero((g->n) + (j*words+coedigs),
358 sizeof(short)*(words-coedigs));
359 }
360 just(g);
361 }
362
363 int maxwords = 0;
364 void
365
366 binarysegmul(poly x, poly y) {
367 int bits = bitlen(p), xwords, ywords, words;
368
369 xwords = (2*bits + log_2(x->deg+1) + 32 + 15)/16;
370 ywords = (2*bits + log_2(y->deg+1) + 32 + 15)/16;
371 if(xwords > ywords) words = xwords; else words = ywords;
372 stuff(x, globx, words);
373 stuff(y, globy, words);
374 mulg(globx, globy);
375 gtog(y->coe[y->deg], globx); /* Save high coeff. */
376 y->deg += x->deg;
377 gtog(globx, y->coe[y->deg]); /* Move high coeff. */
378 unstuff_partial(globy, y, words);
379 mulg(x->coe[x->deg], y->coe[y->deg]); /* resolve high coeff. */
380 justifyp(y);
381 }
382
383 binarysegsquare(poly y) {
384 int bits = bitlen(p), words;
385 words = (2*bits + log_2(y->deg+1) + 32 + 15)/16;
386 stuff(y, globy, words);
387 squareg(globy);
388 gtog(y->coe[y->deg], globx); /* Save high coeff. */
389 y->deg += y->deg;
390 gtog(globx, y->coe[y->deg]); /* Move high coeff. */
391 unstuff_partial(globy, y, words);
392 mulg(y->coe[y->deg], y->coe[y->deg]); /* resolve high coeff. */
393 justifyp(y);
394 }
395
396 void
397 assess(poly x, poly y){
398 int max = 0, j;
399 for(j=0; j <= x->deg; j++) {
400 if(bitlen(x->coe[j]) > max) max = bitlen(x->coe[j]);
401 }
402 max = 0;
403 for(j=0; j <= y->deg; j++) {
404 if(bitlen(y->coe[j]) > max) max = bitlen(y->coe[j]);
405 }
406 }
407
408 int
409 pcompp(poly x, poly y) {
410 int j;
411 if(x->deg != y->deg) return 1;
412 for(j=0; j <= x->deg; j++) {
413 if(gcompg(x->coe[j], y->coe[j])) return 1;
414 }
415 return 0;
416 }
417
418 /*
419 int max_deg = 0;
420 */
421
422 void
423 mulp(poly x, poly y)
424 /* y *= x. */
425 {
426 int n, degx = x->deg, degy = y->deg;
427
428 /*
429 if(degx > max_deg) {
430 max_deg = degx; printf("xdeg: %d\n", degx);
431 }
432
433 if(degy > max_deg) {
434 max_deg = degy; printf("ydeg: %d\n", degy);
435 }
436 */
437 if((degx < P_BREAK) || (degy < P_BREAK)) {
438 grammarmulp(x,y);
439 justifyp(y);
440 return;
441 }
442 if(x==y) binarysegsquare(y);
443 else binarysegmul(x, y);
444 }
445
446 void
447 revp(poly x)
448 /* Reverse the coefficients of x. */
449 { int j, deg = x->deg;
450
451 for(j=0; j <= deg/2; j++) {
452 gtog(x->coe[deg-j], tmp);
453 gtog(x->coe[j], x->coe[deg-j]);
454 gtog(tmp, x->coe[j]);
455 }
456 justifyp(x);
457 }
458
459 void
460 recipp(poly f, int deg)
461 /* f := 1/f, via newton method. */
462 {
463 int lim = deg + 1, prec = 1;
464
465 sscratch->deg = 0; itog(1, sscratch->coe[0]);
466 itog(1, aux);
467 while(prec < lim) {
468 prec <<= 1;
469 if(prec > lim) prec = lim;
470 f->deg = prec-1;
471 ptop(sscratch, tscratch);
472 mulp(f, tscratch);
473 tscratch->deg = prec-1;
474 polyrem(tscratch);
475 subg(aux, tscratch->coe[0]);
476 quickmodg(p, tscratch->coe[0]);
477 mulp(sscratch, tscratch);
478 tscratch->deg = prec-1;
479 polyrem(tscratch);
480 subp(tscratch, sscratch);
481 sscratch->deg = prec-1;
482 polyrem(sscratch);
483 }
484 justifyp(sscratch);
485 ptop(sscratch, f);
486 }
487
488 int
489 left_justifyp(poly x, int start)
490 /* Left-justify the polynomial, checking from position "start." */
491 {
492 int j, shift = 0;
493
494 for(j = start; j <= x->deg; j++) {
495 if(!is0(x->coe[j])) {
496 shift = start;
497 break;
498 }
499 }
500 x->deg -= shift;
501 for(j=0; j<= x->deg; j++) {
502 gtog(x->coe[j+shift], x->coe[j]);
503 }
504 return(shift);
505 }
506
507 void
508 remp(poly x, poly y, int mode)
509 /* y := x (mod y).
510 mode = 0 is normal operation,
511 = 1 jams a fixed reciprocal,
512 = 2 uses the fixed reciprocal.
513 */
514 {
515 int degx = x->deg, degy = y->deg, d, shift;
516
517 if(degy == 0) {
518 y->deg = 0;
519 itog(0, y->coe[0]);
520 return;
521 }
522 d = degx - degy;
523 if(d < 0) {
524 ptop(x, y);
525 return;
526 }
527 revp(x); revp(y);
528 ptop(y, rscratch);
529 switch(mode) {
530 case 0: recipp(rscratch, d);
531 break;
532 case 1: recipp(rscratch, degy); /* degy -1. */
533 ptop(rscratch, precip);
534 rscratch->deg = d; justifyp(rscratch);
535 break;
536 case 2: ptop(precip, rscratch);
537 rscratch->deg = d; justifyp(rscratch);
538 break;
539 }
540 /* Next, a limited-precision multiply. */
541 if(d < degx) { x->deg = d; justifyp(x);}
542 mulp(x, rscratch);
543 rscratch->deg = d;
544 polyrem(rscratch);
545 justifyp(rscratch);
546 x->deg = degx; justifyp(x);
547 mulp(rscratch, y);
548 subp(x, y);
549 negp(y); polyrem(y);
550 shift = left_justifyp(y, d+1);
551 for(d = y->deg+1; d <= degx-shift; d++) itog(0, y->coe[d]);
552 y->deg = degx - shift;
553 revp(y);
554 revp(x);
555 }
556
557 fullmod(poly x) {
558 polyrem(x);
559 ptop(smonic, s[0]);
560 remp(x, s[0], 2);
561 ptop(s[0], x);
562 polyrem(x);
563 }
564
565 scalarmul(giant s, poly x) {
566 int j;
567 for(j=0; j <= x->deg; j++) {
568 mulg(s, x->coe[j]);
569 modg(p, x->coe[j]);
570 }
571 }
572
573
574 schain(int el) {
575 int j;
576
577 s[0]->deg = 0;
578 itog(0, s[0]->coe[0]);
579
580 s[1]->deg = 0;
581 itog(1, s[1]->coe[0]);
582 s[2]->deg = 0;
583 itog(2, s[2]->coe[0]);
584
585 s[3]->deg = 4;
586 gtog(a, aux); mulg(a, aux); negg(aux);
587 gtog(aux, s[3]->coe[0]);
588 gtog(b, aux); smulg(12, aux);
589 gtog(aux, s[3]->coe[1]);
590 gtog(a, aux); smulg(6, aux);
591 gtog(aux, s[3]->coe[2]);
592 itog(0, s[3]->coe[3]);
593 itog(3, s[3]->coe[4]);
594
595 s[4]->deg = 6;
596 gtog(a, aux); mulg(a, aux); mulg(a, aux);
597 gtog(b, tmp); mulg(b, tmp); smulg(8, tmp); addg(tmp, aux);
598 negg(aux);
599 gtog(aux, s[4]->coe[0]);
600 gtog(b, aux); mulg(a, aux); smulg(4, aux); negg(aux);
601 gtog(aux, s[4]->coe[1]);
602 gtog(a, aux); mulg(a, aux); smulg(5, aux); negg(aux);
603 gtog(aux, s[4]->coe[2]);
604 gtog(b, aux); smulg(20, aux);
605 gtog(aux, s[4]->coe[3]);
606 gtog(a, aux); smulg(5, aux);
607 gtog(aux, s[4]->coe[4]);
608 itog(0, s[4]->coe[5]);
609 itog(1, s[4]->coe[6]);
610 itog(4, aux);
611 scalarmul(aux, s[4]);
612 cubic->deg = 3;
613 itog(1, cubic->coe[3]);
614 itog(0, cubic->coe[2]);
615 gtog(a, cubic->coe[1]);
616 gtog(b, cubic->coe[0]);
617 for(j=5; j <= el; j++) {
618 if(j % 2 == 0) {
619 ptop(s[j/2 + 2], s[j]); mulp(s[j/2-1], s[j]);
620 polyrem(s[j]); mulp(s[j/2-1], s[j]); polyrem(s[j]);
621 ptop(s[j/2-2], s[0]); mulp(s[j/2+1], s[0]); polyrem(s[0]);
622 mulp(s[j/2+1], s[0]); polyrem(s[0]);
623 subp(s[0], s[j]); mulp(s[j/2], s[j]); polyrem(s[j]);
624 gtog(p, aux); iaddg(1, aux); gshiftright(1, aux);
625 scalarmul(aux, s[j]);
626 } else {
627 ptop(s[(j-1)/2+2], s[j]);
628 mulp(s[(j-1)/2], s[j]);
629 polyrem(s[j]);
630 mulp(s[(j-1)/2], s[j]);
631 polyrem(s[j]);
632 mulp(s[(j-1)/2], s[j]);
633 polyrem(s[j]);
634 ptop(s[(j-1)/2-1], s[0]);
635 mulp(s[(j-1)/2 + 1], s[0]); polyrem(s[0]);
636 mulp(s[(j-1)/2 + 1], s[0]); polyrem(s[0]);
637 mulp(s[(j-1)/2 + 1], s[0]); polyrem(s[0]);
638 if(((j-1)/2) % 2 == 1) {
639 mulp(cubic, s[0]); polyrem(s[0]);
640 mulp(cubic, s[0]); polyrem(s[0]);
641 } else {
642 mulp(cubic, s[j]); polyrem(s[j]);
643 mulp(cubic, s[j]); polyrem(s[j]);
644 }
645 // polyout(s[1]); polyout(s[3]); polyout(s[0]); polyout(s[j]);
646 subp(s[0], s[j]);
647 polyrem(s[j]);
648 }
649 }
650 }
651
652 init_recip(int el) {
653 int j;
654 ptop(s[el], smonic);
655 if(el == 2) {
656 mulp(cubic, smonic); polyrem(smonic);
657 }
658 gtog(smonic->coe[smonic->deg], aux); /* High coeff. */
659 binvg(p, aux);
660 scalarmul(aux, smonic); /* s is now monic. */
661 s[0]->deg = smonic->deg + 1;
662 for(j=0; j <= s[0]->deg; j++) itog(1, s[0]->coe[j]);
663 ptop(smonic, pbuff);
664 remp(s[0], pbuff, 1); /* Initialize reciprocal of s as precip. */
665 }
666
667 /* void powerpoly(poly x, giant n)
668 { int len, pos;
669 ptop(x, pbuff);
670 x->deg = 0; itog(1, x->coe[0]);
671 len = bitlen(n);
672 pos = 0;
673 while(1) {
674 if(bitval(n, pos++)) {
675 mulp(pbuff, x);
676 fullmod(x);
677 }
678 if(pos>=len) break;
679 mulp(pbuff, pbuff);
680 fullmod(pbuff);
681 }
682 }
683 */
684
685 void powerpoly(poly x, giant n)
686 /* Base-4 window. */
687 { int pos, code;
688 ptop(x, pbuff); /* x. */
689 ptop(pbuff, pbuff2);
690 mulmod(pbuff2, pbuff2); mulmod(pbuff, pbuff2); /* x^3. */
691 pos = bitlen(n)-2;
692 while(pos >= 0) {
693 mulmod(x, x);
694 if(pos==0) {
695 if(bitval(n, pos) != 0) {
696 mulmod(pbuff, x);
697 }
698 break;
699 }
700 code = (bitval(n, pos) != 0) * 2 + (bitval(n, pos-1) != 0);
701 switch(code) {
702 case 0: mulmod(x,x); break;
703 case 1: mulmod(x,x);
704 mulmod(pbuff, x);
705 break;
706 case 2: mulmod(pbuff, x);
707 mulmod(x,x); break;
708 case 3: mulmod(x,x); mulmod(pbuff2, x); break;
709 }
710 pos -= 2;
711 }
712 }
713
714 mulmod(poly x, poly y) {
715 mulp(x, y); fullmod(y);
716 }
717
718 elldoublep(poly n1, poly d1, poly m1, poly c1, poly n0, poly d0,
719 poly m0, poly c0) {
720
721 ptop(n1, mn); mulmod(n1, mn);
722 ptop(mn, pbuff); addp(mn, mn); addp(pbuff, mn);
723 fullmod(mn);
724 ptop(d1, pbuff); mulmod(d1, pbuff);
725 scalarmul(a, pbuff); addp(pbuff, mn);
726 fullmod(mn);
727 mulmod(c1, mn);
728 ptop(m1, md); addp(md, md);
729 mulmod(d1, md); mulmod(d1, md); mulmod(cubic, md);
730
731 ptop(d1, n0); mulmod(mn, n0); mulmod(mn, n0);
732 mulmod(cubic, n0);
733 ptop(n1, pbuff); addp(pbuff, pbuff); fullmod(pbuff);
734 mulmod(md, pbuff); mulmod(md, pbuff);
735 subp(pbuff, n0); fullmod(n0);
736 ptop(md, d0); mulmod(md, d0); mulmod(d1, d0);
737
738 ptop(mn, m0); mulmod(c1, m0);
739 ptop(d0, pbuff); mulmod(n1, pbuff);
740 ptop(n0, c0); mulmod(d1, c0); subp(c0, pbuff);
741 fullmod(pbuff);
742 mulmod(pbuff, m0);
743 ptop(m1, pbuff); mulmod(md, pbuff);
744 mulmod(d1, pbuff); mulmod(d0, pbuff);
745 subp(pbuff, m0); fullmod(m0);
746
747 ptop(c1, c0); mulmod(md, c0); mulmod(d1, c0); mulmod(d0, c0);
748 }
749
750 elladdp(poly n1, poly d1, poly m1, poly c1, poly n2, poly d2, poly m2, poly c2, poly n0, poly d0, poly m0, poly c0) {
751 ptop(m2, mn); mulmod(c1, mn);
752 ptop(m1, pbuff); mulmod(c2, pbuff);
753 subp(pbuff, mn); fullmod(mn);
754 mulmod(d1, mn); mulmod(d2, mn);
755
756 ptop(n2, md); mulmod(d1, md);
757 ptop(n1, pbuff); mulmod(d2, pbuff);
758 subp(pbuff, md); fullmod(md);
759 mulmod(c1, md); mulmod(c2, md);
760
761 ptop(cubic, n0); mulmod(mn, n0); mulmod(mn, n0);
762 mulmod(d1, n0); mulmod(d2, n0);
763 ptop(n1, pbuff); mulmod(d2, pbuff);
764 ptop(n2, d0); mulmod(d1, d0);
765 addp(d0, pbuff); mulmod(md, pbuff); mulmod(md, pbuff);
766 subp(pbuff, n0); fullmod(n0);
767
768 ptop(md, d0); mulmod(md, d0); mulmod(d1, d0); mulmod(d2, d0);
769
770 ptop(mn, m0); mulmod(c1, m0);
771 ptop(d0, pbuff); mulmod(n1, pbuff);
772 ptop(d1, c0); mulmod(n0, c0);
773 subp(c0, pbuff); fullmod(pbuff);
774 mulmod(pbuff, m0);
775 ptop(m1, pbuff); mulmod(md, pbuff);
776 mulmod(d0, pbuff); mulmod(d1, pbuff);
777 subp(pbuff, m0); fullmod(m0);
778
779 ptop(md, c0); mulmod(c1, c0); mulmod(d0, c0); mulmod(d1, c0);
780
781 }
782
783 polyout(poly x) {
784 int j;
785 for(j=0; j <= x->deg; j++) {printf("%d: ",j); gout(x->coe[j]);}
786 }
787
788 main(int argc, char **argv) {
789 int j, ct = 0, el, xmatch, ymatch;
790 int k, t;
791 int T[L_CEIL], P[L_CEIL], LL[L_CEIL];
792 giant ss[L_CEIL];
793 unsigned int ord, ordminus;
794 point_proj pt, pt2;
795
796 p = newgiant(INFINITY); /* Also sets up internal giants' stacks. */
797 j = ((Q_MAX+15)/16);
798 init_tools(2*j);
799 a = newgiant(j);
800 b = newgiant(j);
801
802 entry:
803 printf("Give p > 3, a, b on separate lines:\n"); fflush(stdout);
804 gin(p); /* Field prime. */
805 if((Q = bitlen(p)) > Q_MAX) {
806 fprintf(stderr, "p too large, larger than %d bits.\n", Q);
807 goto entry;
808 }
809 if(!prime_probable(p)) {
810 fprintf(stderr, "p is not but must be prime.\n", Q);
811 goto entry;
812 }
813 gin(a); gin(b); /* Curve parameters. */
814
815 t1 = newgiant(2*j);
816 t2 = newgiant(2*j);
817 /* Next, discriminant test for legitimacy of curve. */
818 gtog(a, t1); squareg(t1); modg(p, t1); mulg(a, t1); modg(p, t1);
819 gshiftleft(2, t1); /* 4 a^3 mod p. */
820 gtog(b, t2); squareg(t2); modg(p, t2); smulg(27, t2);
821 addg(t2, t1); modg(p, t1);
822 if(isZero(t1)) {
823 fprintf(stderr, "Discriminant FAILED\n");
824 goto entry;
825 }
826 printf("Discriminant PASSED\n"); fflush(stdout);
827
828 /* Next, find an efficient prime power array such that
829 Prod[powers] >= 16 p. */
830
831 /* Create minimal prime power array such that Prod[powers]^2 > 16p. */
832
833 gtog(p, t2); gshiftleft(4, t2); /* t2 := 16p. */
834
835 L_MAX = 3;
836 while(L_MAX <= L_CEIL-1) {
837 for(j=0; j <= L_MAX; j++) LL[j] = 0;
838 for(j=2; j <= L_MAX; j++) {
839 if(primeq(j)) {
840 LL[j] = 1;
841 k = j;
842 while(1) {
843 k *= j;
844 if(k <= L_MAX) {
845 LL[k] = 1;
846 LL[k/j] = 0;
847 }
848 else break;
849 }
850 }
851 }
852 itog(1, t1);
853 for(j=2; j <= L_MAX; j++) {
854 if(LL[j]) { smulg(j, t1); smulg(j, t1); } /* Building up t1^2. */
855 }
856 if(gcompg(t1, t2) > 0) break;
857 ++L_MAX;
858 }
859
860 printf("Initializing for prime powers:\n");
861 for(j=2; j <= L_MAX; j++) {
862 if(LL[j]) printf("%d ", j);
863 }
864 printf("\n");
865 fflush(stdout);
866
867
868 MAX_DIGS = (2 + (Q+15)/8); /* Size of (squared) coefficients. */
869 MAX_COEFFS = ((L_MAX+1)*(L_MAX+2));
870
871 init_all();
872 schain(L_MAX+1);
873
874 for(L = 2; L <= L_MAX; L++) {
875 if(!LL[L]) continue;
876 printf("Resolving Schoof L = %d...\n", L);
877 P[ct] = L; /* Stuff another prime power. */
878 init_recip(L);
879 // printf("s: "); polyout(s[L]);
880 gtog(p, aux2);
881 k = idivg(L, aux2); /* p (mod L). */
882
883 printf("power...\n");
884 txd->deg = 0; itog(1, txd->coe[0]);
885 tyd->deg = 0; itog(1, tyd->coe[0]);
886 txn->deg = 1; itog(0, txn->coe[0]); itog(1, txn->coe[1]);
887 ptop(txn, kxn);
888
889 gtog(p, aux2);
890 powerpoly(txn, aux2); /* x^p. */
891 printf("x^p done...\n");
892 ptop(txn, powx);
893 powerpoly(powx, aux2);
894 printf("x^p^2 done...\n");
895 ptop(cubic, tyn);
896 gtog(p, aux2); itog(1, aux); subg(aux, aux2);
897 gshiftright(1, aux2); /* aux2 := (p-1)/2. */
898 powerpoly(tyn, aux2); /* y^p. */
899 printf("y^p done...\n");
900 ptop(tyn, powy); mulp(tyn, powy); fullmod(powy);
901 mulp(cubic, powy); fullmod(powy);
902 powerpoly(powy, aux2);
903 mulp(tyn, powy); fullmod(powy);
904 printf("Powers done...\n");
905
906 // printf("pow" ); polyout(powx); polyout(powy);
907 ptop(txn, txn1); ptop(txd, txd1); /* Save t = 1 case. */
908 ptop(tyn, tyn1); ptop(tyd, tyd1);
909 /* We now shall test
910 (powx, y powy) + k(kxn/kxd, y kyn/kyd) = t(txn/txd, y tyn/tyd)
911 */
912
913 if(k==1) { ptop(txd, kxd); ptop(txd, kyd);
914 ptop(txd, kyn);
915 } else {
916 ptop(s[k], kxd); mulp(s[k], kxd); fullmod(kxd);
917 if(k%2==0) { mulp(cubic, kxd); fullmod(kxd); }
918 mulp(kxd, kxn); fullmod(kxn);
919 ptop(s[k-1], pbuff); mulp(s[k+1], pbuff); fullmod(pbuff);
920 if(k%2==1) {mulp(cubic, pbuff); fullmod(pbuff); }
921 subp(pbuff, kxn); fullmod(kxn);
922
923 ptop(s[k+2], kyn); mulp(s[k-1], kyn); fullmod(kyn);
924 mulp(s[k-1], kyn); fullmod(kyn);
925 if(k > 2) {
926 ptop(s[k-2], pbuff); mulp(s[k+1], pbuff); fullmod(pbuff);
927 mulp(s[k+1], pbuff); fullmod(pbuff);
928 subp(pbuff, kyn); fullmod(kyn);
929 }
930 ptop(s[k], kyd); mulp(s[k], kyd); fullmod(kyd);
931 mulp(s[k], kyd); fullmod(kyd);
932 if(k%2==0) { mulp(cubic, kyd); fullmod(kyd);
933 mulp(cubic, kyd); fullmod(kyd);}
934 itog(4, aux2); scalarmul(aux2, kyd);
935 }
936 //printf("kP: "); polyout(kxn); polyout(kxd); polyout(kyn); polyout(kyd);
937 /* Commence t = 0 check. */
938 printf("Checking t = %d ...\n", 0);
939 fflush(stdout);
940
941 ptop(powx, pbuff); mulp(kxd, pbuff);
942 subp(kxn, pbuff);
943 fullmod(pbuff);
944
945 xmatch = ymatch = 0;
946 if(iszerop(pbuff)) {
947 xmatch = 1;
948 /* Now check y coords. */
949 if(L == 2) goto resolve;
950 ptop(powy, pbuff); mulp(kyd, pbuff);
951 addp(kyn, pbuff);
952 fullmod(pbuff);
953 if(iszerop(pbuff)) {
954 resolve:
955 printf("%d %d\n", L, 0);
956 T[ct++] = 0;
957 continue;
958 } else ymatch = 1;
959 }
960 /* Combine pt1 and pt2. */
961 if((xmatch == 1) && (ymatch == 1))
962 elldoublep(powx, txd, powy, txd, nx, dx, ny, dy);
963 else
964 elladdp(powx, txd, powy, txd, kxn, kxd, kyn, kyd, nx, dx, ny, dy);
965 /* Now {nx/dx, ny/dy} is (fixed) LHS. */
966 // printf("add12: "); polyout(nx); polyout(dx); polyout(ny); polyout(dy);
967 /* Commence t > 0 check. */
968 for(t=1; t <= L/2; t++) {
969 printf("Checking t = %d ...\n", t);
970 if(t > 1) { /* Add (tx1, ty1) to (txn, tyn). */
971 ptop(txn1, pbuff); mulmod(txd, pbuff);
972 ptop(txn, powx); mulmod(txd1, powx);
973 subp(powx, pbuff); fullmod(pbuff);
974 if(!iszerop(pbuff))
975 elladdp(txn1, txd1, tyn1, tyd1, txn, txd, tyn, tyd,
976 tmp1, tmp2, tmp3, tmp4);
977 else elldoublep(txn, txd, tyn, tyd,
978 tmp1, tmp2, tmp3, tmp4);
979 ptop(tmp1, txn); ptop(tmp2, txd);
980 ptop(tmp3, tyn); ptop(tmp4, tyd);
981 }
982 // printf("tQ: "); polyout(txn); polyout(txd); polyout(tyn); polyout(tyd);
983 /* Next, check {nx/dx, ny/dy} =? {txn/txd, tyn/tyd}. */
984 ptop(nx, pbuff); mulmod(txd, pbuff);
985 ptop(dx, powx); mulmod(txn, powx);
986 subp(powx, pbuff); fullmod(pbuff);
987 if(!iszerop(pbuff)) continue;
988 /* Next, check y. */
989 // printf("y check!\n");
990 ptop(ny, pbuff); mulmod(tyd, pbuff);
991 ptop(dy, powx); mulmod(tyn, powx);
992 subp(powx, pbuff); fullmod(pbuff);
993 if(iszerop(pbuff)) {
994 printf("%d %d\n", L, t);
995 T[ct++] = t;
996 } else {
997 printf("%d %d\n", L, L-t);
998 T[ct++] = L-t;
999 }
1000 fflush(stdout);
1001 break;
1002 }
1003 }
1004
1005 /* Now, prime powers P[] and CRT residues T[] are intact. */
1006 printf("Prime powers L:\n");
1007 printf("{");
1008 for(j=0; j < ct-1; j++) {
1009 printf("%d, ", P[j]);
1010 }
1011 printf("%d }\n", P[ct-1]);
1012
1013 printf("Residues t (mod L):\n");
1014 printf("{");
1015 for(j=0; j < ct-1; j++) {
1016 printf("%d, ", T[j]);
1017 }
1018 printf("%d }\n", T[ct-1]);
1019
1020 /* Mathematica algorithm for order:
1021 plis = {2^5, 3^3, 5^2, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47};
1022 tlis = {1, 26, 4, 2, 4, 11, 6, 5, 19, 22, 10, 16, 7, 22, 11};
1023 prod = Apply[Times, plis];
1024 prlis = prod/plis;
1025 invlis = Table[PowerMod[prlis[[q]], -1, plis[[q]]],{q,1,Length[plis]}];
1026 p = 2^127 - 1;
1027 t = Mod[tlis . (prlis * invlis), prod];
1028 ord = p + 1 - If[t^2 > 4p, t - prod, t]
1029 */
1030
1031 itog(1, t1);
1032 for(j=0; j < ct; j++) {
1033 free(s[j]); /* Just to clear memory. */
1034 smulg(P[j], t1);
1035 }
1036
1037 for(j=0; j < 2*ct; j++) {
1038 ss[j] = newgiant(MAX_DIGS);
1039 }
1040
1041 for(j=0; j < ct; j++) {
1042 gtog(t1, ss[j]);
1043 itog(P[j], t2);
1044 divg(t2, ss[j]);
1045 }
1046
1047 for(j=0; j < ct; j++) {
1048 gtog(ss[j], ss[j+ct]);
1049 itog(P[j], t2);
1050 invg(t2, ss[j+ct]);
1051 }
1052
1053 itog(0, t4);
1054 for(j=0; j < ct; j++) {
1055 itog(T[j], t5);
1056 mulg(ss[j], t5);
1057 mulg(ss[j+ct], t5);
1058 addg(t5, t4);
1059 }
1060 modg(t1, t4);
1061 gtog(p, t5);
1062 iaddg(1, t5);
1063 gtog(t4, t2);
1064 squareg(t4);
1065 gtog(p, t3); gshiftleft(2, t3);
1066 if(gcompg(t4, t3) > 0) subg(t1, t2);
1067 subg(t2, t5);
1068 printf("Parameters:\n");
1069 printf("p = "); gout(p);
1070 printf("a = "); gout(a);
1071 printf("b = "); gout(b);
1072 printf("Curve order:\n");
1073 printf("o = "); gout(t5); gtog(t5, t3); /* Save order as t3. */
1074 printf("Twist order:\n");
1075 printf("o' = ");
1076 addg(t2, t5);
1077 addg(t2, t5);
1078 gout(t5);
1079 /* Next, verify the order. */
1080 printf("Verifying order o:...\n");
1081 init_ell_proj(MAX_DIGS);
1082 pt = new_point_proj(MAX_DIGS);
1083 pt2 = new_point_proj(MAX_DIGS);
1084 itog(1,t2);
1085 find_point_proj(pt, t2, a, b, p);
1086 printf("A point on the curve y^2 = x^3 + a x + b (mod p) is:\n");
1087 printf("(x,y,z) = {\n"); gout(pt->x); printf(",");
1088 gout(pt->y); printf(","); gout(pt->z);
1089 printf("}\n");
1090 ell_mul_proj(pt, pt2, t3, a, p);
1091 printf("A multiple is:\n");
1092 printf("o * (x,y,z) = {\n");
1093 gout(pt2->x); printf(",");gout(pt2->y); printf(",");gout(pt2->z);
1094 printf("}\n");
1095 if(!isZero(pt2->z)) {
1096 printf("TILT: multiple should be point-at-infinity.\n");
1097 exit(1);
1098 }
1099 printf("VERIFIED: multiple is indeed point-at-infinity.\n");
1100 }