2 * The contents of this file are subject to the Mozilla Public
3 * License Version 1.1 (the "License"); you may not use this file
4 * except in compliance with the License. You may obtain a copy of
5 * the License at http://www.mozilla.org/MPL/
7 * Software distributed under the License is distributed on an "AS
8 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
9 * implied. See the License for the specific language governing
10 * rights and limitations under the License.
12 * The Original Code is the Netscape security libraries.
14 * The Initial Developer of the Original Code is Netscape
15 * Communications Corporation. Portions created by Netscape are
16 * Copyright (C) 1994-2000 Netscape Communications Corporation. All
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU General Public License Version 2 or later (the
23 * "GPL"), in which case the provisions of the GPL are applicable
24 * instead of those above. If you wish to allow use of your
25 * version of this file only under the terms of the GPL and not to
26 * allow others to use your version of this file under the MPL,
27 * indicate your decision by deleting the provisions above and
28 * replace them with the notice and other provisions required by
29 * the GPL. If you do not delete the provisions above, a recipient
30 * may use your version of this file under either the MPL or the
35 * Encryption/decryption routines for CMS implementation, none of which are exported.
42 #include <security_asn1/secerr.h>
43 #include <security_asn1/secasn1.h>
44 #include <Security/SecAsn1Templates.h>
45 #include <Security/cssmapi.h>
46 #include <Security/cssmapple.h>
47 #include <Security/SecKeyPriv.h>
50 * -------------------------------------------------------------------
55 typedef OSStatus (*nss_cms_cipher_function
) (void *, unsigned char *, unsigned int *,
56 unsigned int, const unsigned char *, unsigned int);
57 typedef OSStatus (*nss_cms_cipher_destroy
) (void *, Boolean
);
60 #define BLOCK_SIZE 4096
62 struct SecCmsCipherContextStr
{
64 CSSM_CC_HANDLE cc
; /* CSP CONTEXT */
65 Boolean encrypt
; /* encrypt / decrypt switch */
67 void * cx
; /* PK11 cipher context */
68 nss_cms_cipher_function doit
;
69 nss_cms_cipher_destroy destroy
;
70 Boolean encrypt
; /* encrypt / decrypt switch */
71 int block_size
; /* block & pad sizes for cipher */
73 int pending_count
; /* pending data (not yet en/decrypted */
74 unsigned char pending_buf
[BLOCK_SIZE
];/* because of blocking */
78 typedef struct sec_rc2cbcParameterStr
{
79 SECItem rc2ParameterVersion
;
81 } sec_rc2cbcParameter
;
83 static const SecAsn1Template sec_rc2cbc_parameter_template
[] = {
85 0, NULL
, sizeof(sec_rc2cbcParameter
) },
86 { SEC_ASN1_INTEGER
| SEC_ASN1_SIGNED_INT
,
87 offsetof(sec_rc2cbcParameter
,rc2ParameterVersion
) },
88 { SEC_ASN1_OCTET_STRING
,
89 offsetof(sec_rc2cbcParameter
,iv
) },
94 ** Convert a der encoded *signed* integer into a machine integral value.
95 ** If an underflow/overflow occurs, sets error code and returns min/max.
98 DER_GetInteger(SECItem
*it
)
101 CSSM_SIZE len
= it
->Length
;
102 unsigned char *cp
= it
->Data
;
103 unsigned long overflow
= 0x1ffUL
<< (((sizeof(ival
) - 1) * 8) - 1);
104 unsigned long ofloinit
;
108 ofloinit
= ival
& overflow
;
111 if ((ival
& overflow
) != ofloinit
) {
112 PORT_SetError(SEC_ERROR_BAD_DER
);
125 /* S/MIME picked id values to represent differnt keysizes */
126 /* I do have a formula, but it ain't pretty, and it only works because you
127 * can always match three points to a parabola:) */
128 static unsigned char rc2_map(SECItem
*version
)
132 x
= DER_GetInteger(version
);
142 static unsigned long rc2_unmap(unsigned long x
)
152 /* default IV size in bytes */
153 #define DEFAULT_IV_SIZE 8
154 /* IV/block size for AES */
155 #define AES_BLOCK_SIZE 16
156 /* max IV size in bytes */
157 #define MAX_IV_SIZE AES_BLOCK_SIZE
159 static SecCmsCipherContextRef
160 SecCmsCipherContextStart(PRArenaPool
*poolp
, SecSymmetricKeyRef key
, SECAlgorithmID
*algid
, Boolean encrypt
)
162 SecCmsCipherContextRef cc
;
163 CSSM_CC_HANDLE ciphercc
= 0;
166 CSSM_ALGORITHMS algorithm
;
167 CSSM_PADDING padding
= CSSM_PADDING_PKCS7
;
168 CSSM_ENCRYPT_MODE mode
;
169 CSSM_CSP_HANDLE cspHandle
;
170 const CSSM_KEY
*cssmKey
;
172 uint8 ivbuf
[MAX_IV_SIZE
];
173 CSSM_DATA initVector
= { DEFAULT_IV_SIZE
, ivbuf
};
174 //CSSM_CONTEXT_ATTRIBUTE contextAttribute = { CSSM_ATTRIBUTE_ALG_PARAMS, sizeof(CSSM_DATA_PTR) };
176 rv
= SecKeyGetCSPHandle(key
, &cspHandle
);
179 rv
= SecKeyGetCSSMKey(key
, &cssmKey
);
183 // @@@ Add support for PBE based stuff
185 oidData
= SECOID_FindOID(&algid
->algorithm
);
188 algtag
= oidData
->offset
;
189 algorithm
= oidData
->cssmAlgorithm
;
195 case SEC_OID_RC2_CBC
:
197 case SEC_OID_DES_EDE3_CBC
:
198 case SEC_OID_DES_EDE
:
199 case SEC_OID_DES_CBC
:
200 case SEC_OID_RC5_CBC_PAD
:
201 case SEC_OID_FORTEZZA_SKIPJACK
:
202 mode
= CSSM_ALGMODE_CBCPadIV8
;
205 /* RFC 3565 says that these sizes refer to key size, NOT block size */
206 case SEC_OID_AES_128_CBC
:
207 case SEC_OID_AES_192_CBC
:
208 case SEC_OID_AES_256_CBC
:
209 initVector
.Length
= AES_BLOCK_SIZE
;
210 mode
= CSSM_ALGMODE_CBCPadIV8
;
213 case SEC_OID_DES_ECB
:
214 case SEC_OID_AES_128_ECB
:
215 case SEC_OID_AES_192_ECB
:
216 case SEC_OID_AES_256_ECB
:
217 mode
= CSSM_ALGMODE_ECBPad
;
220 case SEC_OID_DES_OFB
:
221 mode
= CSSM_ALGMODE_OFBPadIV8
;
224 case SEC_OID_DES_CFB
:
225 mode
= CSSM_ALGMODE_CFBPadIV8
;
234 CSSM_CC_HANDLE randomcc
;
235 //SECItem *parameters;
237 // Generate random initVector
238 if (CSSM_CSP_CreateRandomGenContext(cspHandle
,
239 CSSM_ALGID_APPLE_YARROW
,
245 if (CSSM_GenerateRandom(randomcc
, &initVector
))
247 CSSM_DeleteContext(randomcc
);
249 // Put IV into algid.parameters
253 case SEC_OID_DES_EDE3_CBC
:
254 case SEC_OID_DES_EDE
:
255 case SEC_OID_DES_CBC
:
256 case SEC_OID_AES_128_CBC
:
257 case SEC_OID_AES_192_CBC
:
258 case SEC_OID_AES_256_CBC
:
259 case SEC_OID_FORTEZZA_SKIPJACK
:
260 case SEC_OID_DES_ECB
:
261 case SEC_OID_AES_128_ECB
:
262 case SEC_OID_AES_192_ECB
:
263 case SEC_OID_AES_256_ECB
:
264 case SEC_OID_DES_OFB
:
265 case SEC_OID_DES_CFB
:
266 /* Just encode the initVector as an octet string. */
267 if (!SEC_ASN1EncodeItem(poolp
, &algid
->parameters
,
268 &initVector
, kSecAsn1OctetStringTemplate
))
272 case SEC_OID_RC2_CBC
:
274 sec_rc2cbcParameter rc2
= {};
275 unsigned long rc2version
;
279 rc2version
= rc2_unmap(cssmKey
->KeyHeader
.LogicalKeySizeInBits
);
280 if (!SEC_ASN1EncodeUnsignedInteger (NULL
, &(rc2
.rc2ParameterVersion
),
283 newParams
= SEC_ASN1EncodeItem (poolp
, &algid
->parameters
, &rc2
,
284 sec_rc2cbc_parameter_template
);
285 PORT_Free(rc2
.rc2ParameterVersion
.Data
);
286 rc2
.rc2ParameterVersion
.Data
= NULL
;
287 if (newParams
== NULL
)
291 case SEC_OID_RC5_CBC_PAD
:
293 // @@@ Implement rc5 params stuff.
300 // Extract IV from algid.parameters
301 // Put IV into algid.parameters
305 case SEC_OID_DES_EDE3_CBC
:
306 case SEC_OID_DES_EDE
:
307 case SEC_OID_DES_CBC
:
308 case SEC_OID_AES_128_CBC
:
309 case SEC_OID_AES_192_CBC
:
310 case SEC_OID_AES_256_CBC
:
311 case SEC_OID_FORTEZZA_SKIPJACK
:
312 case SEC_OID_DES_ECB
:
313 case SEC_OID_AES_128_ECB
:
314 case SEC_OID_AES_192_ECB
:
315 case SEC_OID_AES_256_ECB
:
316 case SEC_OID_DES_OFB
:
317 case SEC_OID_DES_CFB
:
320 /* Just decode the initVector from an octet string. */
321 rv
= SEC_ASN1DecodeItem(NULL
, &iv
, kSecAsn1OctetStringTemplate
, &(algid
->parameters
));
324 if (initVector
.Length
!= iv
.Length
) {
329 memcpy(initVector
.Data
, iv
.Data
, initVector
.Length
);
334 case SEC_OID_RC2_CBC
:
336 sec_rc2cbcParameter rc2
= {};
337 unsigned long ulEffectiveBits
;
339 rv
= SEC_ASN1DecodeItem(NULL
, &rc2
,sec_rc2cbc_parameter_template
,
340 &(algid
->parameters
));
344 if (initVector
.Length
!= rc2
.iv
.Length
) {
345 PORT_Free(rc2
.iv
.Data
);
347 PORT_Free(rc2
.rc2ParameterVersion
.Data
);
348 rc2
.rc2ParameterVersion
.Data
= NULL
;
351 memcpy(initVector
.Data
, rc2
.iv
.Data
, initVector
.Length
);
352 PORT_Free(rc2
.iv
.Data
);
355 ulEffectiveBits
= rc2_map(&rc2
.rc2ParameterVersion
);
356 PORT_Free(rc2
.rc2ParameterVersion
.Data
);
357 rc2
.rc2ParameterVersion
.Data
= NULL
;
358 if (ulEffectiveBits
!= cssmKey
->KeyHeader
.LogicalKeySizeInBits
)
362 case SEC_OID_RC5_CBC_PAD
:
364 // @@@ Implement rc5 params stuff.
370 if (CSSM_CSP_CreateSymmetricContext(cspHandle
,
373 NULL
, /* accessCred */
382 rv
= CSSM_EncryptDataInit(ciphercc
);
384 rv
= CSSM_DecryptDataInit(ciphercc
);
388 cc
= (SecCmsCipherContextRef
)PORT_ZAlloc(sizeof(SecCmsCipherContext
));
393 cc
->encrypt
= encrypt
;
398 CSSM_DeleteContext(ciphercc
);
404 * SecCmsCipherContextStartDecrypt - create a cipher context to do decryption
405 * based on the given bulk * encryption key and algorithm identifier (which may include an iv).
407 * XXX Once both are working, it might be nice to combine this and the
408 * function below (for starting up encryption) into one routine, and just
409 * have two simple cover functions which call it.
411 SecCmsCipherContextRef
412 SecCmsCipherContextStartDecrypt(SecSymmetricKeyRef key
, SECAlgorithmID
*algid
)
414 return SecCmsCipherContextStart(NULL
, key
, algid
, PR_FALSE
);
416 SecCmsCipherContextRef cc
;
418 CK_MECHANISM_TYPE mechanism
;
423 algtag
= SECOID_GetAlgorithmTag(algid
);
425 /* set param and mechanism */
426 if (SEC_PKCS5IsAlgorithmPBEAlg(algid
)) {
427 CK_MECHANISM pbeMech
, cryptoMech
;
428 CSSM_DATA_PTR pbeParams
;
429 SEC_PKCS5KeyAndPassword
*keyPwd
;
431 PORT_Memset(&pbeMech
, 0, sizeof(CK_MECHANISM
));
432 PORT_Memset(&cryptoMech
, 0, sizeof(CK_MECHANISM
));
435 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
437 keyPwd
= (SEC_PKCS5KeyAndPassword
*)key
;
440 /* find correct PK11 mechanism and parameters to initialize pbeMech */
441 pbeMech
.mechanism
= PK11_AlgtagToMechanism(algtag
);
442 pbeParams
= PK11_ParamFromAlgid(algid
);
445 pbeMech
.pParameter
= pbeParams
->Data
;
446 pbeMech
.ulParameterLen
= pbeParams
->Length
;
448 /* now map pbeMech to cryptoMech */
449 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech
, &cryptoMech
, keyPwd
->pwitem
,
450 PR_FALSE
) != CKR_OK
) {
451 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
454 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
456 /* and use it to initialize param & mechanism */
457 if ((param
= (CSSM_DATA_PTR
)PORT_ZAlloc(sizeof(CSSM_DATA
))) == NULL
)
460 param
->Data
= (unsigned char *)cryptoMech
.pParameter
;
461 param
->Length
= cryptoMech
.ulParameterLen
;
462 mechanism
= cryptoMech
.mechanism
;
464 mechanism
= PK11_AlgtagToMechanism(algtag
);
465 if ((param
= PK11_ParamFromAlgid(algid
)) == NULL
)
469 cc
= (SecCmsCipherContextRef
)PORT_ZAlloc(sizeof(SecCmsCipherContext
));
471 SECITEM_FreeItem(param
,PR_TRUE
);
475 /* figure out pad and block sizes */
476 cc
->pad_size
= PK11_GetBlockSize(mechanism
, param
);
477 slot
= PK11_GetSlotFromKey(key
);
478 cc
->block_size
= PK11_IsHW(slot
) ? BLOCK_SIZE
: cc
->pad_size
;
481 /* create PK11 cipher context */
482 ciphercx
= PK11_CreateContextBySymKey(mechanism
, CKA_DECRYPT
, key
, param
);
483 SECITEM_FreeItem(param
, PR_TRUE
);
484 if (ciphercx
== NULL
) {
490 cc
->doit
= (nss_cms_cipher_function
) PK11_CipherOp
;
491 cc
->destroy
= (nss_cms_cipher_destroy
) PK11_DestroyContext
;
492 cc
->encrypt
= PR_FALSE
;
493 cc
->pending_count
= 0;
500 * SecCmsCipherContextStartEncrypt - create a cipher object to do encryption,
501 * based on the given bulk encryption key and algorithm tag. Fill in the algorithm
502 * identifier (which may include an iv) appropriately.
504 * XXX Once both are working, it might be nice to combine this and the
505 * function above (for starting up decryption) into one routine, and just
506 * have two simple cover functions which call it.
508 SecCmsCipherContextRef
509 SecCmsCipherContextStartEncrypt(PRArenaPool
*poolp
, SecSymmetricKeyRef key
, SECAlgorithmID
*algid
)
511 return SecCmsCipherContextStart(poolp
, key
, algid
, PR_TRUE
);
513 SecCmsCipherContextRef cc
;
517 CK_MECHANISM_TYPE mechanism
;
519 Boolean needToEncodeAlgid
= PR_FALSE
;
520 SECOidTag algtag
= SECOID_GetAlgorithmTag(algid
);
522 /* set param and mechanism */
523 if (SEC_PKCS5IsAlgorithmPBEAlg(algid
)) {
524 CK_MECHANISM pbeMech
, cryptoMech
;
525 CSSM_DATA_PTR pbeParams
;
526 SEC_PKCS5KeyAndPassword
*keyPwd
;
528 PORT_Memset(&pbeMech
, 0, sizeof(CK_MECHANISM
));
529 PORT_Memset(&cryptoMech
, 0, sizeof(CK_MECHANISM
));
532 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
534 keyPwd
= (SEC_PKCS5KeyAndPassword
*)key
;
537 /* find correct PK11 mechanism and parameters to initialize pbeMech */
538 pbeMech
.mechanism
= PK11_AlgtagToMechanism(algtag
);
539 pbeParams
= PK11_ParamFromAlgid(algid
);
542 pbeMech
.pParameter
= pbeParams
->Data
;
543 pbeMech
.ulParameterLen
= pbeParams
->Length
;
545 /* now map pbeMech to cryptoMech */
546 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech
, &cryptoMech
, keyPwd
->pwitem
,
547 PR_FALSE
) != CKR_OK
) {
548 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
551 SECITEM_ZfreeItem(pbeParams
, PR_TRUE
);
553 /* and use it to initialize param & mechanism */
554 if ((param
= (CSSM_DATA_PTR
)PORT_ZAlloc(sizeof(CSSM_DATA
))) == NULL
)
557 param
->Data
= (unsigned char *)cryptoMech
.pParameter
;
558 param
->Length
= cryptoMech
.ulParameterLen
;
559 mechanism
= cryptoMech
.mechanism
;
561 mechanism
= PK11_AlgtagToMechanism(algtag
);
562 if ((param
= PK11_GenerateNewParam(mechanism
, key
)) == NULL
)
564 needToEncodeAlgid
= PR_TRUE
;
567 cc
= (SecCmsCipherContextRef
)PORT_ZAlloc(sizeof(SecCmsCipherContext
));
571 /* now find pad and block sizes for our mechanism */
572 cc
->pad_size
= PK11_GetBlockSize(mechanism
,param
);
573 slot
= PK11_GetSlotFromKey(key
);
574 cc
->block_size
= PK11_IsHW(slot
) ? BLOCK_SIZE
: cc
->pad_size
;
577 /* and here we go, creating a PK11 cipher context */
578 ciphercx
= PK11_CreateContextBySymKey(mechanism
, CKA_ENCRYPT
, key
, param
);
579 if (ciphercx
== NULL
) {
586 * These are placed after the CreateContextBySymKey() because some
587 * mechanisms have to generate their IVs from their card (i.e. FORTEZZA).
588 * Don't move it from here.
589 * XXX is that right? the purpose of this is to get the correct algid
590 * containing the IVs etc. for encoding. this means we need to set this up
591 * BEFORE encoding the algid in the contentInfo, right?
593 if (needToEncodeAlgid
) {
594 rv
= PK11_ParamToAlgid(algtag
, param
, poolp
, algid
);
595 if(rv
!= SECSuccess
) {
603 cc
->doit
= (nss_cms_cipher_function
)PK11_CipherOp
;
604 cc
->destroy
= (nss_cms_cipher_destroy
)PK11_DestroyContext
;
605 cc
->encrypt
= PR_TRUE
;
606 cc
->pending_count
= 0;
609 SECITEM_FreeItem(param
, PR_TRUE
);
616 SecCmsCipherContextDestroy(SecCmsCipherContextRef cc
)
618 PORT_Assert(cc
!= NULL
);
621 CSSM_DeleteContext(cc
->cc
);
626 SecCmsCipherContextLength(SecCmsCipherContextRef cc
, unsigned int input_len
, Boolean final
, Boolean encrypt
)
628 CSSM_QUERY_SIZE_DATA dataBlockSize
[2] = { { input_len
, 0 }, { input_len
, 0 } };
629 /* Hack CDSA treats the last block as the final one. So unless we are being asked to report the final size we ask for 2 block and ignore the second (final) one. */
630 OSStatus rv
= CSSM_QuerySize(cc
->cc
, cc
->encrypt
, final
? 1 : 2, dataBlockSize
);
637 return dataBlockSize
[0].SizeOutputBlock
;
641 * SecCmsCipherContextDecryptLength - find the output length of the next call to decrypt.
643 * cc - the cipher context
644 * input_len - number of bytes used as input
645 * final - true if this is the final chunk of data
647 * Result can be used to perform memory allocations. Note that the amount
648 * is exactly accurate only when not doing a block cipher or when final
649 * is false, otherwise it is an upper bound on the amount because until
650 * we see the data we do not know how many padding bytes there are
651 * (always between 1 and bsize).
653 * Note that this can return zero, which does not mean that the decrypt
654 * operation can be skipped! (It simply means that there are not enough
655 * bytes to make up an entire block; the bytes will be reserved until
656 * there are enough to encrypt/decrypt at least one block.) However,
657 * if zero is returned it *does* mean that no output buffer need be
658 * passed in to the subsequent decrypt operation, as no output bytes
662 SecCmsCipherContextDecryptLength(SecCmsCipherContextRef cc
, size_t input_len
, Boolean final
)
665 return SecCmsCipherContextLength(cc
, (unsigned int)input_len
, final
, PR_FALSE
);
667 int blocks
, block_size
;
669 PORT_Assert (! cc
->encrypt
);
671 block_size
= cc
->block_size
;
674 * If this is not a block cipher, then we always have the same
675 * number of output bytes as we had input bytes.
681 * On the final call, we will always use up all of the pending
682 * bytes plus all of the input bytes, *but*, there will be padding
683 * at the end and we cannot predict how many bytes of padding we
684 * will end up removing. The amount given here is actually known
685 * to be at least 1 byte too long (because we know we will have
686 * at least 1 byte of padding), but seemed clearer/better to me.
689 return cc
->pending_count
+ input_len
;
692 * Okay, this amount is exactly what we will output on the
693 * next cipher operation. We will always hang onto the last
694 * 1 - block_size bytes for non-final operations. That is,
695 * we will do as many complete blocks as we can *except* the
696 * last block (complete or partial). (This is because until
697 * we know we are at the end, we cannot know when to interpret
698 * and removing the padding byte(s), which are guaranteed to
701 blocks
= (cc
->pending_count
+ input_len
- 1) / block_size
;
702 return blocks
* block_size
;
707 * SecCmsCipherContextEncryptLength - find the output length of the next call to encrypt.
709 * cc - the cipher context
710 * input_len - number of bytes used as input
711 * final - true if this is the final chunk of data
713 * Result can be used to perform memory allocations.
715 * Note that this can return zero, which does not mean that the encrypt
716 * operation can be skipped! (It simply means that there are not enough
717 * bytes to make up an entire block; the bytes will be reserved until
718 * there are enough to encrypt/decrypt at least one block.) However,
719 * if zero is returned it *does* mean that no output buffer need be
720 * passed in to the subsequent encrypt operation, as no output bytes
724 SecCmsCipherContextEncryptLength(SecCmsCipherContextRef cc
, size_t input_len
, Boolean final
)
727 return SecCmsCipherContextLength(cc
, (unsigned int)input_len
, final
, PR_TRUE
);
729 int blocks
, block_size
;
732 PORT_Assert (cc
->encrypt
);
734 block_size
= cc
->block_size
;
735 pad_size
= cc
->pad_size
;
738 * If this is not a block cipher, then we always have the same
739 * number of output bytes as we had input bytes.
745 * On the final call, we only send out what we need for
746 * remaining bytes plus the padding. (There is always padding,
747 * so even if we have an exact number of blocks as input, we
748 * will add another full block that is just padding.)
752 return cc
->pending_count
+ input_len
;
754 blocks
= (cc
->pending_count
+ input_len
) / pad_size
;
756 return blocks
*pad_size
;
761 * Now, count the number of complete blocks of data we have.
763 blocks
= (cc
->pending_count
+ input_len
) / block_size
;
766 return blocks
* block_size
;
772 SecCmsCipherContextCrypt(SecCmsCipherContextRef cc
, unsigned char *output
,
773 size_t *output_len_p
, size_t max_output_len
,
774 const unsigned char *input
, size_t input_len
,
775 Boolean final
, Boolean encrypt
)
777 CSSM_DATA outputBuf
= { max_output_len
, output
};
778 CSSM_SIZE bytes_output
= 0;
783 CSSM_DATA inputBuf
= { input_len
, (uint8
*)input
};
786 rv
= CSSM_EncryptDataUpdate(cc
->cc
, &inputBuf
, 1, &outputBuf
, 1, &bytes_output
);
788 rv
= CSSM_DecryptDataUpdate(cc
->cc
, &inputBuf
, 1, &outputBuf
, 1, &bytes_output
);
793 CSSM_DATA remainderBuf
= { max_output_len
- bytes_output
, output
+ bytes_output
};
795 rv
= CSSM_EncryptDataFinal(cc
->cc
, &remainderBuf
);
797 rv
= CSSM_DecryptDataFinal(cc
->cc
, &remainderBuf
);
799 bytes_output
+= remainderBuf
.Length
;
803 PORT_SetError(SEC_ERROR_BAD_DATA
);
804 else if (output_len_p
)
805 *output_len_p
= bytes_output
;
811 * SecCmsCipherContextDecrypt - do the decryption
813 * cc - the cipher context
814 * output - buffer for decrypted result bytes
815 * output_len_p - number of bytes in output
816 * max_output_len - upper bound on bytes to put into output
817 * input - pointer to input bytes
818 * input_len - number of input bytes
819 * final - true if this is the final chunk of data
821 * Decrypts a given length of input buffer (starting at "input" and
822 * containing "input_len" bytes), placing the decrypted bytes in
823 * "output" and storing the output length in "*output_len_p".
824 * "cc" is the return value from SecCmsCipherStartDecrypt.
825 * When "final" is true, this is the last of the data to be decrypted.
827 * This is much more complicated than it sounds when the cipher is
828 * a block-type, meaning that the decryption function will only
829 * operate on whole blocks. But our caller is operating stream-wise,
830 * and can pass in any number of bytes. So we need to keep track
831 * of block boundaries. We save excess bytes between calls in "cc".
832 * We also need to determine which bytes are padding, and remove
833 * them from the output. We can only do this step when we know we
834 * have the final block of data. PKCS #7 specifies that the padding
835 * used for a block cipher is a string of bytes, each of whose value is
836 * the same as the length of the padding, and that all data is padded.
837 * (Even data that starts out with an exact multiple of blocks gets
838 * added to it another block, all of which is padding.)
841 SecCmsCipherContextDecrypt(SecCmsCipherContextRef cc
, unsigned char *output
,
842 size_t *output_len_p
, size_t max_output_len
,
843 const unsigned char *input
, size_t input_len
,
847 return SecCmsCipherContextCrypt(cc
, output
,
848 output_len_p
, max_output_len
,
852 int blocks
, bsize
, pcount
, padsize
;
853 unsigned int max_needed
, ifraglen
, ofraglen
, output_len
;
857 PORT_Assert (! cc
->encrypt
);
860 * Check that we have enough room for the output. Our caller should
861 * already handle this; failure is really an internal error (i.e. bug).
863 max_needed
= SecCmsCipherContextDecryptLength(cc
, input_len
, final
);
864 PORT_Assert (max_output_len
>= max_needed
);
865 if (max_output_len
< max_needed
) {
866 /* PORT_SetError (XXX); */
871 * hardware encryption does not like small decryption sizes here, so we
872 * allow both blocking and padding.
874 bsize
= cc
->block_size
;
875 padsize
= cc
->pad_size
;
878 * When no blocking or padding work to do, we can simply call the
879 * cipher function and we are done.
882 return (* cc
->doit
) (cc
->cx
, output
, output_len_p
, max_output_len
,
886 pcount
= cc
->pending_count
;
887 pbuf
= cc
->pending_buf
;
893 * Try to fill in an entire block, starting with the bytes
894 * we already have saved away.
896 while (input_len
&& pcount
< bsize
) {
897 pbuf
[pcount
++] = *input
++;
901 * If we have at most a whole block and this is not our last call,
902 * then we are done for now. (We do not try to decrypt a lone
903 * single block because we cannot interpret the padding bytes
904 * until we know we are handling the very last block of all input.)
906 if (input_len
== 0 && !final
) {
907 cc
->pending_count
= pcount
;
913 * Given the logic above, we expect to have a full block by now.
914 * If we do not, there is something wrong, either with our own
915 * logic or with (length of) the data given to us.
917 if ((padsize
!= 0) && (pcount
% padsize
) != 0) {
919 PORT_SetError (SEC_ERROR_BAD_DATA
);
925 rv
= (*cc
->doit
)(cc
->cx
, output
, &ofraglen
, max_output_len
,
927 if (rv
!= SECSuccess
)
931 * For now anyway, all of our ciphers have the same number of
932 * bytes of output as they do input. If this ever becomes untrue,
933 * then SecCmsCipherContextDecryptLength needs to be made smarter!
935 PORT_Assert(ofraglen
== pcount
);
938 * Account for the bytes now in output.
940 max_output_len
-= ofraglen
;
941 output_len
+= ofraglen
;
946 * If this is our last call, we expect to have an exact number of
947 * blocks left to be decrypted; we will decrypt them all.
949 * If not our last call, we always save between 1 and bsize bytes
950 * until next time. (We must do this because we cannot be sure
951 * that none of the decrypted bytes are padding bytes until we
952 * have at least another whole block of data. You cannot tell by
953 * looking -- the data could be anything -- you can only tell by
954 * context, knowing you are looking at the last block.) We could
955 * decrypt a whole block now but it is easier if we just treat it
956 * the same way we treat partial block bytes.
960 blocks
= input_len
/ padsize
;
961 ifraglen
= blocks
* padsize
;
962 } else ifraglen
= input_len
;
963 PORT_Assert (ifraglen
== input_len
);
965 if (ifraglen
!= input_len
) {
966 PORT_SetError(SEC_ERROR_BAD_DATA
);
970 blocks
= (input_len
- 1) / bsize
;
971 ifraglen
= blocks
* bsize
;
972 PORT_Assert (ifraglen
< input_len
);
974 pcount
= input_len
- ifraglen
;
975 PORT_Memcpy (pbuf
, input
+ ifraglen
, pcount
);
976 cc
->pending_count
= pcount
;
980 rv
= (* cc
->doit
)(cc
->cx
, output
, &ofraglen
, max_output_len
,
982 if (rv
!= SECSuccess
)
986 * For now anyway, all of our ciphers have the same number of
987 * bytes of output as they do input. If this ever becomes untrue,
988 * then sec_PKCS7DecryptLength needs to be made smarter!
990 PORT_Assert (ifraglen
== ofraglen
);
991 if (ifraglen
!= ofraglen
) {
992 PORT_SetError(SEC_ERROR_BAD_DATA
);
996 output_len
+= ofraglen
;
1002 * If we just did our very last block, "remove" the padding by
1003 * adjusting the output length.
1005 if (final
&& (padsize
!= 0)) {
1006 unsigned int padlen
= *(output
+ ofraglen
- 1);
1008 if (padlen
== 0 || padlen
> padsize
) {
1009 PORT_SetError(SEC_ERROR_BAD_DATA
);
1012 output_len
-= padlen
;
1015 PORT_Assert (output_len_p
!= NULL
|| output_len
== 0);
1016 if (output_len_p
!= NULL
)
1017 *output_len_p
= output_len
;
1024 * SecCmsCipherContextEncrypt - do the encryption
1026 * cc - the cipher context
1027 * output - buffer for decrypted result bytes
1028 * output_len_p - number of bytes in output
1029 * max_output_len - upper bound on bytes to put into output
1030 * input - pointer to input bytes
1031 * input_len - number of input bytes
1032 * final - true if this is the final chunk of data
1034 * Encrypts a given length of input buffer (starting at "input" and
1035 * containing "input_len" bytes), placing the encrypted bytes in
1036 * "output" and storing the output length in "*output_len_p".
1037 * "cc" is the return value from SecCmsCipherStartEncrypt.
1038 * When "final" is true, this is the last of the data to be encrypted.
1040 * This is much more complicated than it sounds when the cipher is
1041 * a block-type, meaning that the encryption function will only
1042 * operate on whole blocks. But our caller is operating stream-wise,
1043 * and can pass in any number of bytes. So we need to keep track
1044 * of block boundaries. We save excess bytes between calls in "cc".
1045 * We also need to add padding bytes at the end. PKCS #7 specifies
1046 * that the padding used for a block cipher is a string of bytes,
1047 * each of whose value is the same as the length of the padding,
1048 * and that all data is padded. (Even data that starts out with
1049 * an exact multiple of blocks gets added to it another block,
1050 * all of which is padding.)
1052 * XXX I would kind of like to combine this with the function above
1053 * which does decryption, since they have a lot in common. But the
1054 * tricky parts about padding and filling blocks would be much
1055 * harder to read that way, so I left them separate. At least for
1056 * now until it is clear that they are right.
1059 SecCmsCipherContextEncrypt(SecCmsCipherContextRef cc
, unsigned char *output
,
1060 size_t *output_len_p
, size_t max_output_len
,
1061 const unsigned char *input
, size_t input_len
,
1065 return SecCmsCipherContextCrypt(cc
, output
,
1066 output_len_p
, max_output_len
,
1070 int blocks
, bsize
, padlen
, pcount
, padsize
;
1071 unsigned int max_needed
, ifraglen
, ofraglen
, output_len
;
1072 unsigned char *pbuf
;
1075 PORT_Assert (cc
->encrypt
);
1078 * Check that we have enough room for the output. Our caller should
1079 * already handle this; failure is really an internal error (i.e. bug).
1081 max_needed
= SecCmsCipherContextEncryptLength (cc
, input_len
, final
);
1082 PORT_Assert (max_output_len
>= max_needed
);
1083 if (max_output_len
< max_needed
) {
1084 /* PORT_SetError (XXX); */
1088 bsize
= cc
->block_size
;
1089 padsize
= cc
->pad_size
;
1092 * When no blocking and padding work to do, we can simply call the
1093 * cipher function and we are done.
1096 return (*cc
->doit
)(cc
->cx
, output
, output_len_p
, max_output_len
,
1100 pcount
= cc
->pending_count
;
1101 pbuf
= cc
->pending_buf
;
1107 * Try to fill in an entire block, starting with the bytes
1108 * we already have saved away.
1110 while (input_len
&& pcount
< bsize
) {
1111 pbuf
[pcount
++] = *input
++;
1115 * If we do not have a full block and we know we will be
1116 * called again, then we are done for now.
1118 if (pcount
< bsize
&& !final
) {
1119 cc
->pending_count
= pcount
;
1120 if (output_len_p
!= NULL
)
1125 * If we have a whole block available, encrypt it.
1127 if ((padsize
== 0) || (pcount
% padsize
) == 0) {
1128 rv
= (* cc
->doit
) (cc
->cx
, output
, &ofraglen
, max_output_len
,
1130 if (rv
!= SECSuccess
)
1134 * For now anyway, all of our ciphers have the same number of
1135 * bytes of output as they do input. If this ever becomes untrue,
1136 * then sec_PKCS7EncryptLength needs to be made smarter!
1138 PORT_Assert (ofraglen
== pcount
);
1141 * Account for the bytes now in output.
1143 max_output_len
-= ofraglen
;
1144 output_len
+= ofraglen
;
1152 PORT_Assert (pcount
== 0);
1154 blocks
= input_len
/ bsize
;
1155 ifraglen
= blocks
* bsize
;
1158 rv
= (* cc
->doit
) (cc
->cx
, output
, &ofraglen
, max_output_len
,
1160 if (rv
!= SECSuccess
)
1164 * For now anyway, all of our ciphers have the same number of
1165 * bytes of output as they do input. If this ever becomes untrue,
1166 * then sec_PKCS7EncryptLength needs to be made smarter!
1168 PORT_Assert (ifraglen
== ofraglen
);
1170 max_output_len
-= ofraglen
;
1171 output_len
+= ofraglen
;
1175 pcount
= input_len
- ifraglen
;
1176 PORT_Assert (pcount
< bsize
);
1178 PORT_Memcpy (pbuf
, input
+ ifraglen
, pcount
);
1182 padlen
= padsize
- (pcount
% padsize
);
1183 PORT_Memset (pbuf
+ pcount
, padlen
, padlen
);
1184 rv
= (* cc
->doit
) (cc
->cx
, output
, &ofraglen
, max_output_len
,
1185 pbuf
, pcount
+padlen
);
1186 if (rv
!= SECSuccess
)
1190 * For now anyway, all of our ciphers have the same number of
1191 * bytes of output as they do input. If this ever becomes untrue,
1192 * then sec_PKCS7EncryptLength needs to be made smarter!
1194 PORT_Assert (ofraglen
== (pcount
+padlen
));
1195 output_len
+= ofraglen
;
1197 cc
->pending_count
= pcount
;
1200 PORT_Assert (output_len_p
!= NULL
|| output_len
== 0);
1201 if (output_len_p
!= NULL
)
1202 *output_len_p
= output_len
;