2 * Copyright (c) 2000-2001,2011,2014 Apple Inc. All Rights Reserved.
4 * The contents of this file constitute Original Code as defined in and are
5 * subject to the Apple Public Source License Version 1.2 (the 'License').
6 * You may not use this file except in compliance with the License. Please obtain
7 * a copy of the License at http://www.apple.com/publicsource and read it before
10 * This Original Code and all software distributed under the License are
11 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
12 * OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, INCLUDING WITHOUT
13 * LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
14 * PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. Please see the License for the
15 * specific language governing rights and limitations under the License.
19 /* crypto/bn/bn_mul.c */
20 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
21 * All rights reserved.
23 * This package is an SSL implementation written
24 * by Eric Young (eay@cryptsoft.com).
25 * The implementation was written so as to conform with Netscapes SSL.
27 * This library is free for commercial and non-commercial use as long as
28 * the following conditions are aheared to. The following conditions
29 * apply to all code found in this distribution, be it the RC4, RSA,
30 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
31 * included with this distribution is covered by the same copyright terms
32 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
34 * Copyright remains Eric Young's, and as such any Copyright notices in
35 * the code are not to be removed.
36 * If this package is used in a product, Eric Young should be given attribution
37 * as the author of the parts of the library used.
38 * This can be in the form of a textual message at program startup or
39 * in documentation (online or textual) provided with the package.
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
44 * 1. Redistributions of source code must retain the copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. All advertising materials mentioning features or use of this software
50 * must display the following acknowledgement:
51 * "This product includes cryptographic software written by
52 * Eric Young (eay@cryptsoft.com)"
53 * The word 'cryptographic' can be left out if the rouines from the library
54 * being used are not cryptographic related :-).
55 * 4. If you include any Windows specific code (or a derivative thereof) from
56 * the apps directory (application code) you must include an acknowledgement:
57 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
59 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
60 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
61 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
62 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
63 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
64 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
65 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
66 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
67 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
68 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
71 * The licence and distribution terms for any publically available version or
72 * derivative of this code cannot be changed. i.e. this code cannot simply be
73 * copied and put under another distribution licence
74 * [including the GNU Public Licence.]
82 /* Karatsuba recursive multiplication algorithm
83 * (cf. Knuth, The Art of Computer Programming, Vol. 2) */
85 /* r is 2*n2 words in size,
86 * a and b are both n2 words in size.
87 * n2 must be a power of 2.
88 * We multiply and return the result.
89 * t must be 2*n2 words in size
92 * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0])
95 void bn_mul_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n2
,
99 unsigned int neg
,zero
;
103 printf(" bn_mul_recursive %d * %d\n",n2
,n2
);
109 bn_mul_comba4(r
,a
,b
);
115 bn_mul_comba8(r
,a
,b
);
118 # endif /* BN_MUL_COMBA */
119 if (n2
< BN_MUL_RECURSIVE_SIZE_NORMAL
)
121 /* This should not happen */
122 bn_mul_normal(r
,a
,n2
,b
,n2
);
125 /* r=(a[0]-a[1])*(b[1]-b[0]) */
126 c1
=bn_cmp_words(a
,&(a
[n
]),n
);
127 c2
=bn_cmp_words(&(b
[n
]),b
,n
);
132 bn_sub_words(t
, &(a
[n
]),a
, n
); /* - */
133 bn_sub_words(&(t
[n
]),b
, &(b
[n
]),n
); /* - */
139 bn_sub_words(t
, &(a
[n
]),a
, n
); /* - */
140 bn_sub_words(&(t
[n
]),&(b
[n
]),b
, n
); /* + */
149 bn_sub_words(t
, a
, &(a
[n
]),n
); /* + */
150 bn_sub_words(&(t
[n
]),b
, &(b
[n
]),n
); /* - */
157 bn_sub_words(t
, a
, &(a
[n
]),n
);
158 bn_sub_words(&(t
[n
]),&(b
[n
]),b
, n
);
166 bn_mul_comba4(&(t
[n2
]),t
,&(t
[n
]));
168 memset(&(t
[n2
]),0,8*sizeof(BN_ULONG
));
170 bn_mul_comba4(r
,a
,b
);
171 bn_mul_comba4(&(r
[n2
]),&(a
[n
]),&(b
[n
]));
176 bn_mul_comba8(&(t
[n2
]),t
,&(t
[n
]));
178 memset(&(t
[n2
]),0,16*sizeof(BN_ULONG
));
180 bn_mul_comba8(r
,a
,b
);
181 bn_mul_comba8(&(r
[n2
]),&(a
[n
]),&(b
[n
]));
184 # endif /* BN_MUL_COMBA */
188 bn_mul_recursive(&(t
[n2
]),t
,&(t
[n
]),n
,p
);
190 memset(&(t
[n2
]),0,n2
*sizeof(BN_ULONG
));
191 bn_mul_recursive(r
,a
,b
,n
,p
);
192 bn_mul_recursive(&(r
[n2
]),&(a
[n
]),&(b
[n
]),n
,p
);
195 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
196 * r[10] holds (a[0]*b[0])
197 * r[32] holds (b[1]*b[1])
200 c1
=(int)(bn_add_words(t
,r
,&(r
[n2
]),n2
));
202 if (neg
) /* if t[32] is negative */
204 c1
-=(int)(bn_sub_words(&(t
[n2
]),t
,&(t
[n2
]),n2
));
208 /* Might have a carry */
209 c1
+=(int)(bn_add_words(&(t
[n2
]),&(t
[n2
]),t
,n2
));
212 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
213 * r[10] holds (a[0]*b[0])
214 * r[32] holds (b[1]*b[1])
215 * c1 holds the carry bits
217 c1
+=(int)(bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[n2
]),n2
));
225 /* The overflow will stop before we over write
226 * words we should not overwrite */
227 if (ln
< (BN_ULONG
)c1
)
239 /* n+tn is the word length
240 * t needs to be n*4 is size, as does r */
241 void bn_mul_part_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int tn
,
245 unsigned int c1
,c2
,neg
,zero
;
249 printf(" bn_mul_part_recursive %d * %d\n",tn
+n
,tn
+n
);
254 bn_mul_normal(r
,a
,i
,b
,i
);
258 /* r=(a[0]-a[1])*(b[1]-b[0]) */
259 c1
=bn_cmp_words(a
,&(a
[n
]),n
);
260 c2
=bn_cmp_words(&(b
[n
]),b
,n
);
265 bn_sub_words(t
, &(a
[n
]),a
, n
); /* - */
266 bn_sub_words(&(t
[n
]),b
, &(b
[n
]),n
); /* - */
272 bn_sub_words(t
, &(a
[n
]),a
, n
); /* - */
273 bn_sub_words(&(t
[n
]),&(b
[n
]),b
, n
); /* + */
282 bn_sub_words(t
, a
, &(a
[n
]),n
); /* + */
283 bn_sub_words(&(t
[n
]),b
, &(b
[n
]),n
); /* - */
290 bn_sub_words(t
, a
, &(a
[n
]),n
);
291 bn_sub_words(&(t
[n
]),&(b
[n
]),b
, n
);
294 /* The zero case isn't yet implemented here. The speedup
295 would probably be negligible. */
299 bn_mul_comba4(&(t
[n2
]),t
,&(t
[n
]));
300 bn_mul_comba4(r
,a
,b
);
301 bn_mul_normal(&(r
[n2
]),&(a
[n
]),tn
,&(b
[n
]),tn
);
302 memset(&(r
[n2
+tn
*2]),0,sizeof(BN_ULONG
)*(n2
-tn
*2));
308 bn_mul_comba8(&(t
[n2
]),t
,&(t
[n
]));
309 bn_mul_comba8(r
,a
,b
);
310 bn_mul_normal(&(r
[n2
]),&(a
[n
]),tn
,&(b
[n
]),tn
);
311 memset(&(r
[n2
+tn
*2]),0,sizeof(BN_ULONG
)*(n2
-tn
*2));
316 bn_mul_recursive(&(t
[n2
]),t
,&(t
[n
]),n
,p
);
317 bn_mul_recursive(r
,a
,b
,n
,p
);
319 /* If there is only a bottom half to the number,
324 bn_mul_recursive(&(r
[n2
]),&(a
[n
]),&(b
[n
]),i
,p
);
325 memset(&(r
[n2
+i
*2]),0,sizeof(BN_ULONG
)*(n2
-i
*2));
327 else if (j
> 0) /* eg, n == 16, i == 8 and tn == 11 */
329 bn_mul_part_recursive(&(r
[n2
]),&(a
[n
]),&(b
[n
]),
331 memset(&(r
[n2
+tn
*2]),0,
332 sizeof(BN_ULONG
)*(n2
-tn
*2));
334 else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */
336 memset(&(r
[n2
]),0,sizeof(BN_ULONG
)*n2
);
337 if (tn
< BN_MUL_RECURSIVE_SIZE_NORMAL
)
339 bn_mul_normal(&(r
[n2
]),&(a
[n
]),tn
,&(b
[n
]),tn
);
348 bn_mul_part_recursive(&(r
[n2
]),
355 bn_mul_recursive(&(r
[n2
]),
365 /* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign
366 * r[10] holds (a[0]*b[0])
367 * r[32] holds (b[1]*b[1])
370 c1
=(int)(bn_add_words(t
,r
,&(r
[n2
]),n2
));
372 if (neg
) /* if t[32] is negative */
374 c1
-=(int)(bn_sub_words(&(t
[n2
]),t
,&(t
[n2
]),n2
));
378 /* Might have a carry */
379 c1
+=(int)(bn_add_words(&(t
[n2
]),&(t
[n2
]),t
,n2
));
382 /* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])
383 * r[10] holds (a[0]*b[0])
384 * r[32] holds (b[1]*b[1])
385 * c1 holds the carry bits
387 c1
+=(int)(bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[n2
]),n2
));
395 /* The overflow will stop before we over write
396 * words we should not overwrite */
409 /* a and b must be the same size, which is n2.
410 * r needs to be n2 words and t needs to be n2*2
412 void bn_mul_low_recursive(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n2
,
418 printf(" bn_mul_low_recursive %d * %d\n",n2
,n2
);
421 bn_mul_recursive(r
,a
,b
,n
,&(t
[0]));
422 if (n
>= BN_MUL_LOW_RECURSIVE_SIZE_NORMAL
)
424 bn_mul_low_recursive(&(t
[0]),&(a
[0]),&(b
[n
]),n
,&(t
[n2
]));
425 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[0]),n
);
426 bn_mul_low_recursive(&(t
[0]),&(a
[n
]),&(b
[0]),n
,&(t
[n2
]));
427 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[0]),n
);
431 bn_mul_low_normal(&(t
[0]),&(a
[0]),&(b
[n
]),n
);
432 bn_mul_low_normal(&(t
[n
]),&(a
[n
]),&(b
[0]),n
);
433 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[0]),n
);
434 bn_add_words(&(r
[n
]),&(r
[n
]),&(t
[n
]),n
);
438 /* a and b must be the same size, which is n2.
439 * r needs to be n2 words and t needs to be n2*2
440 * l is the low words of the output.
443 void bn_mul_high(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, BN_ULONG
*l
, int n2
,
449 BN_ULONG ll
,lc
,*lp
,*mp
;
452 printf(" bn_mul_high %d * %d\n",n2
,n2
);
456 /* Calculate (al-ah)*(bh-bl) */
458 c1
=bn_cmp_words(&(a
[0]),&(a
[n
]),n
);
459 c2
=bn_cmp_words(&(b
[n
]),&(b
[0]),n
);
463 bn_sub_words(&(r
[0]),&(a
[n
]),&(a
[0]),n
);
464 bn_sub_words(&(r
[n
]),&(b
[0]),&(b
[n
]),n
);
470 bn_sub_words(&(r
[0]),&(a
[n
]),&(a
[0]),n
);
471 bn_sub_words(&(r
[n
]),&(b
[n
]),&(b
[0]),n
);
480 bn_sub_words(&(r
[0]),&(a
[0]),&(a
[n
]),n
);
481 bn_sub_words(&(r
[n
]),&(b
[0]),&(b
[n
]),n
);
488 bn_sub_words(&(r
[0]),&(a
[0]),&(a
[n
]),n
);
489 bn_sub_words(&(r
[n
]),&(b
[n
]),&(b
[0]),n
);
494 /* t[10] = (a[0]-a[1])*(b[1]-b[0]) */
495 /* r[10] = (a[1]*b[1]) */
499 bn_mul_comba8(&(t
[0]),&(r
[0]),&(r
[n
]));
500 bn_mul_comba8(r
,&(a
[n
]),&(b
[n
]));
505 bn_mul_recursive(&(t
[0]),&(r
[0]),&(r
[n
]),n
,&(t
[n2
]));
506 bn_mul_recursive(r
,&(a
[n
]),&(b
[n
]),n
,&(t
[n2
]));
510 * s1 == low(ah*bh)+low((al-ah)*(bh-bl))+low(al*bl)+high(al*bl)
511 * We know s0 and s1 so the only unknown is high(al*bl)
512 * high(al*bl) == s1 - low(ah*bh+s0+(al-ah)*(bh-bl))
513 * high(al*bl) == s1 - (r[0]+l[0]+t[0])
518 c1
=(int)(bn_add_words(lp
,&(r
[0]),&(l
[0]),n
));
527 neg
=(int)(bn_sub_words(&(t
[n2
]),lp
,&(t
[0]),n
));
530 bn_add_words(&(t
[n2
]),lp
,&(t
[0]),n
);
536 bn_sub_words(&(t
[n2
+n
]),&(l
[n
]),&(t
[n2
]),n
);
543 lp
[i
]=((~mp
[i
])+1)&BN_MASK2
;
548 * t[10] = (a[0]-a[1])*(b[1]-b[0]) neg is the sign
549 * r[10] = (a[1]*b[1])
552 * R[21] = al*bl + ah*bh + (a[0]-a[1])*(b[1]-b[0])
555 /* R[1]=t[3]+l[0]+r[0](+-)t[0] (have carry/borrow)
556 * R[2]=r[0]+t[3]+r[1](+-)t[1] (have carry/borrow)
557 * R[3]=r[1]+(carry/borrow)
562 c1
= (int)(bn_add_words(lp
,&(t
[n2
+n
]),&(l
[0]),n
));
569 c1
+=(int)(bn_add_words(&(t
[n2
]),lp
, &(r
[0]),n
));
571 c1
-=(int)(bn_sub_words(&(t
[n2
]),&(t
[n2
]),&(t
[0]),n
));
573 c1
+=(int)(bn_add_words(&(t
[n2
]),&(t
[n2
]),&(t
[0]),n
));
575 c2
=(int)(bn_add_words(&(r
[0]),&(r
[0]),&(t
[n2
+n
]),n
));
576 c2
+=(int)(bn_add_words(&(r
[0]),&(r
[0]),&(r
[n
]),n
));
578 c2
-=(int)(bn_sub_words(&(r
[0]),&(r
[0]),&(t
[n
]),n
));
580 c2
+=(int)(bn_add_words(&(r
[0]),&(r
[0]),&(t
[n
]),n
));
582 if (c1
!= 0) /* Add starting at r[0], could be +ve or -ve */
589 ll
=(r
[i
]+lc
)&BN_MASK2
;
599 r
[i
++]=(ll
-lc
)&BN_MASK2
;
604 if (c2
!= 0) /* Add starting at r[1] */
611 ll
=(r
[i
]+lc
)&BN_MASK2
;
621 r
[i
++]=(ll
-lc
)&BN_MASK2
;
627 #endif /* BN_RECURSION */
629 int BN_mul(BIGNUM
*r
, BIGNUM
*a
, BIGNUM
*b
, BN_CTX
*ctx
)
634 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
643 printf("BN_mul %d * %d\n",a
->top
,b
->top
);
652 r
->neg
=a
->neg
^b
->neg
;
654 if ((al
== 0) || (bl
== 0))
662 if ((r
== a
) || (r
== b
))
664 if ((rr
= BN_CTX_get(ctx
)) == NULL
) goto err
;
669 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
678 if (bn_wexpand(rr
,8) == NULL
) goto err
;
680 bn_mul_comba4(rr
->d
,a
->d
,b
->d
);
686 if (bn_wexpand(rr
,16) == NULL
) goto err
;
688 bn_mul_comba8(rr
->d
,a
->d
,b
->d
);
692 #endif /* BN_MUL_COMBA */
694 if ((al
>= BN_MULL_SIZE_NORMAL
) && (bl
>= BN_MULL_SIZE_NORMAL
))
696 if (i
== 1 && !BN_get_flags(b
,BN_FLG_STATIC_DATA
))
703 else if (i
== -1 && !BN_get_flags(a
,BN_FLG_STATIC_DATA
))
712 /* symmetric and > 4 */
714 j
=BN_num_bits_word((BN_ULONG
)al
);
718 if (al
== j
) /* exact multiple */
722 bn_mul_recursive(rr
->d
,a
->d
,b
->d
,al
,t
->d
);
730 for (i
=a
->top
; i
<k
; i
++)
732 for (i
=b
->top
; i
<k
; i
++)
734 bn_mul_part_recursive(rr
->d
,a
->d
,b
->d
,al
-j
,j
,t
->d
);
740 #endif /* BN_RECURSION */
741 if (bn_wexpand(rr
,top
) == NULL
) goto err
;
743 bn_mul_normal(rr
->d
,a
->d
,al
,b
->d
,bl
);
745 #if defined(BN_MUL_COMBA) || defined(BN_RECURSION)
749 if (r
!= rr
) BN_copy(r
,rr
);
756 void bn_mul_normal(BN_ULONG
*r
, BN_ULONG
*a
, int na
, BN_ULONG
*b
, int nb
)
761 printf(" bn_mul_normal %d * %d\n",na
,nb
);
769 itmp
=na
; na
=nb
; nb
=itmp
;
774 rr
[0]=bn_mul_words(r
,a
,na
,b
[0]);
778 if (--nb
<= 0) return;
779 rr
[1]=bn_mul_add_words(&(r
[1]),a
,na
,b
[1]);
780 if (--nb
<= 0) return;
781 rr
[2]=bn_mul_add_words(&(r
[2]),a
,na
,b
[2]);
782 if (--nb
<= 0) return;
783 rr
[3]=bn_mul_add_words(&(r
[3]),a
,na
,b
[3]);
784 if (--nb
<= 0) return;
785 rr
[4]=bn_mul_add_words(&(r
[4]),a
,na
,b
[4]);
792 void bn_mul_low_normal(BN_ULONG
*r
, BN_ULONG
*a
, BN_ULONG
*b
, int n
)
795 printf(" bn_mul_low_normal %d * %d\n",n
,n
);
797 bn_mul_words(r
,a
,n
,b
[0]);
801 if (--n
<= 0) return;
802 bn_mul_add_words(&(r
[1]),a
,n
,b
[1]);
803 if (--n
<= 0) return;
804 bn_mul_add_words(&(r
[2]),a
,n
,b
[2]);
805 if (--n
<= 0) return;
806 bn_mul_add_words(&(r
[3]),a
,n
,b
[3]);
807 if (--n
<= 0) return;
808 bn_mul_add_words(&(r
[4]),a
,n
,b
[4]);