]>
git.saurik.com Git - apple/security.git/blob - AppleCSP/MiscCSPAlgs/MD5.c
4 Written by: Colin Plumb
6 Copyright: Copyright 1998 by Apple Computer, Inc., all rights reserved.
8 Change History (most recent first):
10 <7> 10/06/98 ap Changed to compile with C++.
15 /* Copyright (c) 1998 Apple Computer, Inc. All rights reserved.
17 * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT
18 * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE
19 * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE COMPUTER, INC. AND THE
20 * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE COMPUTER,
21 * INC. ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL
22 * EXPOSE YOU TO LIABILITY.
23 ***************************************************************************
29 * This code implements the MD5 message-digest algorithm.
30 * The algorithm is due to Ron Rivest. This code was
31 * written by Colin Plumb in 1993, no copyright is claimed.
32 * This code is in the public domain; do with it what you wish.
34 * Equivalent code is available from RSA Data Security, Inc.
35 * This code has been tested against that, and is equivalent,
36 * except that you don't need to include two pages of legalese
39 * To compute the message digest of a chunk of bytes, declare an
40 * MD5Context structure, pass it to MD5Init, call MD5Update as
41 * needed on buffers full of bytes, and then call MD5Final, which
42 * will fill a supplied 16-byte array with the digest.
48 * 06 Feb 1997 Doug Mitchell at Apple
49 * Fixed endian-dependent cast in MD5Final()
50 * Made byteReverse() tolerant of platform-dependent alignment
58 static inline void intToByteRep(int i
, unsigned char *buf
)
60 *buf
++ = (unsigned char)((i
>> 24) & 0xff);
61 *buf
++ = (unsigned char)((i
>> 16) & 0xff);
62 *buf
++ = (unsigned char)((i
>> 8) & 0xff);
63 *buf
= (unsigned char)(i
& 0xff);
69 static inline void dumpCtx(struct MD5Context
*ctx
, char *label
)
73 printf("%s\n", label
);
76 printf("%x:", ctx
->buf
[i
]);
78 printf("\nbits: %d:%d\n", ctx
->bits
[0], ctx
->bits
[1]);
81 printf("%02x:", ctx
->in
[i
]);
89 #define dumpCtx(ctx, label)
92 static void MD5Transform(uint32 buf
[4], uint32
const in
[16]);
95 #define byteReverse(buf, len) /* Nothing */
97 static void byteReverse(unsigned char *buf
, unsigned longs
);
101 * Note: this code is harmless on little-endian machines.
103 static void byteReverse(unsigned char *buf
, unsigned longs
)
107 * this code is NOT harmless on big-endian machine which require
112 t
= (uint32
) ((unsigned) buf
[3] << 8 | buf
[2]) << 16 |
113 ((unsigned) buf
[1] << 8 | buf
[0]);
132 #endif // __LITTLE_ENDIAN__
135 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
136 * initialization constants.
138 void MD5Init(struct MD5Context
*ctx
)
140 ctx
->buf
[0] = 0x67452301;
141 ctx
->buf
[1] = 0xefcdab89;
142 ctx
->buf
[2] = 0x98badcfe;
143 ctx
->buf
[3] = 0x10325476;
150 * Update context to reflect the concatenation of another buffer full
153 void MD5Update(struct MD5Context
*ctx
, unsigned char const *buf
, unsigned len
)
157 dumpCtx(ctx
, "MD5.c update top");
158 /* Update bitcount */
161 if ((ctx
->bits
[0] = t
+ ((uint32
) len
<< 3)) < t
)
162 ctx
->bits
[1]++; /* Carry from low to high */
163 ctx
->bits
[1] += len
>> 29;
165 t
= (t
>> 3) & 0x3f; /* Bytes already in shsInfo->data */
167 /* Handle any leading odd-sized chunks */
170 unsigned char *p
= (unsigned char *) ctx
->in
+ t
;
178 byteReverse(ctx
->in
, 16);
179 MD5Transform(ctx
->buf
, (uint32
*) ctx
->in
);
180 dumpCtx(ctx
, "update - return from transform (1)");
184 /* Process data in 64-byte chunks */
187 memcpy(ctx
->in
, buf
, 64);
188 byteReverse(ctx
->in
, 16);
189 MD5Transform(ctx
->buf
, (uint32
*) ctx
->in
);
190 dumpCtx(ctx
, "update - return from transform (2)");
195 /* Handle any remaining bytes of data. */
197 memcpy(ctx
->in
, buf
, len
);
201 * Final wrapup - pad to 64-byte boundary with the bit pattern
202 * 1 0* (64-bit count of bits processed, MSB-first)
204 void MD5Final(struct MD5Context
*ctx
, unsigned char *digest
)
209 dumpCtx(ctx
, "final top");
211 /* Compute number of bytes mod 64 */
212 count
= (ctx
->bits
[0] >> 3) & 0x3F;
214 /* Set the first char of padding to 0x80. This is safe since there is
215 always at least one byte free */
219 printf("in[%d] = %x\n", count
, ctx
->in
[count
]);
221 /* Bytes of padding needed to make 64 bytes */
222 count
= 64 - 1 - count
;
224 /* Pad out to 56 mod 64 */
225 dumpCtx(ctx
, "final, before pad");
227 /* Two lots of padding: Pad the first block to 64 bytes */
229 byteReverse(ctx
->in
, 16);
230 MD5Transform(ctx
->buf
, (uint32
*) ctx
->in
);
232 /* Now fill the next block with 56 bytes */
235 /* Pad block to 56 bytes */
238 byteReverse(ctx
->in
, 14);
240 /* Append length in bits and transform */
243 * On a little endian machine, this writes the l.s. byte of
244 * the bit count to ctx->in[56] and the m.s byte of the bit count to
247 ((uint32
*) ctx
->in
)[14] = ctx
->bits
[0];
248 ((uint32
*) ctx
->in
)[15] = ctx
->bits
[1];
250 intToByteRep(ctx
->bits
[0], &ctx
->in
[56]);
251 intToByteRep(ctx
->bits
[1], &ctx
->in
[60]);
254 dumpCtx(ctx
, "last transform");
255 MD5Transform(ctx
->buf
, (uint32
*) ctx
->in
);
256 byteReverse((unsigned char *) ctx
->buf
, 4);
257 memcpy(digest
, ctx
->buf
, MD5_DIGEST_SIZE
);
258 dumpCtx(ctx
, "final end");
260 bzero(ctx
, sizeof(ctx
)); /* In case it's sensitive */
265 /* The four core functions - F1 is optimized somewhat */
267 /* #define F1(x, y, z) (x & y | ~x & z) */
268 #define F1(x, y, z) (z ^ (x & (y ^ z)))
269 #define F2(x, y, z) F1(z, x, y)
270 #define F3(x, y, z) (x ^ y ^ z)
271 #define F4(x, y, z) (y ^ (x | ~z))
273 /* This is the central step in the MD5 algorithm. */
274 #define MD5STEP(f, w, x, y, z, data, s) \
275 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
278 * The core of the MD5 algorithm, this alters an existing MD5 hash to
279 * reflect the addition of 16 longwords of new data. MD5Update blocks
280 * the data and converts bytes into longwords for this routine.
282 static void MD5Transform(uint32 buf
[4], uint32
const in
[16])
284 register uint32 a
, b
, c
, d
;
291 MD5STEP(F1
, a
, b
, c
, d
, in
[0] + 0xd76aa478, 7);
292 MD5STEP(F1
, d
, a
, b
, c
, in
[1] + 0xe8c7b756, 12);
293 MD5STEP(F1
, c
, d
, a
, b
, in
[2] + 0x242070db, 17);
294 MD5STEP(F1
, b
, c
, d
, a
, in
[3] + 0xc1bdceee, 22);
295 MD5STEP(F1
, a
, b
, c
, d
, in
[4] + 0xf57c0faf, 7);
296 MD5STEP(F1
, d
, a
, b
, c
, in
[5] + 0x4787c62a, 12);
297 MD5STEP(F1
, c
, d
, a
, b
, in
[6] + 0xa8304613, 17);
298 MD5STEP(F1
, b
, c
, d
, a
, in
[7] + 0xfd469501, 22);
299 MD5STEP(F1
, a
, b
, c
, d
, in
[8] + 0x698098d8, 7);
300 MD5STEP(F1
, d
, a
, b
, c
, in
[9] + 0x8b44f7af, 12);
301 MD5STEP(F1
, c
, d
, a
, b
, in
[10] + 0xffff5bb1, 17);
302 MD5STEP(F1
, b
, c
, d
, a
, in
[11] + 0x895cd7be, 22);
303 MD5STEP(F1
, a
, b
, c
, d
, in
[12] + 0x6b901122, 7);
304 MD5STEP(F1
, d
, a
, b
, c
, in
[13] + 0xfd987193, 12);
305 MD5STEP(F1
, c
, d
, a
, b
, in
[14] + 0xa679438e, 17);
306 MD5STEP(F1
, b
, c
, d
, a
, in
[15] + 0x49b40821, 22);
308 MD5STEP(F2
, a
, b
, c
, d
, in
[1] + 0xf61e2562, 5);
309 MD5STEP(F2
, d
, a
, b
, c
, in
[6] + 0xc040b340, 9);
310 MD5STEP(F2
, c
, d
, a
, b
, in
[11] + 0x265e5a51, 14);
311 MD5STEP(F2
, b
, c
, d
, a
, in
[0] + 0xe9b6c7aa, 20);
312 MD5STEP(F2
, a
, b
, c
, d
, in
[5] + 0xd62f105d, 5);
313 MD5STEP(F2
, d
, a
, b
, c
, in
[10] + 0x02441453, 9);
314 MD5STEP(F2
, c
, d
, a
, b
, in
[15] + 0xd8a1e681, 14);
315 MD5STEP(F2
, b
, c
, d
, a
, in
[4] + 0xe7d3fbc8, 20);
316 MD5STEP(F2
, a
, b
, c
, d
, in
[9] + 0x21e1cde6, 5);
317 MD5STEP(F2
, d
, a
, b
, c
, in
[14] + 0xc33707d6, 9);
318 MD5STEP(F2
, c
, d
, a
, b
, in
[3] + 0xf4d50d87, 14);
319 MD5STEP(F2
, b
, c
, d
, a
, in
[8] + 0x455a14ed, 20);
320 MD5STEP(F2
, a
, b
, c
, d
, in
[13] + 0xa9e3e905, 5);
321 MD5STEP(F2
, d
, a
, b
, c
, in
[2] + 0xfcefa3f8, 9);
322 MD5STEP(F2
, c
, d
, a
, b
, in
[7] + 0x676f02d9, 14);
323 MD5STEP(F2
, b
, c
, d
, a
, in
[12] + 0x8d2a4c8a, 20);
325 MD5STEP(F3
, a
, b
, c
, d
, in
[5] + 0xfffa3942, 4);
326 MD5STEP(F3
, d
, a
, b
, c
, in
[8] + 0x8771f681, 11);
327 MD5STEP(F3
, c
, d
, a
, b
, in
[11] + 0x6d9d6122, 16);
328 MD5STEP(F3
, b
, c
, d
, a
, in
[14] + 0xfde5380c, 23);
329 MD5STEP(F3
, a
, b
, c
, d
, in
[1] + 0xa4beea44, 4);
330 MD5STEP(F3
, d
, a
, b
, c
, in
[4] + 0x4bdecfa9, 11);
331 MD5STEP(F3
, c
, d
, a
, b
, in
[7] + 0xf6bb4b60, 16);
332 MD5STEP(F3
, b
, c
, d
, a
, in
[10] + 0xbebfbc70, 23);
333 MD5STEP(F3
, a
, b
, c
, d
, in
[13] + 0x289b7ec6, 4);
334 MD5STEP(F3
, d
, a
, b
, c
, in
[0] + 0xeaa127fa, 11);
335 MD5STEP(F3
, c
, d
, a
, b
, in
[3] + 0xd4ef3085, 16);
336 MD5STEP(F3
, b
, c
, d
, a
, in
[6] + 0x04881d05, 23);
337 MD5STEP(F3
, a
, b
, c
, d
, in
[9] + 0xd9d4d039, 4);
338 MD5STEP(F3
, d
, a
, b
, c
, in
[12] + 0xe6db99e5, 11);
339 MD5STEP(F3
, c
, d
, a
, b
, in
[15] + 0x1fa27cf8, 16);
340 MD5STEP(F3
, b
, c
, d
, a
, in
[2] + 0xc4ac5665, 23);
342 MD5STEP(F4
, a
, b
, c
, d
, in
[0] + 0xf4292244, 6);
343 MD5STEP(F4
, d
, a
, b
, c
, in
[7] + 0x432aff97, 10);
344 MD5STEP(F4
, c
, d
, a
, b
, in
[14] + 0xab9423a7, 15);
345 MD5STEP(F4
, b
, c
, d
, a
, in
[5] + 0xfc93a039, 21);
346 MD5STEP(F4
, a
, b
, c
, d
, in
[12] + 0x655b59c3, 6);
347 MD5STEP(F4
, d
, a
, b
, c
, in
[3] + 0x8f0ccc92, 10);
348 MD5STEP(F4
, c
, d
, a
, b
, in
[10] + 0xffeff47d, 15);
349 MD5STEP(F4
, b
, c
, d
, a
, in
[1] + 0x85845dd1, 21);
350 MD5STEP(F4
, a
, b
, c
, d
, in
[8] + 0x6fa87e4f, 6);
351 MD5STEP(F4
, d
, a
, b
, c
, in
[15] + 0xfe2ce6e0, 10);
352 MD5STEP(F4
, c
, d
, a
, b
, in
[6] + 0xa3014314, 15);
353 MD5STEP(F4
, b
, c
, d
, a
, in
[13] + 0x4e0811a1, 21);
354 MD5STEP(F4
, a
, b
, c
, d
, in
[4] + 0xf7537e82, 6);
355 MD5STEP(F4
, d
, a
, b
, c
, in
[11] + 0xbd3af235, 10);
356 MD5STEP(F4
, c
, d
, a
, b
, in
[2] + 0x2ad7d2bb, 15);
357 MD5STEP(F4
, b
, c
, d
, a
, in
[9] + 0xeb86d391, 21);