]> git.saurik.com Git - apple/security.git/blob - AppleCSP/MiscCSPAlgs/MD5.c
Security-54.1.tar.gz
[apple/security.git] / AppleCSP / MiscCSPAlgs / MD5.c
1 /*
2 File: MD5.c
3
4 Written by: Colin Plumb
5
6 Copyright: Copyright 1998 by Apple Computer, Inc., all rights reserved.
7
8 Change History (most recent first):
9
10 <7> 10/06/98 ap Changed to compile with C++.
11
12 To Do:
13 */
14
15 /* Copyright (c) 1998 Apple Computer, Inc. All rights reserved.
16 *
17 * NOTICE: USE OF THE MATERIALS ACCOMPANYING THIS NOTICE IS SUBJECT
18 * TO THE TERMS OF THE SIGNED "FAST ELLIPTIC ENCRYPTION (FEE) REFERENCE
19 * SOURCE CODE EVALUATION AGREEMENT" BETWEEN APPLE COMPUTER, INC. AND THE
20 * ORIGINAL LICENSEE THAT OBTAINED THESE MATERIALS FROM APPLE COMPUTER,
21 * INC. ANY USE OF THESE MATERIALS NOT PERMITTED BY SUCH AGREEMENT WILL
22 * EXPOSE YOU TO LIABILITY.
23 ***************************************************************************
24 *
25 * MD5.c
26 */
27
28 /*
29 * This code implements the MD5 message-digest algorithm.
30 * The algorithm is due to Ron Rivest. This code was
31 * written by Colin Plumb in 1993, no copyright is claimed.
32 * This code is in the public domain; do with it what you wish.
33 *
34 * Equivalent code is available from RSA Data Security, Inc.
35 * This code has been tested against that, and is equivalent,
36 * except that you don't need to include two pages of legalese
37 * with every copy.
38 *
39 * To compute the message digest of a chunk of bytes, declare an
40 * MD5Context structure, pass it to MD5Init, call MD5Update as
41 * needed on buffers full of bytes, and then call MD5Final, which
42 * will fill a supplied 16-byte array with the digest.
43 */
44
45 /*
46 * Revision History
47 * ----------------
48 * 06 Feb 1997 Doug Mitchell at Apple
49 * Fixed endian-dependent cast in MD5Final()
50 * Made byteReverse() tolerant of platform-dependent alignment
51 * restrictions
52 */
53
54 #include "MD5.h"
55 #include "platform.h"
56 #include <stdlib.h>
57
58 static inline void intToByteRep(int i, unsigned char *buf)
59 {
60 *buf++ = (unsigned char)((i >> 24) & 0xff);
61 *buf++ = (unsigned char)((i >> 16) & 0xff);
62 *buf++ = (unsigned char)((i >> 8) & 0xff);
63 *buf = (unsigned char)(i & 0xff);
64 }
65
66 #define MD5_DEBUG 0
67
68 #if MD5_DEBUG
69 static inline void dumpCtx(struct MD5Context *ctx, char *label)
70 {
71 int i;
72
73 printf("%s\n", label);
74 printf("buf = ");
75 for(i=0; i<4; i++) {
76 printf("%x:", ctx->buf[i]);
77 }
78 printf("\nbits: %d:%d\n", ctx->bits[0], ctx->bits[1]);
79 printf("in[]:\n ");
80 for(i=0; i<64; i++) {
81 printf("%02x:", ctx->in[i]);
82 if((i % 16) == 15) {
83 printf("\n ");
84 }
85 }
86 printf("\n");
87 }
88 #else // MD5_DEBUG
89 #define dumpCtx(ctx, label)
90 #endif // MD5_DEBUG
91
92 static void MD5Transform(uint32 buf[4], uint32 const in[16]);
93
94 #if __LITTLE_ENDIAN__
95 #define byteReverse(buf, len) /* Nothing */
96 #else
97 static void byteReverse(unsigned char *buf, unsigned longs);
98
99 #ifndef ASM_MD5
100 /*
101 * Note: this code is harmless on little-endian machines.
102 */
103 static void byteReverse(unsigned char *buf, unsigned longs)
104 {
105 #if old_way
106 /*
107 * this code is NOT harmless on big-endian machine which require
108 * natural alignment.
109 */
110 uint32 t;
111 do {
112 t = (uint32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
113 ((unsigned) buf[1] << 8 | buf[0]);
114 *(uint32 *) buf = t;
115 buf += 4;
116 } while (--longs);
117 #else // new_way
118
119 unsigned char t;
120 do {
121 t = buf[0];
122 buf[0] = buf[3];
123 buf[3] = t;
124 t = buf[1];
125 buf[1] = buf[2];
126 buf[2] = t;
127 buf += 4;
128 } while (--longs);
129 #endif // old_way
130 }
131 #endif // ASM_MD5
132 #endif // __LITTLE_ENDIAN__
133
134 /*
135 * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
136 * initialization constants.
137 */
138 void MD5Init(struct MD5Context *ctx)
139 {
140 ctx->buf[0] = 0x67452301;
141 ctx->buf[1] = 0xefcdab89;
142 ctx->buf[2] = 0x98badcfe;
143 ctx->buf[3] = 0x10325476;
144
145 ctx->bits[0] = 0;
146 ctx->bits[1] = 0;
147 }
148
149 /*
150 * Update context to reflect the concatenation of another buffer full
151 * of bytes.
152 */
153 void MD5Update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
154 {
155 uint32 t;
156
157 dumpCtx(ctx, "MD5.c update top");
158 /* Update bitcount */
159
160 t = ctx->bits[0];
161 if ((ctx->bits[0] = t + ((uint32) len << 3)) < t)
162 ctx->bits[1]++; /* Carry from low to high */
163 ctx->bits[1] += len >> 29;
164
165 t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
166
167 /* Handle any leading odd-sized chunks */
168
169 if (t) {
170 unsigned char *p = (unsigned char *) ctx->in + t;
171
172 t = 64 - t;
173 if (len < t) {
174 memcpy(p, buf, len);
175 return;
176 }
177 memcpy(p, buf, t);
178 byteReverse(ctx->in, 16);
179 MD5Transform(ctx->buf, (uint32 *) ctx->in);
180 dumpCtx(ctx, "update - return from transform (1)");
181 buf += t;
182 len -= t;
183 }
184 /* Process data in 64-byte chunks */
185
186 while (len >= 64) {
187 memcpy(ctx->in, buf, 64);
188 byteReverse(ctx->in, 16);
189 MD5Transform(ctx->buf, (uint32 *) ctx->in);
190 dumpCtx(ctx, "update - return from transform (2)");
191 buf += 64;
192 len -= 64;
193 }
194
195 /* Handle any remaining bytes of data. */
196
197 memcpy(ctx->in, buf, len);
198 }
199
200 /*
201 * Final wrapup - pad to 64-byte boundary with the bit pattern
202 * 1 0* (64-bit count of bits processed, MSB-first)
203 */
204 void MD5Final(struct MD5Context *ctx, unsigned char *digest)
205 {
206 unsigned count;
207 unsigned char *p;
208
209 dumpCtx(ctx, "final top");
210
211 /* Compute number of bytes mod 64 */
212 count = (ctx->bits[0] >> 3) & 0x3F;
213
214 /* Set the first char of padding to 0x80. This is safe since there is
215 always at least one byte free */
216 p = ctx->in + count;
217 *p++ = 0x80;
218 #if MD5_DEBUG
219 printf("in[%d] = %x\n", count, ctx->in[count]);
220 #endif
221 /* Bytes of padding needed to make 64 bytes */
222 count = 64 - 1 - count;
223
224 /* Pad out to 56 mod 64 */
225 dumpCtx(ctx, "final, before pad");
226 if (count < 8) {
227 /* Two lots of padding: Pad the first block to 64 bytes */
228 bzero(p, count);
229 byteReverse(ctx->in, 16);
230 MD5Transform(ctx->buf, (uint32 *) ctx->in);
231
232 /* Now fill the next block with 56 bytes */
233 bzero(ctx->in, 56);
234 } else {
235 /* Pad block to 56 bytes */
236 bzero(p, count - 8);
237 }
238 byteReverse(ctx->in, 14);
239
240 /* Append length in bits and transform */
241 #if old_way
242 /*
243 * On a little endian machine, this writes the l.s. byte of
244 * the bit count to ctx->in[56] and the m.s byte of the bit count to
245 * ctx->in[63].
246 */
247 ((uint32 *) ctx->in)[14] = ctx->bits[0];
248 ((uint32 *) ctx->in)[15] = ctx->bits[1];
249 #else // new_way
250 intToByteRep(ctx->bits[0], &ctx->in[56]);
251 intToByteRep(ctx->bits[1], &ctx->in[60]);
252 #endif // new_way
253
254 dumpCtx(ctx, "last transform");
255 MD5Transform(ctx->buf, (uint32 *) ctx->in);
256 byteReverse((unsigned char *) ctx->buf, 4);
257 memcpy(digest, ctx->buf, MD5_DIGEST_SIZE);
258 dumpCtx(ctx, "final end");
259
260 bzero(ctx, sizeof(ctx)); /* In case it's sensitive */
261 }
262
263 #ifndef ASM_MD5
264
265 /* The four core functions - F1 is optimized somewhat */
266
267 /* #define F1(x, y, z) (x & y | ~x & z) */
268 #define F1(x, y, z) (z ^ (x & (y ^ z)))
269 #define F2(x, y, z) F1(z, x, y)
270 #define F3(x, y, z) (x ^ y ^ z)
271 #define F4(x, y, z) (y ^ (x | ~z))
272
273 /* This is the central step in the MD5 algorithm. */
274 #define MD5STEP(f, w, x, y, z, data, s) \
275 ( w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x )
276
277 /*
278 * The core of the MD5 algorithm, this alters an existing MD5 hash to
279 * reflect the addition of 16 longwords of new data. MD5Update blocks
280 * the data and converts bytes into longwords for this routine.
281 */
282 static void MD5Transform(uint32 buf[4], uint32 const in[16])
283 {
284 register uint32 a, b, c, d;
285
286 a = buf[0];
287 b = buf[1];
288 c = buf[2];
289 d = buf[3];
290
291 MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
292 MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
293 MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
294 MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
295 MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
296 MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
297 MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
298 MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
299 MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
300 MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
301 MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
302 MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
303 MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
304 MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
305 MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
306 MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
307
308 MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
309 MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
310 MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
311 MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
312 MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
313 MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
314 MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
315 MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
316 MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
317 MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
318 MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
319 MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
320 MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
321 MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
322 MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
323 MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
324
325 MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
326 MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
327 MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
328 MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
329 MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
330 MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
331 MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
332 MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
333 MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
334 MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
335 MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
336 MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
337 MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
338 MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
339 MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
340 MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
341
342 MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
343 MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
344 MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
345 MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
346 MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
347 MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
348 MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
349 MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
350 MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
351 MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
352 MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
353 MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
354 MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
355 MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
356 MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
357 MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
358
359 buf[0] += a;
360 buf[1] += b;
361 buf[2] += c;
362 buf[3] += d;
363 }
364
365 #endif // ASM_MD5