]> git.saurik.com Git - apple/security.git/blob - OSX/libsecurity_smime/lib/cmscipher.c
Security-57336.1.9.tar.gz
[apple/security.git] / OSX / libsecurity_smime / lib / cmscipher.c
1 /*
2 * The contents of this file are subject to the Mozilla Public
3 * License Version 1.1 (the "License"); you may not use this file
4 * except in compliance with the License. You may obtain a copy of
5 * the License at http://www.mozilla.org/MPL/
6 *
7 * Software distributed under the License is distributed on an "AS
8 * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
9 * implied. See the License for the specific language governing
10 * rights and limitations under the License.
11 *
12 * The Original Code is the Netscape security libraries.
13 *
14 * The Initial Developer of the Original Code is Netscape
15 * Communications Corporation. Portions created by Netscape are
16 * Copyright (C) 1994-2000 Netscape Communications Corporation. All
17 * Rights Reserved.
18 *
19 * Contributor(s):
20 *
21 * Alternatively, the contents of this file may be used under the
22 * terms of the GNU General Public License Version 2 or later (the
23 * "GPL"), in which case the provisions of the GPL are applicable
24 * instead of those above. If you wish to allow use of your
25 * version of this file only under the terms of the GPL and not to
26 * allow others to use your version of this file under the MPL,
27 * indicate your decision by deleting the provisions above and
28 * replace them with the notice and other provisions required by
29 * the GPL. If you do not delete the provisions above, a recipient
30 * may use your version of this file under either the MPL or the
31 * GPL.
32 */
33
34 /*
35 * Encryption/decryption routines for CMS implementation, none of which are exported.
36 *
37 */
38
39 #include "cmslocal.h"
40
41 #include "secoid.h"
42 #include <security_asn1/secerr.h>
43 #include <security_asn1/secasn1.h>
44 #include <Security/SecAsn1Templates.h>
45 #include <Security/cssmapi.h>
46 #include <Security/cssmapple.h>
47 #include <Security/SecKeyPriv.h>
48
49 /*
50 * -------------------------------------------------------------------
51 * Cipher stuff.
52 */
53
54 #if 0
55 typedef OSStatus (*nss_cms_cipher_function) (void *, unsigned char *, unsigned int *,
56 unsigned int, const unsigned char *, unsigned int);
57 typedef OSStatus (*nss_cms_cipher_destroy) (void *, Boolean);
58 #endif
59
60 #define BLOCK_SIZE 4096
61
62 struct SecCmsCipherContextStr {
63 #if 1
64 CSSM_CC_HANDLE cc; /* CSP CONTEXT */
65 Boolean encrypt; /* encrypt / decrypt switch */
66 #else
67 void * cx; /* PK11 cipher context */
68 nss_cms_cipher_function doit;
69 nss_cms_cipher_destroy destroy;
70 Boolean encrypt; /* encrypt / decrypt switch */
71 int block_size; /* block & pad sizes for cipher */
72 int pad_size;
73 int pending_count; /* pending data (not yet en/decrypted */
74 unsigned char pending_buf[BLOCK_SIZE];/* because of blocking */
75 #endif
76 };
77
78 typedef struct sec_rc2cbcParameterStr {
79 SECItem rc2ParameterVersion;
80 SECItem iv;
81 } sec_rc2cbcParameter;
82
83 static const SecAsn1Template sec_rc2cbc_parameter_template[] = {
84 { SEC_ASN1_SEQUENCE,
85 0, NULL, sizeof(sec_rc2cbcParameter) },
86 { SEC_ASN1_INTEGER | SEC_ASN1_SIGNED_INT,
87 offsetof(sec_rc2cbcParameter,rc2ParameterVersion) },
88 { SEC_ASN1_OCTET_STRING,
89 offsetof(sec_rc2cbcParameter,iv) },
90 { 0 }
91 };
92
93 /*
94 ** Convert a der encoded *signed* integer into a machine integral value.
95 ** If an underflow/overflow occurs, sets error code and returns min/max.
96 */
97 static long
98 DER_GetInteger(SECItem *it)
99 {
100 long ival = 0;
101 CSSM_SIZE len = it->Length;
102 unsigned char *cp = it->Data;
103 unsigned long overflow = 0x1ffUL << (((sizeof(ival) - 1) * 8) - 1);
104 unsigned long ofloinit;
105
106 if (*cp & 0x80)
107 ival = -1L;
108 ofloinit = ival & overflow;
109
110 while (len) {
111 if ((ival & overflow) != ofloinit) {
112 PORT_SetError(SEC_ERROR_BAD_DER);
113 if (ival < 0) {
114 return LONG_MIN;
115 }
116 return LONG_MAX;
117 }
118 ival = ival << 8;
119 ival |= *cp++;
120 --len;
121 }
122 return ival;
123 }
124
125 /* S/MIME picked id values to represent differnt keysizes */
126 /* I do have a formula, but it ain't pretty, and it only works because you
127 * can always match three points to a parabola:) */
128 static unsigned char rc2_map(SECItem *version)
129 {
130 long x;
131
132 x = DER_GetInteger(version);
133
134 switch (x) {
135 case 58: return 128;
136 case 120: return 64;
137 case 160: return 40;
138 }
139 return 128;
140 }
141
142 static unsigned long rc2_unmap(unsigned long x)
143 {
144 switch (x) {
145 case 128: return 58;
146 case 64: return 120;
147 case 40: return 160;
148 }
149 return 58;
150 }
151
152 /* default IV size in bytes */
153 #define DEFAULT_IV_SIZE 8
154 /* IV/block size for AES */
155 #define AES_BLOCK_SIZE 16
156 /* max IV size in bytes */
157 #define MAX_IV_SIZE AES_BLOCK_SIZE
158
159 static SecCmsCipherContextRef
160 SecCmsCipherContextStart(PRArenaPool *poolp, SecSymmetricKeyRef key, SECAlgorithmID *algid, Boolean encrypt)
161 {
162 SecCmsCipherContextRef cc;
163 CSSM_CC_HANDLE ciphercc = 0;
164 SECOidData *oidData;
165 SECOidTag algtag;
166 CSSM_ALGORITHMS algorithm;
167 CSSM_PADDING padding = CSSM_PADDING_PKCS7;
168 CSSM_ENCRYPT_MODE mode;
169 CSSM_CSP_HANDLE cspHandle;
170 const CSSM_KEY *cssmKey;
171 OSStatus rv;
172 uint8 ivbuf[MAX_IV_SIZE];
173 CSSM_DATA initVector = { DEFAULT_IV_SIZE, ivbuf };
174 //CSSM_CONTEXT_ATTRIBUTE contextAttribute = { CSSM_ATTRIBUTE_ALG_PARAMS, sizeof(CSSM_DATA_PTR) };
175
176 rv = SecKeyGetCSPHandle(key, &cspHandle);
177 if (rv)
178 goto loser;
179 rv = SecKeyGetCSSMKey(key, &cssmKey);
180 if (rv)
181 goto loser;
182
183 // @@@ Add support for PBE based stuff
184
185 oidData = SECOID_FindOID(&algid->algorithm);
186 if (!oidData)
187 goto loser;
188 algtag = oidData->offset;
189 algorithm = oidData->cssmAlgorithm;
190 if (!algorithm)
191 goto loser;
192
193 switch (algtag)
194 {
195 case SEC_OID_RC2_CBC:
196 case SEC_OID_RC4:
197 case SEC_OID_DES_EDE3_CBC:
198 case SEC_OID_DES_EDE:
199 case SEC_OID_DES_CBC:
200 case SEC_OID_RC5_CBC_PAD:
201 case SEC_OID_FORTEZZA_SKIPJACK:
202 mode = CSSM_ALGMODE_CBCPadIV8;
203 break;
204
205 /* RFC 3565 says that these sizes refer to key size, NOT block size */
206 case SEC_OID_AES_128_CBC:
207 case SEC_OID_AES_192_CBC:
208 case SEC_OID_AES_256_CBC:
209 initVector.Length = AES_BLOCK_SIZE;
210 mode = CSSM_ALGMODE_CBCPadIV8;
211 break;
212
213 case SEC_OID_DES_ECB:
214 case SEC_OID_AES_128_ECB:
215 case SEC_OID_AES_192_ECB:
216 case SEC_OID_AES_256_ECB:
217 mode = CSSM_ALGMODE_ECBPad;
218 break;
219
220 case SEC_OID_DES_OFB:
221 mode = CSSM_ALGMODE_OFBPadIV8;
222 break;
223
224 case SEC_OID_DES_CFB:
225 mode = CSSM_ALGMODE_CFBPadIV8;
226 break;
227
228 default:
229 goto loser;
230 }
231
232 if (encrypt)
233 {
234 CSSM_CC_HANDLE randomcc;
235 //SECItem *parameters;
236
237 // Generate random initVector
238 if (CSSM_CSP_CreateRandomGenContext(cspHandle,
239 CSSM_ALGID_APPLE_YARROW,
240 NULL, /* seed*/
241 initVector.Length,
242 &randomcc))
243 goto loser;
244
245 if (CSSM_GenerateRandom(randomcc, &initVector))
246 goto loser;
247 CSSM_DeleteContext(randomcc);
248
249 // Put IV into algid.parameters
250 switch (algtag)
251 {
252 case SEC_OID_RC4:
253 case SEC_OID_DES_EDE3_CBC:
254 case SEC_OID_DES_EDE:
255 case SEC_OID_DES_CBC:
256 case SEC_OID_AES_128_CBC:
257 case SEC_OID_AES_192_CBC:
258 case SEC_OID_AES_256_CBC:
259 case SEC_OID_FORTEZZA_SKIPJACK:
260 case SEC_OID_DES_ECB:
261 case SEC_OID_AES_128_ECB:
262 case SEC_OID_AES_192_ECB:
263 case SEC_OID_AES_256_ECB:
264 case SEC_OID_DES_OFB:
265 case SEC_OID_DES_CFB:
266 /* Just encode the initVector as an octet string. */
267 if (!SEC_ASN1EncodeItem(poolp, &algid->parameters,
268 &initVector, kSecAsn1OctetStringTemplate))
269 goto loser;
270 break;
271
272 case SEC_OID_RC2_CBC:
273 {
274 sec_rc2cbcParameter rc2 = {};
275 unsigned long rc2version;
276 SECItem *newParams;
277
278 rc2.iv = initVector;
279 rc2version = rc2_unmap(cssmKey->KeyHeader.LogicalKeySizeInBits);
280 if (!SEC_ASN1EncodeUnsignedInteger (NULL, &(rc2.rc2ParameterVersion),
281 rc2version))
282 goto loser;
283 newParams = SEC_ASN1EncodeItem (poolp, &algid->parameters, &rc2,
284 sec_rc2cbc_parameter_template);
285 PORT_Free(rc2.rc2ParameterVersion.Data);
286 if (newParams == NULL)
287 goto loser;
288 break;
289 }
290 case SEC_OID_RC5_CBC_PAD:
291 default:
292 // @@@ Implement rc5 params stuff.
293 goto loser;
294 break;
295 }
296 }
297 else
298 {
299 // Extract IV from algid.parameters
300 // Put IV into algid.parameters
301 switch (algtag)
302 {
303 case SEC_OID_RC4:
304 case SEC_OID_DES_EDE3_CBC:
305 case SEC_OID_DES_EDE:
306 case SEC_OID_DES_CBC:
307 case SEC_OID_AES_128_CBC:
308 case SEC_OID_AES_192_CBC:
309 case SEC_OID_AES_256_CBC:
310 case SEC_OID_FORTEZZA_SKIPJACK:
311 case SEC_OID_DES_ECB:
312 case SEC_OID_AES_128_ECB:
313 case SEC_OID_AES_192_ECB:
314 case SEC_OID_AES_256_ECB:
315 case SEC_OID_DES_OFB:
316 case SEC_OID_DES_CFB:
317 {
318 CSSM_DATA iv = {};
319 /* Just decode the initVector from an octet string. */
320 rv = SEC_ASN1DecodeItem(NULL, &iv, kSecAsn1OctetStringTemplate, &(algid->parameters));
321 if (rv)
322 goto loser;
323 if (initVector.Length != iv.Length) {
324 PORT_Free(iv.Data);
325 goto loser;
326 }
327 memcpy(initVector.Data, iv.Data, initVector.Length);
328 PORT_Free(iv.Data);
329 break;
330 }
331 case SEC_OID_RC2_CBC:
332 {
333 sec_rc2cbcParameter rc2 = {};
334 unsigned long ulEffectiveBits;
335
336 rv = SEC_ASN1DecodeItem(NULL, &rc2 ,sec_rc2cbc_parameter_template,
337 &(algid->parameters));
338 if (rv)
339 goto loser;
340
341 if (initVector.Length != rc2.iv.Length) {
342 PORT_Free(rc2.iv.Data);
343 PORT_Free(rc2.rc2ParameterVersion.Data);
344 goto loser;
345 }
346 memcpy(initVector.Data, rc2.iv.Data, initVector.Length);
347 PORT_Free(rc2.iv.Data);
348
349 ulEffectiveBits = rc2_map(&rc2.rc2ParameterVersion);
350 PORT_Free(rc2.rc2ParameterVersion.Data);
351 if (ulEffectiveBits != cssmKey->KeyHeader.LogicalKeySizeInBits)
352 goto loser;
353 break;
354 }
355 case SEC_OID_RC5_CBC_PAD:
356 default:
357 // @@@ Implement rc5 params stuff.
358 goto loser;
359 break;
360 }
361 }
362
363 if (CSSM_CSP_CreateSymmetricContext(cspHandle,
364 algorithm,
365 mode,
366 NULL, /* accessCred */
367 cssmKey,
368 &initVector,
369 padding,
370 NULL, /* reserved */
371 &ciphercc))
372 goto loser;
373
374 if (encrypt)
375 rv = CSSM_EncryptDataInit(ciphercc);
376 else
377 rv = CSSM_DecryptDataInit(ciphercc);
378 if (rv)
379 goto loser;
380
381 cc = (SecCmsCipherContextRef)PORT_ZAlloc(sizeof(SecCmsCipherContext));
382 if (cc == NULL)
383 goto loser;
384
385 cc->cc = ciphercc;
386 cc->encrypt = encrypt;
387
388 return cc;
389 loser:
390 if (ciphercc)
391 CSSM_DeleteContext(ciphercc);
392
393 return NULL;
394 }
395
396 /*
397 * SecCmsCipherContextStartDecrypt - create a cipher context to do decryption
398 * based on the given bulk * encryption key and algorithm identifier (which may include an iv).
399 *
400 * XXX Once both are working, it might be nice to combine this and the
401 * function below (for starting up encryption) into one routine, and just
402 * have two simple cover functions which call it.
403 */
404 SecCmsCipherContextRef
405 SecCmsCipherContextStartDecrypt(SecSymmetricKeyRef key, SECAlgorithmID *algid)
406 {
407 return SecCmsCipherContextStart(NULL, key, algid, PR_FALSE);
408 #if 0
409 SecCmsCipherContextRef cc;
410 void *ciphercx;
411 CK_MECHANISM_TYPE mechanism;
412 CSSM_DATA_PTR param;
413 PK11SlotInfo *slot;
414 SECOidTag algtag;
415
416 algtag = SECOID_GetAlgorithmTag(algid);
417
418 /* set param and mechanism */
419 if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
420 CK_MECHANISM pbeMech, cryptoMech;
421 CSSM_DATA_PTR pbeParams;
422 SEC_PKCS5KeyAndPassword *keyPwd;
423
424 PORT_Memset(&pbeMech, 0, sizeof(CK_MECHANISM));
425 PORT_Memset(&cryptoMech, 0, sizeof(CK_MECHANISM));
426
427 /* HACK ALERT!
428 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
429 */
430 keyPwd = (SEC_PKCS5KeyAndPassword *)key;
431 key = keyPwd->key;
432
433 /* find correct PK11 mechanism and parameters to initialize pbeMech */
434 pbeMech.mechanism = PK11_AlgtagToMechanism(algtag);
435 pbeParams = PK11_ParamFromAlgid(algid);
436 if (!pbeParams)
437 return NULL;
438 pbeMech.pParameter = pbeParams->Data;
439 pbeMech.ulParameterLen = pbeParams->Length;
440
441 /* now map pbeMech to cryptoMech */
442 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech, &cryptoMech, keyPwd->pwitem,
443 PR_FALSE) != CKR_OK) {
444 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
445 return NULL;
446 }
447 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
448
449 /* and use it to initialize param & mechanism */
450 if ((param = (CSSM_DATA_PTR)PORT_ZAlloc(sizeof(CSSM_DATA))) == NULL)
451 return NULL;
452
453 param->Data = (unsigned char *)cryptoMech.pParameter;
454 param->Length = cryptoMech.ulParameterLen;
455 mechanism = cryptoMech.mechanism;
456 } else {
457 mechanism = PK11_AlgtagToMechanism(algtag);
458 if ((param = PK11_ParamFromAlgid(algid)) == NULL)
459 return NULL;
460 }
461
462 cc = (SecCmsCipherContextRef)PORT_ZAlloc(sizeof(SecCmsCipherContext));
463 if (cc == NULL) {
464 SECITEM_FreeItem(param,PR_TRUE);
465 return NULL;
466 }
467
468 /* figure out pad and block sizes */
469 cc->pad_size = PK11_GetBlockSize(mechanism, param);
470 slot = PK11_GetSlotFromKey(key);
471 cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
472 PK11_FreeSlot(slot);
473
474 /* create PK11 cipher context */
475 ciphercx = PK11_CreateContextBySymKey(mechanism, CKA_DECRYPT, key, param);
476 SECITEM_FreeItem(param, PR_TRUE);
477 if (ciphercx == NULL) {
478 PORT_Free (cc);
479 return NULL;
480 }
481
482 cc->cx = ciphercx;
483 cc->doit = (nss_cms_cipher_function) PK11_CipherOp;
484 cc->destroy = (nss_cms_cipher_destroy) PK11_DestroyContext;
485 cc->encrypt = PR_FALSE;
486 cc->pending_count = 0;
487
488 return cc;
489 #endif
490 }
491
492 /*
493 * SecCmsCipherContextStartEncrypt - create a cipher object to do encryption,
494 * based on the given bulk encryption key and algorithm tag. Fill in the algorithm
495 * identifier (which may include an iv) appropriately.
496 *
497 * XXX Once both are working, it might be nice to combine this and the
498 * function above (for starting up decryption) into one routine, and just
499 * have two simple cover functions which call it.
500 */
501 SecCmsCipherContextRef
502 SecCmsCipherContextStartEncrypt(PRArenaPool *poolp, SecSymmetricKeyRef key, SECAlgorithmID *algid)
503 {
504 return SecCmsCipherContextStart(poolp, key, algid, PR_TRUE);
505 #if 0
506 SecCmsCipherContextRef cc;
507 void *ciphercx;
508 CSSM_DATA_PTR param;
509 OSStatus rv;
510 CK_MECHANISM_TYPE mechanism;
511 PK11SlotInfo *slot;
512 Boolean needToEncodeAlgid = PR_FALSE;
513 SECOidTag algtag = SECOID_GetAlgorithmTag(algid);
514
515 /* set param and mechanism */
516 if (SEC_PKCS5IsAlgorithmPBEAlg(algid)) {
517 CK_MECHANISM pbeMech, cryptoMech;
518 CSSM_DATA_PTR pbeParams;
519 SEC_PKCS5KeyAndPassword *keyPwd;
520
521 PORT_Memset(&pbeMech, 0, sizeof(CK_MECHANISM));
522 PORT_Memset(&cryptoMech, 0, sizeof(CK_MECHANISM));
523
524 /* HACK ALERT!
525 * in this case, key is not actually a SecSymmetricKeyRef, but a SEC_PKCS5KeyAndPassword *
526 */
527 keyPwd = (SEC_PKCS5KeyAndPassword *)key;
528 key = keyPwd->key;
529
530 /* find correct PK11 mechanism and parameters to initialize pbeMech */
531 pbeMech.mechanism = PK11_AlgtagToMechanism(algtag);
532 pbeParams = PK11_ParamFromAlgid(algid);
533 if (!pbeParams)
534 return NULL;
535 pbeMech.pParameter = pbeParams->Data;
536 pbeMech.ulParameterLen = pbeParams->Length;
537
538 /* now map pbeMech to cryptoMech */
539 if (PK11_MapPBEMechanismToCryptoMechanism(&pbeMech, &cryptoMech, keyPwd->pwitem,
540 PR_FALSE) != CKR_OK) {
541 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
542 return NULL;
543 }
544 SECITEM_ZfreeItem(pbeParams, PR_TRUE);
545
546 /* and use it to initialize param & mechanism */
547 if ((param = (CSSM_DATA_PTR)PORT_ZAlloc(sizeof(CSSM_DATA))) == NULL)
548 return NULL;
549
550 param->Data = (unsigned char *)cryptoMech.pParameter;
551 param->Length = cryptoMech.ulParameterLen;
552 mechanism = cryptoMech.mechanism;
553 } else {
554 mechanism = PK11_AlgtagToMechanism(algtag);
555 if ((param = PK11_GenerateNewParam(mechanism, key)) == NULL)
556 return NULL;
557 needToEncodeAlgid = PR_TRUE;
558 }
559
560 cc = (SecCmsCipherContextRef)PORT_ZAlloc(sizeof(SecCmsCipherContext));
561 if (cc == NULL)
562 return NULL;
563
564 /* now find pad and block sizes for our mechanism */
565 cc->pad_size = PK11_GetBlockSize(mechanism,param);
566 slot = PK11_GetSlotFromKey(key);
567 cc->block_size = PK11_IsHW(slot) ? BLOCK_SIZE : cc->pad_size;
568 PK11_FreeSlot(slot);
569
570 /* and here we go, creating a PK11 cipher context */
571 ciphercx = PK11_CreateContextBySymKey(mechanism, CKA_ENCRYPT, key, param);
572 if (ciphercx == NULL) {
573 PORT_Free(cc);
574 cc = NULL;
575 goto loser;
576 }
577
578 /*
579 * These are placed after the CreateContextBySymKey() because some
580 * mechanisms have to generate their IVs from their card (i.e. FORTEZZA).
581 * Don't move it from here.
582 * XXX is that right? the purpose of this is to get the correct algid
583 * containing the IVs etc. for encoding. this means we need to set this up
584 * BEFORE encoding the algid in the contentInfo, right?
585 */
586 if (needToEncodeAlgid) {
587 rv = PK11_ParamToAlgid(algtag, param, poolp, algid);
588 if(rv != SECSuccess) {
589 PORT_Free(cc);
590 cc = NULL;
591 goto loser;
592 }
593 }
594
595 cc->cx = ciphercx;
596 cc->doit = (nss_cms_cipher_function)PK11_CipherOp;
597 cc->destroy = (nss_cms_cipher_destroy)PK11_DestroyContext;
598 cc->encrypt = PR_TRUE;
599 cc->pending_count = 0;
600
601 loser:
602 SECITEM_FreeItem(param, PR_TRUE);
603
604 return cc;
605 #endif
606 }
607
608 void
609 SecCmsCipherContextDestroy(SecCmsCipherContextRef cc)
610 {
611 PORT_Assert(cc != NULL);
612 if (cc == NULL)
613 return;
614 CSSM_DeleteContext(cc->cc);
615 PORT_Free(cc);
616 }
617
618 static unsigned int
619 SecCmsCipherContextLength(SecCmsCipherContextRef cc, unsigned int input_len, Boolean final, Boolean encrypt)
620 {
621 CSSM_QUERY_SIZE_DATA dataBlockSize[2] = { { input_len, 0 }, { input_len, 0 } };
622 /* Hack CDSA treats the last block as the final one. So unless we are being asked to report the final size we ask for 2 block and ignore the second (final) one. */
623 OSStatus rv = CSSM_QuerySize(cc->cc, cc->encrypt, final ? 1 : 2, dataBlockSize);
624 if (rv)
625 {
626 PORT_SetError(rv);
627 return 0;
628 }
629
630 return dataBlockSize[0].SizeOutputBlock;
631 }
632
633 /*
634 * SecCmsCipherContextDecryptLength - find the output length of the next call to decrypt.
635 *
636 * cc - the cipher context
637 * input_len - number of bytes used as input
638 * final - true if this is the final chunk of data
639 *
640 * Result can be used to perform memory allocations. Note that the amount
641 * is exactly accurate only when not doing a block cipher or when final
642 * is false, otherwise it is an upper bound on the amount because until
643 * we see the data we do not know how many padding bytes there are
644 * (always between 1 and bsize).
645 *
646 * Note that this can return zero, which does not mean that the decrypt
647 * operation can be skipped! (It simply means that there are not enough
648 * bytes to make up an entire block; the bytes will be reserved until
649 * there are enough to encrypt/decrypt at least one block.) However,
650 * if zero is returned it *does* mean that no output buffer need be
651 * passed in to the subsequent decrypt operation, as no output bytes
652 * will be stored.
653 */
654 size_t
655 SecCmsCipherContextDecryptLength(SecCmsCipherContextRef cc, size_t input_len, Boolean final)
656 {
657 #if 1
658 return SecCmsCipherContextLength(cc, (unsigned int)input_len, final, PR_FALSE);
659 #else
660 int blocks, block_size;
661
662 PORT_Assert (! cc->encrypt);
663
664 block_size = cc->block_size;
665
666 /*
667 * If this is not a block cipher, then we always have the same
668 * number of output bytes as we had input bytes.
669 */
670 if (block_size == 0)
671 return input_len;
672
673 /*
674 * On the final call, we will always use up all of the pending
675 * bytes plus all of the input bytes, *but*, there will be padding
676 * at the end and we cannot predict how many bytes of padding we
677 * will end up removing. The amount given here is actually known
678 * to be at least 1 byte too long (because we know we will have
679 * at least 1 byte of padding), but seemed clearer/better to me.
680 */
681 if (final)
682 return cc->pending_count + input_len;
683
684 /*
685 * Okay, this amount is exactly what we will output on the
686 * next cipher operation. We will always hang onto the last
687 * 1 - block_size bytes for non-final operations. That is,
688 * we will do as many complete blocks as we can *except* the
689 * last block (complete or partial). (This is because until
690 * we know we are at the end, we cannot know when to interpret
691 * and removing the padding byte(s), which are guaranteed to
692 * be there.)
693 */
694 blocks = (cc->pending_count + input_len - 1) / block_size;
695 return blocks * block_size;
696 #endif
697 }
698
699 /*
700 * SecCmsCipherContextEncryptLength - find the output length of the next call to encrypt.
701 *
702 * cc - the cipher context
703 * input_len - number of bytes used as input
704 * final - true if this is the final chunk of data
705 *
706 * Result can be used to perform memory allocations.
707 *
708 * Note that this can return zero, which does not mean that the encrypt
709 * operation can be skipped! (It simply means that there are not enough
710 * bytes to make up an entire block; the bytes will be reserved until
711 * there are enough to encrypt/decrypt at least one block.) However,
712 * if zero is returned it *does* mean that no output buffer need be
713 * passed in to the subsequent encrypt operation, as no output bytes
714 * will be stored.
715 */
716 size_t
717 SecCmsCipherContextEncryptLength(SecCmsCipherContextRef cc, size_t input_len, Boolean final)
718 {
719 #if 1
720 return SecCmsCipherContextLength(cc, (unsigned int)input_len, final, PR_TRUE);
721 #else
722 int blocks, block_size;
723 int pad_size;
724
725 PORT_Assert (cc->encrypt);
726
727 block_size = cc->block_size;
728 pad_size = cc->pad_size;
729
730 /*
731 * If this is not a block cipher, then we always have the same
732 * number of output bytes as we had input bytes.
733 */
734 if (block_size == 0)
735 return input_len;
736
737 /*
738 * On the final call, we only send out what we need for
739 * remaining bytes plus the padding. (There is always padding,
740 * so even if we have an exact number of blocks as input, we
741 * will add another full block that is just padding.)
742 */
743 if (final) {
744 if (pad_size == 0) {
745 return cc->pending_count + input_len;
746 } else {
747 blocks = (cc->pending_count + input_len) / pad_size;
748 blocks++;
749 return blocks*pad_size;
750 }
751 }
752
753 /*
754 * Now, count the number of complete blocks of data we have.
755 */
756 blocks = (cc->pending_count + input_len) / block_size;
757
758
759 return blocks * block_size;
760 #endif
761 }
762
763
764 static OSStatus
765 SecCmsCipherContextCrypt(SecCmsCipherContextRef cc, unsigned char *output,
766 size_t *output_len_p, size_t max_output_len,
767 const unsigned char *input, size_t input_len,
768 Boolean final, Boolean encrypt)
769 {
770 CSSM_DATA outputBuf = { max_output_len, output };
771 CSSM_SIZE bytes_output = 0;
772 OSStatus rv = 0;
773
774 if (input_len)
775 {
776 CSSM_DATA inputBuf = { input_len, (uint8 *)input };
777
778 if (encrypt)
779 rv = CSSM_EncryptDataUpdate(cc->cc, &inputBuf, 1, &outputBuf, 1, &bytes_output);
780 else
781 rv = CSSM_DecryptDataUpdate(cc->cc, &inputBuf, 1, &outputBuf, 1, &bytes_output);
782 }
783
784 if (!rv && final)
785 {
786 CSSM_DATA remainderBuf = { max_output_len - bytes_output, output + bytes_output };
787 if (encrypt)
788 rv = CSSM_EncryptDataFinal(cc->cc, &remainderBuf);
789 else
790 rv = CSSM_DecryptDataFinal(cc->cc, &remainderBuf);
791
792 bytes_output += remainderBuf.Length;
793 }
794
795 if (rv)
796 PORT_SetError(SEC_ERROR_BAD_DATA);
797 else if (output_len_p)
798 *output_len_p = bytes_output;
799
800 return rv;
801 }
802
803 /*
804 * SecCmsCipherContextDecrypt - do the decryption
805 *
806 * cc - the cipher context
807 * output - buffer for decrypted result bytes
808 * output_len_p - number of bytes in output
809 * max_output_len - upper bound on bytes to put into output
810 * input - pointer to input bytes
811 * input_len - number of input bytes
812 * final - true if this is the final chunk of data
813 *
814 * Decrypts a given length of input buffer (starting at "input" and
815 * containing "input_len" bytes), placing the decrypted bytes in
816 * "output" and storing the output length in "*output_len_p".
817 * "cc" is the return value from SecCmsCipherStartDecrypt.
818 * When "final" is true, this is the last of the data to be decrypted.
819 *
820 * This is much more complicated than it sounds when the cipher is
821 * a block-type, meaning that the decryption function will only
822 * operate on whole blocks. But our caller is operating stream-wise,
823 * and can pass in any number of bytes. So we need to keep track
824 * of block boundaries. We save excess bytes between calls in "cc".
825 * We also need to determine which bytes are padding, and remove
826 * them from the output. We can only do this step when we know we
827 * have the final block of data. PKCS #7 specifies that the padding
828 * used for a block cipher is a string of bytes, each of whose value is
829 * the same as the length of the padding, and that all data is padded.
830 * (Even data that starts out with an exact multiple of blocks gets
831 * added to it another block, all of which is padding.)
832 */
833 OSStatus
834 SecCmsCipherContextDecrypt(SecCmsCipherContextRef cc, unsigned char *output,
835 size_t *output_len_p, size_t max_output_len,
836 const unsigned char *input, size_t input_len,
837 Boolean final)
838 {
839 #if 1
840 return SecCmsCipherContextCrypt(cc, output,
841 output_len_p, max_output_len,
842 input, input_len,
843 final, PR_FALSE);
844 #else
845 int blocks, bsize, pcount, padsize;
846 unsigned int max_needed, ifraglen, ofraglen, output_len;
847 unsigned char *pbuf;
848 OSStatus rv;
849
850 PORT_Assert (! cc->encrypt);
851
852 /*
853 * Check that we have enough room for the output. Our caller should
854 * already handle this; failure is really an internal error (i.e. bug).
855 */
856 max_needed = SecCmsCipherContextDecryptLength(cc, input_len, final);
857 PORT_Assert (max_output_len >= max_needed);
858 if (max_output_len < max_needed) {
859 /* PORT_SetError (XXX); */
860 return SECFailure;
861 }
862
863 /*
864 * hardware encryption does not like small decryption sizes here, so we
865 * allow both blocking and padding.
866 */
867 bsize = cc->block_size;
868 padsize = cc->pad_size;
869
870 /*
871 * When no blocking or padding work to do, we can simply call the
872 * cipher function and we are done.
873 */
874 if (bsize == 0) {
875 return (* cc->doit) (cc->cx, output, output_len_p, max_output_len,
876 input, input_len);
877 }
878
879 pcount = cc->pending_count;
880 pbuf = cc->pending_buf;
881
882 output_len = 0;
883
884 if (pcount) {
885 /*
886 * Try to fill in an entire block, starting with the bytes
887 * we already have saved away.
888 */
889 while (input_len && pcount < bsize) {
890 pbuf[pcount++] = *input++;
891 input_len--;
892 }
893 /*
894 * If we have at most a whole block and this is not our last call,
895 * then we are done for now. (We do not try to decrypt a lone
896 * single block because we cannot interpret the padding bytes
897 * until we know we are handling the very last block of all input.)
898 */
899 if (input_len == 0 && !final) {
900 cc->pending_count = pcount;
901 if (output_len_p)
902 *output_len_p = 0;
903 return SECSuccess;
904 }
905 /*
906 * Given the logic above, we expect to have a full block by now.
907 * If we do not, there is something wrong, either with our own
908 * logic or with (length of) the data given to us.
909 */
910 if ((padsize != 0) && (pcount % padsize) != 0) {
911 PORT_Assert (final);
912 PORT_SetError (SEC_ERROR_BAD_DATA);
913 return SECFailure;
914 }
915 /*
916 * Decrypt the block.
917 */
918 rv = (*cc->doit)(cc->cx, output, &ofraglen, max_output_len,
919 pbuf, pcount);
920 if (rv != SECSuccess)
921 return rv;
922
923 /*
924 * For now anyway, all of our ciphers have the same number of
925 * bytes of output as they do input. If this ever becomes untrue,
926 * then SecCmsCipherContextDecryptLength needs to be made smarter!
927 */
928 PORT_Assert(ofraglen == pcount);
929
930 /*
931 * Account for the bytes now in output.
932 */
933 max_output_len -= ofraglen;
934 output_len += ofraglen;
935 output += ofraglen;
936 }
937
938 /*
939 * If this is our last call, we expect to have an exact number of
940 * blocks left to be decrypted; we will decrypt them all.
941 *
942 * If not our last call, we always save between 1 and bsize bytes
943 * until next time. (We must do this because we cannot be sure
944 * that none of the decrypted bytes are padding bytes until we
945 * have at least another whole block of data. You cannot tell by
946 * looking -- the data could be anything -- you can only tell by
947 * context, knowing you are looking at the last block.) We could
948 * decrypt a whole block now but it is easier if we just treat it
949 * the same way we treat partial block bytes.
950 */
951 if (final) {
952 if (padsize) {
953 blocks = input_len / padsize;
954 ifraglen = blocks * padsize;
955 } else ifraglen = input_len;
956 PORT_Assert (ifraglen == input_len);
957
958 if (ifraglen != input_len) {
959 PORT_SetError(SEC_ERROR_BAD_DATA);
960 return SECFailure;
961 }
962 } else {
963 blocks = (input_len - 1) / bsize;
964 ifraglen = blocks * bsize;
965 PORT_Assert (ifraglen < input_len);
966
967 pcount = input_len - ifraglen;
968 PORT_Memcpy (pbuf, input + ifraglen, pcount);
969 cc->pending_count = pcount;
970 }
971
972 if (ifraglen) {
973 rv = (* cc->doit)(cc->cx, output, &ofraglen, max_output_len,
974 input, ifraglen);
975 if (rv != SECSuccess)
976 return rv;
977
978 /*
979 * For now anyway, all of our ciphers have the same number of
980 * bytes of output as they do input. If this ever becomes untrue,
981 * then sec_PKCS7DecryptLength needs to be made smarter!
982 */
983 PORT_Assert (ifraglen == ofraglen);
984 if (ifraglen != ofraglen) {
985 PORT_SetError(SEC_ERROR_BAD_DATA);
986 return SECFailure;
987 }
988
989 output_len += ofraglen;
990 } else {
991 ofraglen = 0;
992 }
993
994 /*
995 * If we just did our very last block, "remove" the padding by
996 * adjusting the output length.
997 */
998 if (final && (padsize != 0)) {
999 unsigned int padlen = *(output + ofraglen - 1);
1000
1001 if (padlen == 0 || padlen > padsize) {
1002 PORT_SetError(SEC_ERROR_BAD_DATA);
1003 return SECFailure;
1004 }
1005 output_len -= padlen;
1006 }
1007
1008 PORT_Assert (output_len_p != NULL || output_len == 0);
1009 if (output_len_p != NULL)
1010 *output_len_p = output_len;
1011
1012 return SECSuccess;
1013 #endif
1014 }
1015
1016 /*
1017 * SecCmsCipherContextEncrypt - do the encryption
1018 *
1019 * cc - the cipher context
1020 * output - buffer for decrypted result bytes
1021 * output_len_p - number of bytes in output
1022 * max_output_len - upper bound on bytes to put into output
1023 * input - pointer to input bytes
1024 * input_len - number of input bytes
1025 * final - true if this is the final chunk of data
1026 *
1027 * Encrypts a given length of input buffer (starting at "input" and
1028 * containing "input_len" bytes), placing the encrypted bytes in
1029 * "output" and storing the output length in "*output_len_p".
1030 * "cc" is the return value from SecCmsCipherStartEncrypt.
1031 * When "final" is true, this is the last of the data to be encrypted.
1032 *
1033 * This is much more complicated than it sounds when the cipher is
1034 * a block-type, meaning that the encryption function will only
1035 * operate on whole blocks. But our caller is operating stream-wise,
1036 * and can pass in any number of bytes. So we need to keep track
1037 * of block boundaries. We save excess bytes between calls in "cc".
1038 * We also need to add padding bytes at the end. PKCS #7 specifies
1039 * that the padding used for a block cipher is a string of bytes,
1040 * each of whose value is the same as the length of the padding,
1041 * and that all data is padded. (Even data that starts out with
1042 * an exact multiple of blocks gets added to it another block,
1043 * all of which is padding.)
1044 *
1045 * XXX I would kind of like to combine this with the function above
1046 * which does decryption, since they have a lot in common. But the
1047 * tricky parts about padding and filling blocks would be much
1048 * harder to read that way, so I left them separate. At least for
1049 * now until it is clear that they are right.
1050 */
1051 OSStatus
1052 SecCmsCipherContextEncrypt(SecCmsCipherContextRef cc, unsigned char *output,
1053 size_t *output_len_p, size_t max_output_len,
1054 const unsigned char *input, size_t input_len,
1055 Boolean final)
1056 {
1057 #if 1
1058 return SecCmsCipherContextCrypt(cc, output,
1059 output_len_p, max_output_len,
1060 input, input_len,
1061 final, PR_TRUE);
1062 #else
1063 int blocks, bsize, padlen, pcount, padsize;
1064 unsigned int max_needed, ifraglen, ofraglen, output_len;
1065 unsigned char *pbuf;
1066 OSStatus rv;
1067
1068 PORT_Assert (cc->encrypt);
1069
1070 /*
1071 * Check that we have enough room for the output. Our caller should
1072 * already handle this; failure is really an internal error (i.e. bug).
1073 */
1074 max_needed = SecCmsCipherContextEncryptLength (cc, input_len, final);
1075 PORT_Assert (max_output_len >= max_needed);
1076 if (max_output_len < max_needed) {
1077 /* PORT_SetError (XXX); */
1078 return SECFailure;
1079 }
1080
1081 bsize = cc->block_size;
1082 padsize = cc->pad_size;
1083
1084 /*
1085 * When no blocking and padding work to do, we can simply call the
1086 * cipher function and we are done.
1087 */
1088 if (bsize == 0) {
1089 return (*cc->doit)(cc->cx, output, output_len_p, max_output_len,
1090 input, input_len);
1091 }
1092
1093 pcount = cc->pending_count;
1094 pbuf = cc->pending_buf;
1095
1096 output_len = 0;
1097
1098 if (pcount) {
1099 /*
1100 * Try to fill in an entire block, starting with the bytes
1101 * we already have saved away.
1102 */
1103 while (input_len && pcount < bsize) {
1104 pbuf[pcount++] = *input++;
1105 input_len--;
1106 }
1107 /*
1108 * If we do not have a full block and we know we will be
1109 * called again, then we are done for now.
1110 */
1111 if (pcount < bsize && !final) {
1112 cc->pending_count = pcount;
1113 if (output_len_p != NULL)
1114 *output_len_p = 0;
1115 return SECSuccess;
1116 }
1117 /*
1118 * If we have a whole block available, encrypt it.
1119 */
1120 if ((padsize == 0) || (pcount % padsize) == 0) {
1121 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
1122 pbuf, pcount);
1123 if (rv != SECSuccess)
1124 return rv;
1125
1126 /*
1127 * For now anyway, all of our ciphers have the same number of
1128 * bytes of output as they do input. If this ever becomes untrue,
1129 * then sec_PKCS7EncryptLength needs to be made smarter!
1130 */
1131 PORT_Assert (ofraglen == pcount);
1132
1133 /*
1134 * Account for the bytes now in output.
1135 */
1136 max_output_len -= ofraglen;
1137 output_len += ofraglen;
1138 output += ofraglen;
1139
1140 pcount = 0;
1141 }
1142 }
1143
1144 if (input_len) {
1145 PORT_Assert (pcount == 0);
1146
1147 blocks = input_len / bsize;
1148 ifraglen = blocks * bsize;
1149
1150 if (ifraglen) {
1151 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
1152 input, ifraglen);
1153 if (rv != SECSuccess)
1154 return rv;
1155
1156 /*
1157 * For now anyway, all of our ciphers have the same number of
1158 * bytes of output as they do input. If this ever becomes untrue,
1159 * then sec_PKCS7EncryptLength needs to be made smarter!
1160 */
1161 PORT_Assert (ifraglen == ofraglen);
1162
1163 max_output_len -= ofraglen;
1164 output_len += ofraglen;
1165 output += ofraglen;
1166 }
1167
1168 pcount = input_len - ifraglen;
1169 PORT_Assert (pcount < bsize);
1170 if (pcount)
1171 PORT_Memcpy (pbuf, input + ifraglen, pcount);
1172 }
1173
1174 if (final) {
1175 padlen = padsize - (pcount % padsize);
1176 PORT_Memset (pbuf + pcount, padlen, padlen);
1177 rv = (* cc->doit) (cc->cx, output, &ofraglen, max_output_len,
1178 pbuf, pcount+padlen);
1179 if (rv != SECSuccess)
1180 return rv;
1181
1182 /*
1183 * For now anyway, all of our ciphers have the same number of
1184 * bytes of output as they do input. If this ever becomes untrue,
1185 * then sec_PKCS7EncryptLength needs to be made smarter!
1186 */
1187 PORT_Assert (ofraglen == (pcount+padlen));
1188 output_len += ofraglen;
1189 } else {
1190 cc->pending_count = pcount;
1191 }
1192
1193 PORT_Assert (output_len_p != NULL || output_len == 0);
1194 if (output_len_p != NULL)
1195 *output_len_p = output_len;
1196
1197 return SECSuccess;
1198 #endif
1199 }