]> git.saurik.com Git - apple/security.git/blob - OSX/include/security_cryptkit/CurveParamDocs/tools.c
Security-57336.1.9.tar.gz
[apple/security.git] / OSX / include / security_cryptkit / CurveParamDocs / tools.c
1 /**************************************************************
2 *
3 * tools.c
4 *
5 * Number-theoretical algorithm implementations
6 *
7 * Updates:
8 * 30 Apr 99 REC Modified init_tools type to void.
9 * 3 Apr 98 REC Creation
10 *
11 *
12 * c. 1998 Perfectly Scientific, Inc.
13 * All Rights Reserved.
14 *
15 *
16 *************************************************************/
17
18 /* include files */
19
20 #include <stdio.h>
21 #include <math.h>
22 #include <stdlib.h>
23 #include <time.h>
24 #ifdef _WIN32
25
26 #include <process.h>
27
28 #endif
29
30 #include <string.h>
31 #include "giants.h"
32 #include "tools.h"
33
34 /* definitions */
35
36 #define STACK_COUNT 20
37
38 /* global variables */
39
40 int pr[NUM_PRIMES]; /* External use allowed. */
41 static giant tmp[STACK_COUNT];
42 static int stack = 0;
43 static giant popg();
44 static void pushg();
45
46 /**************************************************************
47 *
48 * Maintenance functions
49 *
50 **************************************************************/
51
52
53 void
54 init_tools(int shorts)
55 {
56 int j;
57
58 for(j = 0; j < STACK_COUNT; j++) {
59 tmp[j] = newgiant(shorts);
60 }
61 make_primes(); /* Create table of all primes < 2^16,
62 to be used by other programs as array
63 pr[0..NUM_PRIMES]. */
64 }
65
66 static giant
67 popg() {
68 return(tmp[stack++]);
69 }
70
71 static void
72 pushg(int n) {
73 stack -= n;
74 }
75
76 /**************************************************************
77 *
78 * Number-theoretical functions
79 *
80 **************************************************************/
81
82 int
83 prime_literal(
84 unsigned int p
85 )
86 /* Primality test via small, literal sieve.
87 After init, one should use primeq() instead.
88 */
89 {
90 unsigned int j=3;
91
92 if ((p & 1)==0)
93 return ((p == 2)?1:0);
94 if (j >= p)
95 return (1);
96 while ((p%j)!=0)
97 {
98 j += 2;
99 if (j*j > p)
100 return(1);
101 }
102 return(0);
103 }
104
105 int
106 primeq(
107 unsigned int odd
108 )
109 /* Faster primality test, using preset array pr[] of primes.
110 This test is valid for all unsigned, 32-bit integers odd.
111 */
112 {
113 unsigned int p;
114 unsigned int j;
115
116 if(odd < 2) return (0);
117 if ((odd & 1)==0)
118 return ((odd == 2)?1:0);
119 for (j=1; ;j++)
120 {
121 p = pr[j];
122 if (p*p > odd)
123 return(1);
124 if (odd % p == 0)
125 return(0);
126 }
127 }
128
129 void
130 make_primes()
131 { int k, npr;
132 pr[0] = 2;
133 for (k=0, npr=1;; k++)
134 {
135 if (prime_literal(3+2*k))
136 {
137 pr[npr++] = 3+2*k;
138 if (npr >= NUM_PRIMES)
139 break;
140 }
141 }
142 }
143
144 int
145 prime_probable(giant p)
146 /* Invoke Miller-Rabin test of given security depth.
147 For MILLER_RABIN_DEPTH == 8, this is an ironclad primality
148 test for suspected primes p < 3.4 x 10^{14}.
149 */
150 {
151 giant t1 = popg(), t2 = popg(), t3 = popg();
152 int j, ct, s;
153
154 if((p->n[0] & 1) == 0) { /* Evenness test. */
155 pushg(3); return(0);
156 }
157 if(bitlen(p) < 32) { /* Single-word case. */
158 pushg(3);
159 return(primeq((unsigned int)gtoi(p)));
160 }
161 itog(-1, t1);
162 addg(p, t1); /* t1 := p-1. */
163 gtog(t1, t2);
164 s = 1;
165 gshiftright(1, t2);
166 while(t2->n[0] & 1 == 0) {
167 gshiftright(1, t2);
168 ++s;
169 }
170 /* Now, p-1 = 2^s * t2. */
171 for(j = 0; j < MILLER_RABIN_DEPTH; j++) {
172 itog(pr[j+1], t3);
173 powermodg(t3, t2, p);
174 ct = 1;
175 if(isone(t3)) continue;
176 if(gcompg(t3, t1) == 0) continue;
177 while((ct < s) && (gcompg(t1, t3) != 0)) {
178 squareg(t3); modg(p, t3);
179 if(isone(t3)) {
180 goto composite;
181 }
182 ++ct;
183 }
184 if(gcompg(t1, t3) != 0) goto composite;
185 }
186 goto prime;
187
188 composite:
189 pushg(3); return(0);
190 prime: pushg(3); return(1);
191 }
192
193 int
194 jacobi_symbol(giant a, giant n)
195 /* Standard Jacobi symbol (a/n). Parameter n must be odd, positive. */
196 { int t = 1, u;
197 giant t5 = popg(), t6 = popg(), t7 = popg();
198
199 gtog(a, t5); modg(n, t5);
200 gtog(n, t6);
201 while(!isZero(t5)) {
202 u = (t6->n[0]) & 7;
203 while((t5->n[0] & 1) == 0) {
204 gshiftright(1, t5);
205 if((u==3) || (u==5)) t = -t;
206 }
207 gtog(t5, t7); gtog(t6, t5); gtog(t7, t6);
208 u = (t6->n[0]) & 3;
209 if(((t5->n[0] & 3) == 3) && ((u & 3) == 3)) t = -t;
210 modg(t6, t5);
211 }
212 if(isone(t6)) {
213 pushg(3);
214 return(t);
215 }
216 pushg(3);
217 return(0);
218 }
219
220 int
221 pseudoq(giant a, giant p)
222 /* Query whether a^(p-1) = 1 (mod p). */
223 {
224 int x;
225 giant t1 = popg(), t2 = popg();
226
227 gtog(p, t1); itog(1, t2); subg(t2, t1);
228 gtog(a, t2);
229 powermodg(t2, t1, p);
230 x = isone(t2);
231 pushg(2);
232 return(x);
233 }
234
235 int
236 pseudointq(int a, giant p)
237 /* Query whether a^(p-1) = 1 (mod p). */
238 {
239 int x;
240 giant t4 = popg();
241
242 itog(a, t4);
243 x = pseudoq(t4, p);
244 pushg(1);
245 return(x);
246 }
247
248
249 void
250 powFp2(giant a, giant b, giant w2, giant n, giant p)
251 /* Perform powering in the field F_p^2:
252 a + b w := (a + b w)^n (mod p), where parameter w2 is a quadratic
253 nonresidue (formally equal to w^2).
254 */
255 { int j;
256 giant t6 = popg(), t7 = popg(), t8 = popg(), t9 = popg();
257
258 if(isZero(n)) {
259 itog(1,a);
260 itog(0,b);
261 pushg(4);
262 return;
263 }
264 gtog(a, t8); gtog(b, t9);
265 for(j = bitlen(n)-2; j >= 0; j--) {
266 gtog(b, t6);
267 mulg(a, b); addg(b,b); modg(p, b); /* b := 2 a b. */
268 squareg(t6); modg(p, t6);
269 mulg(w2, t6); modg(p, t6);
270 squareg(a); addg(t6, a); modg(p, a); /* a := a^2 + b^2 w2. */
271 if(bitval(n, j)) {
272 gtog(b, t6); mulg(t8, b); modg(p, b);
273 gtog(a, t7); mulg(t9, a); addg(a, b); modg(p, b);
274 mulg(t9, t6); modg(p, t6); mulg(w2, t6); modg(p, t6);
275 mulg(t8, a); addg(t6, a); modg(p, a);
276 }
277 }
278 pushg(4);
279 return;
280 }
281
282 int
283 sqrtmod(giant p, giant x)
284 /* If Sqrt[x] (mod p) exists, function returns 1, else 0.
285 In either case x is modified, but if 1 is returned,
286 x:= Sqrt[x] (mod p).
287 */
288 { giant t0 = popg(), t1 = popg(), t2 = popg(), t3 = popg(),
289 t4 = popg();
290
291 modg(p, x); /* Justify the argument. */
292 gtog(x, t0); /* Store x for eventual validity check on square root. */
293 if((p->n[0] & 3) == 3) { /* The case p = 3 (mod 4). */
294 gtog(p, t1);
295 iaddg(1, t1); gshiftright(2, t1);
296 powermodg(x, t1, p);
297 goto resolve;
298 }
299 /* Next, handle case p = 5 (mod 8). */
300 if((p->n[0] & 7) == 5) {
301 gtog(p, t1); itog(1, t2);
302 subg(t2, t1); gshiftright(2, t1);
303 gtog(x, t2);
304 powermodg(t2, t1, p); /* t2 := x^((p-1)/4) % p. */
305 iaddg(1, t1);
306 gshiftright(1, t1); /* t1 := (p+3)/8. */
307 if(isone(t2)) {
308 powermodg(x, t1, p); /* x^((p+3)/8) is root. */
309 goto resolve;
310 } else {
311 itog(1, t2); subg(t2, t1); /* t1 := (p-5)/8. */
312 gshiftleft(2,x);
313 powermodg(x, t1, p);
314 mulg(t0, x); addg(x, x); modg(p, x); /* 2x (4x)^((p-5)/8. */
315 goto resolve;
316 }
317 }
318
319 /* Next, handle tougher case: p = 1 (mod 8). */
320 itog(2, t1);
321 while(1) { /* Find appropriate nonresidue. */
322 gtog(t1, t2);
323 squareg(t2); subg(x, t2); modg(p, t2);
324 if(jacobi_symbol(t2, p) == -1) break;
325 iaddg(1, t1);
326 } /* t2 is now w^2 in F_p^2. */
327 itog(1, t3);
328 gtog(p, t4); iaddg(1, t4); gshiftright(1, t4);
329 powFp2(t1, t3, t2, t4, p);
330 gtog(t1, x);
331
332 resolve:
333 gtog(x,t1); squareg(t1); modg(p, t1);
334 if(gcompg(t0, t1) == 0) {
335 pushg(5);
336 return(1); /* Success. */
337 }
338 pushg(5);
339 return(0); /* No square root. */
340 }
341
342 void
343 sqrtg(giant n)
344 /* n:= Floor[Sqrt[n]]. */
345 { giant t5 = popg(), t6 = popg();
346
347 itog(1, t5); gshiftleft(1 + bitlen(n)/2, t5);
348 while(1) {
349 gtog(n, t6);
350 divg(t5, t6);
351 addg(t5, t6); gshiftright(1, t6);
352 if(gcompg(t6, t5) >= 0) break;
353 gtog(t6, t5);
354 }
355 gtog(t5, n);
356 pushg(2);
357 }
358
359 int
360 cornacchia4(giant n, int d, giant u, giant v)
361 /* Seek representation 4n = u^2 + |d| v^2,
362 for (negative) discriminant d and n > |D|/4.
363 Parameter u := 0 and 0 is returned, if no representation is found;
364 else 1 is returned and u, v properly set.
365 */
366 { int r = n->n[0] & 7, sym;
367 giant t1 = popg(), t2 = popg(), t3 = popg(), t4 = popg();
368
369 itog(d, t1);
370 if((n->n[0]) & 7 == 1) { /* n = 1 (mod 8). */
371 sym = jacobi_symbol(t1,n);
372 if(sym != 1) {
373 itog(0,u);
374 pushg(4);
375 return(0);
376 }
377 gtog(t1, t2);
378 sqrtmod(n, t2); /* t2 := Sqrt[d] (mod n). */
379 } else { /* Avoid separate Jacobi/Legendre test. */
380 gtog(t1, t2);
381 if(sqrtmod(n, t2) == 0) {
382 itog(0, u);
383 pushg(4);
384 return(0);
385 }
386 }
387 /* t2 is now a valid square root of d (mod n). */
388 gtog(t2, t3);
389 subg(t1, t3); /* t3 := t2 - d. */
390 if((t3->n[0] & 1) == 1) {
391 negg(t2);
392 addg(n, t2);
393 }
394 gtog(n, t3); addg(t3, t3); /* t3 := 2n. */
395 gtog(n, t4); gshiftleft(2, t4); sqrtg(t4); /* t4 = [Sqrt[4 p]]. */
396 while(gcompg(t2, t4) > 0) {
397 gtog(t3, t1);
398 gtog(t2, t3);
399 gtog(t1, t2);
400 modg(t3, t2);
401 }
402 gtog(n, t4); gshiftleft(2, t4);
403 gtog(t2, t3); squareg(t3);
404 subg(t3, t4); /* t4 := 4n - t2^2. */
405 gtog(t4, t3);
406 itog(d, t1); absg(t1);
407 modg(t1, t3);
408 if(!isZero(t3)) {
409 itog(0,u);
410 pushg(4);
411 return(0);
412 }
413 divg(t1, t4);
414 gtog(t4, t1);
415 sqrtg(t4); /* t4 := [Sqrt[t4/Abs[d]]]. */
416 gtog(t4, t3);
417 squareg(t3);
418 if(gcompg(t3, t1) != 0) {
419 itog(0, u);
420 pushg(4);
421 return(0);
422 }
423 gtog(t2, u);
424 gtog(t4, v);
425 pushg(4);
426 return(1);
427 }
428
429 /*
430 rep[p_, d_] := Module[{t, x0, a, b, c},
431 If[JacobiSymbol[d,p] != 1, Return[{0,0}]];
432 x0 = sqrt[d, p];
433 If[Mod[x0-d,2] == 1, x0 = p-x0];
434 a = 2p; b = x0; c = sqrtint[4 p];
435 While[b > c, {a,b} = {b, Mod[a,b]}];
436 t = 4p - b^2;
437 If[Mod[t,Abs[d]] !=0, Return[{0,0}]];
438 v = t/Abs[d];
439 u = sqrtint[v];
440 If[u^2 != v, Return[{0,0}]];
441 Return[{b, u}]
442 ];
443 */
444
445