]> git.saurik.com Git - apple/security.git/blob - OSX/include/security_cryptkit/CurveParamDocs/giants.h
Security-57336.1.9.tar.gz
[apple/security.git] / OSX / include / security_cryptkit / CurveParamDocs / giants.h
1 /**************************************************************
2 *
3 * giants.h
4 *
5 * Header file for large-integer arithmetic library giants.c.
6 *
7 * Updates:
8 * 18 Jul 99 REC Added fer_mod().
9 * 30 Apr 98 JF USE_ASSEMBLER_MUL removed
10 * 29 Apr 98 JF Function prototypes cleaned up
11 * 20 Apr 97 RDW
12 *
13 * c. 1997 Perfectly Scientific, Inc.
14 * All Rights Reserved.
15 *
16 **************************************************************/
17
18
19 /**************************************************************
20 *
21 * Error Codes
22 *
23 **************************************************************/
24
25 #define DIVIDEBYZERO 1
26 #define OVFLOW 2
27 #define SIGN 3
28 #define OVERRANGE 4
29 #define AUTO_MUL 0
30 #define GRAMMAR_MUL 1
31 #define FFT_MUL 2
32 #define KARAT_MUL 3
33
34 /**************************************************************
35 *
36 * Preprocessor definitions
37 *
38 **************************************************************/
39
40 /* 2^(16*MAX_SHORTS)-1 will fit into a giant, but take care:
41 * one usually has squares, etc. of giants involved, and
42 * every intermediate giant in a calculation must fit into
43 * this many shorts. Thus, if you want systematically to effect
44 * arithmetic on B-bit operands, you need MAX_SHORTS > B/8,
45 * perferably a tad larger than this; e.g. MAX_SHORTS > B/7.
46 */
47 #define MAX_SHORTS (1<<19)
48
49 #define INFINITY (-1)
50 #define FA 0
51 #define TR 1
52 #define COLUMNWIDTH 64
53
54 #define TWOPI (double)(2*3.1415926535897932384626433)
55 #define SQRT2 (double)(1.414213562373095048801688724209)
56 #define SQRTHALF (double)(0.707106781186547524400844362104)
57 #define TWO16 (double)(65536.0)
58 #define TWOM16 (double)(0.0000152587890625)
59
60 /* Decimal digit ceiling in digit-input routines. */
61 #define MAX_DIGITS 10000
62
63 /* Next, mumber of shorts per operand
64 at which Karatsuba breaks over. */
65 #define KARAT_BREAK 40
66
67 /* Next, mumber of shorts per operand
68 at which FFT breaks over. */
69 #define FFT_BREAK 200
70
71 #define newmin(a,b) ((a)<(b)? (a) : (b))
72 #define newmax(a,b) ((a)>(b)? (a) : (b))
73
74 /* Maximum number of recursive steps needed to calculate
75 * gcds of integers. */
76 #define STEPS 32
77
78 /* The limit below which hgcd is too ponderous */
79 #define GCDLIMIT 5000
80
81 /* The limit below which ordinary ints will be used */
82 #define INTLIMIT 31
83
84 /* Size by which to increment the stack used in pushg() and popg(). */
85 #define STACK_GROW 16
86
87 #define gin(x) gread(x,stdin)
88 #define gout(x) gwriteln(x,stdout)
89
90
91 /**************************************************************
92 *
93 * Structure definitions
94 *
95 **************************************************************/
96
97 typedef struct
98 {
99 int sign;
100 unsigned short n[1]; /* number of shorts = abs(sign) */
101 } giantstruct;
102
103 typedef giantstruct *giant;
104
105 typedef struct _matrix
106 {
107 giant ul; /* upper left */
108 giant ur; /* upper right */
109 giant ll; /* lower left */
110 giant lr; /* lower right */
111 } *gmatrix;
112
113 typedef struct
114 {
115 double re;
116 double im;
117 } complex;
118
119
120 /**************************************************************
121 *
122 * Function Prototypes
123 *
124 **************************************************************/
125
126 /**************************************************************
127 *
128 * Initialization and utility functions
129 *
130 **************************************************************/
131
132 /* trig lookups. */
133 void init_sinCos(int);
134 double s_sin(int);
135 double s_cos(int);
136
137
138 /* Creates a new giant, numshorts = INFINITY invokes the
139 * maximum MAX_SHORTS. */
140 giant newgiant(int numshorts);
141
142 /* Creates a new giant matrix, but does not malloc
143 * the component giants. */
144 gmatrix newgmatrix(void);
145
146 /* Returns the bit-length n; e.g. n=7 returns 3. */
147 int bitlen(giant n);
148
149 /* Returns the value of the pos bit of n. */
150 int bitval(giant n, int pos);
151
152 /* Returns whether g is one. */
153 int isone(giant g);
154
155 /* Returns whether g is zero. */
156 int isZero(giant g);
157
158 /* Copies one giant to another. */
159 void gtog(giant src, giant dest);
160
161 /* Integer <-> giant. */
162 void itog(int n, giant g);
163 signed int gtoi (giant);
164
165 /* Returns the sign of g: -1, 0, 1. */
166 int gsign(giant g);
167
168 /* Returns 1, 0, -1 as a>b, a=b, a<b. */
169 int gcompg(giant a, giant b);
170
171 /* Set AUTO_MUL for automatic FFT crossover (this is the
172 * default), set FFT_MUL for forced FFT multiply, set
173 * GRAMMAR_MUL for forced grammar school multiply. */
174 void setmulmode(int mode);
175
176 /**************************************************************
177 *
178 * I/O Routines
179 *
180 **************************************************************/
181
182 /* Output the giant in decimal, with optional newlines. */
183 void gwrite(giant g, FILE *fp, int newlines);
184
185 /* Output the giant in decimal, with both '\'-newline
186 * notation and a final newline. */
187 void gwriteln(giant g, FILE *fp);
188
189 /* Input the giant in decimal, assuming the formatting of
190 * 'gwriteln'. */
191 void gread(giant g, FILE *fp);
192
193 /**************************************************************
194 *
195 * Math Functions
196 *
197 **************************************************************/
198
199 /* g := -g. */
200 void negg(giant g);
201
202 /* g := |g|. */
203 void absg(giant g);
204
205 /* g += i, with i non-negative and < 2^16. */
206 void iaddg(int i,giant g);
207
208 /* b += a. */
209 void addg(giant a, giant b);
210
211 /* b -= a. */
212 void subg(giant a, giant b);
213
214 /* Returns the number of trailing zero bits in g. */
215 int numtrailzeros(giant g);
216
217 /* u becomes greatest power of two not exceeding u/v. */
218 void bdivg(giant v, giant u);
219
220 /* Same as invg, but uses bdivg. */
221 int binvg(giant n, giant x);
222
223 /* If 1/x exists (mod n), 1 is returned and x := 1/x. If
224 * inverse does not exist, 0 is returned and x := GCD(n, x). */
225 int invg(giant n, giant x);
226
227 int mersenneinvg(int q, giant x);
228
229 /* Classical GCD, x:= GCD(n, x). */
230 void cgcdg(giant n, giant x);
231
232 /* General GCD, x:= GCD(n, x). */
233 void gcdg(giant n, giant x);
234
235 /* Binary GCD, x:= GCD(n, x). */
236 void bgcdg(giant n, giant x);
237
238 /* g := m^n, no mod is performed. */
239 void powerg(int a, int b, giant g);
240
241 /* r becomes the steady-state reciprocal 2^(2b)/d, where
242 * b = bit-length of d-1. */
243 void make_recip(giant d, giant r);
244
245 /* n := [n/d], d positive, using stored reciprocal directly. */
246 void divg_via_recip(giant d, giant r, giant n);
247
248 /* n := n % d, d positive, using stored reciprocal directly. */
249 void modg_via_recip(giant d, giant r, giant n);
250
251 /* num := num % den, any positive den. */
252 void modg(giant den, giant num);
253
254 /* a becomes (a*b) (mod 2^q-k) where q % 16 == 0 and k is "small"
255 * (0 < k < 65535). Returns 0 if unsuccessful, otherwise 1. */
256 int feemulmod(giant x, giant y, int q, int k);
257
258 /* g := g/n, and (g mod n) is returned. */
259 int idivg(int n, giant g);
260
261 /* num := [num/den], any positive den. */
262 void divg(giant den, giant num);
263
264 /* num := [num/den], any positive den. */
265 void powermod(giant x, int n, giant z);
266
267 /* x := x^n (mod z). */
268 void powermodg(giant x, giant n, giant z);
269
270 /* x := x^n (mod 2^q+1). */
271 void fermatpowermod(giant x, int n, int q);
272
273 /* x := x^n (mod 2^q+1). */
274 void fermatpowermodg(giant x, giant n, int q);
275
276 /* x := x^n (mod 2^q-1). */
277 void mersennepowermod(giant x, int n, int q);
278
279 /* x := x^n (mod 2^q-1). */
280 void mersennepowermodg(giant x, giant n, int q);
281
282 /* Shift g left by bits, introducing zeros on the right. */
283 void gshiftleft(int bits, giant g);
284
285 /* Shift g right by bits, losing bits on the right. */
286 void gshiftright(int bits, giant g);
287
288 /* dest becomes lowermost n bits of src.
289 * Equivalent to dest = src % 2^n. */
290 void extractbits(int n, giant src, giant dest);
291
292 /* negate g. g is mod 2^n+1. */
293 void fermatnegate(int n, giant g);
294
295 /* g := g (mod 2^n-1). */
296 void mersennemod(int n, giant g);
297
298 /* g := g (mod 2^n+1). */
299 void fermatmod(int n, giant g);
300
301 /* g := g (mod 2^n+1). */
302 void fer_mod(int n, giant g, giant modulus);
303
304 /* g *= s. */
305 void smulg(unsigned short s, giant g);
306
307 /* g *= g. */
308 void squareg(giant g);
309
310 /* b *= a. */
311 void mulg(giant a, giant b);
312
313 /* A giant gcd. Modifies its arguments. */
314 void ggcd(giant xx, giant yy);