]> git.saurik.com Git - apple/objc4.git/blob - runtime/objc-runtime-new.h
objc4-818.2.tar.gz
[apple/objc4.git] / runtime / objc-runtime-new.h
1 /*
2 * Copyright (c) 2005-2007 Apple Inc. All Rights Reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 #ifndef _OBJC_RUNTIME_NEW_H
25 #define _OBJC_RUNTIME_NEW_H
26
27 #include "PointerUnion.h"
28 #include <type_traits>
29
30 // class_data_bits_t is the class_t->data field (class_rw_t pointer plus flags)
31 // The extra bits are optimized for the retain/release and alloc/dealloc paths.
32
33 // Values for class_ro_t->flags
34 // These are emitted by the compiler and are part of the ABI.
35 // Note: See CGObjCNonFragileABIMac::BuildClassRoTInitializer in clang
36 // class is a metaclass
37 #define RO_META (1<<0)
38 // class is a root class
39 #define RO_ROOT (1<<1)
40 // class has .cxx_construct/destruct implementations
41 #define RO_HAS_CXX_STRUCTORS (1<<2)
42 // class has +load implementation
43 // #define RO_HAS_LOAD_METHOD (1<<3)
44 // class has visibility=hidden set
45 #define RO_HIDDEN (1<<4)
46 // class has attribute(objc_exception): OBJC_EHTYPE_$_ThisClass is non-weak
47 #define RO_EXCEPTION (1<<5)
48 // class has ro field for Swift metadata initializer callback
49 #define RO_HAS_SWIFT_INITIALIZER (1<<6)
50 // class compiled with ARC
51 #define RO_IS_ARC (1<<7)
52 // class has .cxx_destruct but no .cxx_construct (with RO_HAS_CXX_STRUCTORS)
53 #define RO_HAS_CXX_DTOR_ONLY (1<<8)
54 // class is not ARC but has ARC-style weak ivar layout
55 #define RO_HAS_WEAK_WITHOUT_ARC (1<<9)
56 // class does not allow associated objects on instances
57 #define RO_FORBIDS_ASSOCIATED_OBJECTS (1<<10)
58
59 // class is in an unloadable bundle - must never be set by compiler
60 #define RO_FROM_BUNDLE (1<<29)
61 // class is unrealized future class - must never be set by compiler
62 #define RO_FUTURE (1<<30)
63 // class is realized - must never be set by compiler
64 #define RO_REALIZED (1<<31)
65
66 // Values for class_rw_t->flags
67 // These are not emitted by the compiler and are never used in class_ro_t.
68 // Their presence should be considered in future ABI versions.
69 // class_t->data is class_rw_t, not class_ro_t
70 #define RW_REALIZED (1<<31)
71 // class is unresolved future class
72 #define RW_FUTURE (1<<30)
73 // class is initialized
74 #define RW_INITIALIZED (1<<29)
75 // class is initializing
76 #define RW_INITIALIZING (1<<28)
77 // class_rw_t->ro is heap copy of class_ro_t
78 #define RW_COPIED_RO (1<<27)
79 // class allocated but not yet registered
80 #define RW_CONSTRUCTING (1<<26)
81 // class allocated and registered
82 #define RW_CONSTRUCTED (1<<25)
83 // available for use; was RW_FINALIZE_ON_MAIN_THREAD
84 // #define RW_24 (1<<24)
85 // class +load has been called
86 #define RW_LOADED (1<<23)
87 #if !SUPPORT_NONPOINTER_ISA
88 // class instances may have associative references
89 #define RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS (1<<22)
90 #endif
91 // class has instance-specific GC layout
92 #define RW_HAS_INSTANCE_SPECIFIC_LAYOUT (1 << 21)
93 // class does not allow associated objects on its instances
94 #define RW_FORBIDS_ASSOCIATED_OBJECTS (1<<20)
95 // class has started realizing but not yet completed it
96 #define RW_REALIZING (1<<19)
97
98 #if CONFIG_USE_PREOPT_CACHES
99 // this class and its descendants can't have preopt caches with inlined sels
100 #define RW_NOPREOPT_SELS (1<<2)
101 // this class and its descendants can't have preopt caches
102 #define RW_NOPREOPT_CACHE (1<<1)
103 #endif
104
105 // class is a metaclass (copied from ro)
106 #define RW_META RO_META // (1<<0)
107
108
109 // NOTE: MORE RW_ FLAGS DEFINED BELOW
110
111 // Values for class_rw_t->flags (RW_*), cache_t->_flags (FAST_CACHE_*),
112 // or class_t->bits (FAST_*).
113 //
114 // FAST_* and FAST_CACHE_* are stored on the class, reducing pointer indirection.
115
116 #if __LP64__
117
118 // class is a Swift class from the pre-stable Swift ABI
119 #define FAST_IS_SWIFT_LEGACY (1UL<<0)
120 // class is a Swift class from the stable Swift ABI
121 #define FAST_IS_SWIFT_STABLE (1UL<<1)
122 // class or superclass has default retain/release/autorelease/retainCount/
123 // _tryRetain/_isDeallocating/retainWeakReference/allowsWeakReference
124 #define FAST_HAS_DEFAULT_RR (1UL<<2)
125 // data pointer
126 #define FAST_DATA_MASK 0x00007ffffffffff8UL
127
128 #if __arm64__
129 // class or superclass has .cxx_construct/.cxx_destruct implementation
130 // FAST_CACHE_HAS_CXX_DTOR is the first bit so that setting it in
131 // isa_t::has_cxx_dtor is a single bfi
132 #define FAST_CACHE_HAS_CXX_DTOR (1<<0)
133 #define FAST_CACHE_HAS_CXX_CTOR (1<<1)
134 // Denormalized RO_META to avoid an indirection
135 #define FAST_CACHE_META (1<<2)
136 #else
137 // Denormalized RO_META to avoid an indirection
138 #define FAST_CACHE_META (1<<0)
139 // class or superclass has .cxx_construct/.cxx_destruct implementation
140 // FAST_CACHE_HAS_CXX_DTOR is chosen to alias with isa_t::has_cxx_dtor
141 #define FAST_CACHE_HAS_CXX_CTOR (1<<1)
142 #define FAST_CACHE_HAS_CXX_DTOR (1<<2)
143 #endif
144
145 // Fast Alloc fields:
146 // This stores the word-aligned size of instances + "ALLOC_DELTA16",
147 // or 0 if the instance size doesn't fit.
148 //
149 // These bits occupy the same bits than in the instance size, so that
150 // the size can be extracted with a simple mask operation.
151 //
152 // FAST_CACHE_ALLOC_MASK16 allows to extract the instance size rounded
153 // rounded up to the next 16 byte boundary, which is a fastpath for
154 // _objc_rootAllocWithZone()
155 #define FAST_CACHE_ALLOC_MASK 0x1ff8
156 #define FAST_CACHE_ALLOC_MASK16 0x1ff0
157 #define FAST_CACHE_ALLOC_DELTA16 0x0008
158
159 // class's instances requires raw isa
160 #define FAST_CACHE_REQUIRES_RAW_ISA (1<<13)
161 // class or superclass has default alloc/allocWithZone: implementation
162 // Note this is is stored in the metaclass.
163 #define FAST_CACHE_HAS_DEFAULT_AWZ (1<<14)
164 // class or superclass has default new/self/class/respondsToSelector/isKindOfClass
165 #define FAST_CACHE_HAS_DEFAULT_CORE (1<<15)
166
167 #else
168
169 // class or superclass has .cxx_construct implementation
170 #define RW_HAS_CXX_CTOR (1<<18)
171 // class or superclass has .cxx_destruct implementation
172 #define RW_HAS_CXX_DTOR (1<<17)
173 // class or superclass has default alloc/allocWithZone: implementation
174 // Note this is is stored in the metaclass.
175 #define RW_HAS_DEFAULT_AWZ (1<<16)
176 // class's instances requires raw isa
177 #if SUPPORT_NONPOINTER_ISA
178 #define RW_REQUIRES_RAW_ISA (1<<15)
179 #endif
180 // class or superclass has default retain/release/autorelease/retainCount/
181 // _tryRetain/_isDeallocating/retainWeakReference/allowsWeakReference
182 #define RW_HAS_DEFAULT_RR (1<<14)
183 // class or superclass has default new/self/class/respondsToSelector/isKindOfClass
184 #define RW_HAS_DEFAULT_CORE (1<<13)
185
186 // class is a Swift class from the pre-stable Swift ABI
187 #define FAST_IS_SWIFT_LEGACY (1UL<<0)
188 // class is a Swift class from the stable Swift ABI
189 #define FAST_IS_SWIFT_STABLE (1UL<<1)
190 // data pointer
191 #define FAST_DATA_MASK 0xfffffffcUL
192
193 #endif // __LP64__
194
195 // The Swift ABI requires that these bits be defined like this on all platforms.
196 static_assert(FAST_IS_SWIFT_LEGACY == 1, "resistance is futile");
197 static_assert(FAST_IS_SWIFT_STABLE == 2, "resistance is futile");
198
199
200 #if __LP64__
201 typedef uint32_t mask_t; // x86_64 & arm64 asm are less efficient with 16-bits
202 #else
203 typedef uint16_t mask_t;
204 #endif
205 typedef uintptr_t SEL;
206
207 struct swift_class_t;
208
209 enum Atomicity { Atomic = true, NotAtomic = false };
210 enum IMPEncoding { Encoded = true, Raw = false };
211
212 struct bucket_t {
213 private:
214 // IMP-first is better for arm64e ptrauth and no worse for arm64.
215 // SEL-first is better for armv7* and i386 and x86_64.
216 #if __arm64__
217 explicit_atomic<uintptr_t> _imp;
218 explicit_atomic<SEL> _sel;
219 #else
220 explicit_atomic<SEL> _sel;
221 explicit_atomic<uintptr_t> _imp;
222 #endif
223
224 // Compute the ptrauth signing modifier from &_imp, newSel, and cls.
225 uintptr_t modifierForSEL(bucket_t *base, SEL newSel, Class cls) const {
226 return (uintptr_t)base ^ (uintptr_t)newSel ^ (uintptr_t)cls;
227 }
228
229 // Sign newImp, with &_imp, newSel, and cls as modifiers.
230 uintptr_t encodeImp(UNUSED_WITHOUT_PTRAUTH bucket_t *base, IMP newImp, UNUSED_WITHOUT_PTRAUTH SEL newSel, Class cls) const {
231 if (!newImp) return 0;
232 #if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
233 return (uintptr_t)
234 ptrauth_auth_and_resign(newImp,
235 ptrauth_key_function_pointer, 0,
236 ptrauth_key_process_dependent_code,
237 modifierForSEL(base, newSel, cls));
238 #elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
239 return (uintptr_t)newImp ^ (uintptr_t)cls;
240 #elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
241 return (uintptr_t)newImp;
242 #else
243 #error Unknown method cache IMP encoding.
244 #endif
245 }
246
247 public:
248 static inline size_t offsetOfSel() { return offsetof(bucket_t, _sel); }
249 inline SEL sel() const { return _sel.load(memory_order_relaxed); }
250
251 #if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
252 #define MAYBE_UNUSED_ISA
253 #else
254 #define MAYBE_UNUSED_ISA __attribute__((unused))
255 #endif
256 inline IMP rawImp(MAYBE_UNUSED_ISA objc_class *cls) const {
257 uintptr_t imp = _imp.load(memory_order_relaxed);
258 if (!imp) return nil;
259 #if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
260 #elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
261 imp ^= (uintptr_t)cls;
262 #elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
263 #else
264 #error Unknown method cache IMP encoding.
265 #endif
266 return (IMP)imp;
267 }
268
269 inline IMP imp(UNUSED_WITHOUT_PTRAUTH bucket_t *base, Class cls) const {
270 uintptr_t imp = _imp.load(memory_order_relaxed);
271 if (!imp) return nil;
272 #if CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_PTRAUTH
273 SEL sel = _sel.load(memory_order_relaxed);
274 return (IMP)
275 ptrauth_auth_and_resign((const void *)imp,
276 ptrauth_key_process_dependent_code,
277 modifierForSEL(base, sel, cls),
278 ptrauth_key_function_pointer, 0);
279 #elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_ISA_XOR
280 return (IMP)(imp ^ (uintptr_t)cls);
281 #elif CACHE_IMP_ENCODING == CACHE_IMP_ENCODING_NONE
282 return (IMP)imp;
283 #else
284 #error Unknown method cache IMP encoding.
285 #endif
286 }
287
288 template <Atomicity, IMPEncoding>
289 void set(bucket_t *base, SEL newSel, IMP newImp, Class cls);
290 };
291
292 /* dyld_shared_cache_builder and obj-C agree on these definitions */
293 enum {
294 OBJC_OPT_METHODNAME_START = 0,
295 OBJC_OPT_METHODNAME_END = 1,
296 OBJC_OPT_INLINED_METHODS_START = 2,
297 OBJC_OPT_INLINED_METHODS_END = 3,
298
299 __OBJC_OPT_OFFSETS_COUNT,
300 };
301
302 #if CONFIG_USE_PREOPT_CACHES
303 extern uintptr_t objc_opt_offsets[__OBJC_OPT_OFFSETS_COUNT];
304 #endif
305
306 /* dyld_shared_cache_builder and obj-C agree on these definitions */
307 struct preopt_cache_entry_t {
308 uint32_t sel_offs;
309 uint32_t imp_offs;
310 };
311
312 /* dyld_shared_cache_builder and obj-C agree on these definitions */
313 struct preopt_cache_t {
314 int32_t fallback_class_offset;
315 union {
316 struct {
317 uint16_t shift : 5;
318 uint16_t mask : 11;
319 };
320 uint16_t hash_params;
321 };
322 uint16_t occupied : 14;
323 uint16_t has_inlines : 1;
324 uint16_t bit_one : 1;
325 preopt_cache_entry_t entries[];
326
327 inline int capacity() const {
328 return mask + 1;
329 }
330 };
331
332 // returns:
333 // - the cached IMP when one is found
334 // - nil if there's no cached value and the cache is dynamic
335 // - `value_on_constant_cache_miss` if there's no cached value and the cache is preoptimized
336 extern "C" IMP cache_getImp(Class cls, SEL sel, IMP value_on_constant_cache_miss = nil);
337
338 struct cache_t {
339 private:
340 explicit_atomic<uintptr_t> _bucketsAndMaybeMask;
341 union {
342 struct {
343 explicit_atomic<mask_t> _maybeMask;
344 #if __LP64__
345 uint16_t _flags;
346 #endif
347 uint16_t _occupied;
348 };
349 explicit_atomic<preopt_cache_t *> _originalPreoptCache;
350 };
351
352 #if CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_OUTLINED
353 // _bucketsAndMaybeMask is a buckets_t pointer
354 // _maybeMask is the buckets mask
355
356 static constexpr uintptr_t bucketsMask = ~0ul;
357 static_assert(!CONFIG_USE_PREOPT_CACHES, "preoptimized caches not supported");
358 #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16_BIG_ADDRS
359 static constexpr uintptr_t maskShift = 48;
360 static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
361 static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << maskShift) - 1;
362
363 static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS, "Bucket field doesn't have enough bits for arbitrary pointers.");
364 #if CONFIG_USE_PREOPT_CACHES
365 static constexpr uintptr_t preoptBucketsMarker = 1ul;
366 static constexpr uintptr_t preoptBucketsMask = bucketsMask & ~preoptBucketsMarker;
367 #endif
368 #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_HIGH_16
369 // _bucketsAndMaybeMask is a buckets_t pointer in the low 48 bits
370 // _maybeMask is unused, the mask is stored in the top 16 bits.
371
372 // How much the mask is shifted by.
373 static constexpr uintptr_t maskShift = 48;
374
375 // Additional bits after the mask which must be zero. msgSend
376 // takes advantage of these additional bits to construct the value
377 // `mask << 4` from `_maskAndBuckets` in a single instruction.
378 static constexpr uintptr_t maskZeroBits = 4;
379
380 // The largest mask value we can store.
381 static constexpr uintptr_t maxMask = ((uintptr_t)1 << (64 - maskShift)) - 1;
382
383 // The mask applied to `_maskAndBuckets` to retrieve the buckets pointer.
384 static constexpr uintptr_t bucketsMask = ((uintptr_t)1 << (maskShift - maskZeroBits)) - 1;
385
386 // Ensure we have enough bits for the buckets pointer.
387 static_assert(bucketsMask >= MACH_VM_MAX_ADDRESS,
388 "Bucket field doesn't have enough bits for arbitrary pointers.");
389
390 #if CONFIG_USE_PREOPT_CACHES
391 static constexpr uintptr_t preoptBucketsMarker = 1ul;
392 #if __has_feature(ptrauth_calls)
393 // 63..60: hash_mask_shift
394 // 59..55: hash_shift
395 // 54.. 1: buckets ptr + auth
396 // 0: always 1
397 static constexpr uintptr_t preoptBucketsMask = 0x007ffffffffffffe;
398 static inline uintptr_t preoptBucketsHashParams(const preopt_cache_t *cache) {
399 uintptr_t value = (uintptr_t)cache->shift << 55;
400 // masks have 11 bits but can be 0, so we compute
401 // the right shift for 0x7fff rather than 0xffff
402 return value | ((objc::mask16ShiftBits(cache->mask) - 1) << 60);
403 }
404 #else
405 // 63..53: hash_mask
406 // 52..48: hash_shift
407 // 47.. 1: buckets ptr
408 // 0: always 1
409 static constexpr uintptr_t preoptBucketsMask = 0x0000fffffffffffe;
410 static inline uintptr_t preoptBucketsHashParams(const preopt_cache_t *cache) {
411 return (uintptr_t)cache->hash_params << 48;
412 }
413 #endif
414 #endif // CONFIG_USE_PREOPT_CACHES
415 #elif CACHE_MASK_STORAGE == CACHE_MASK_STORAGE_LOW_4
416 // _bucketsAndMaybeMask is a buckets_t pointer in the top 28 bits
417 // _maybeMask is unused, the mask length is stored in the low 4 bits
418
419 static constexpr uintptr_t maskBits = 4;
420 static constexpr uintptr_t maskMask = (1 << maskBits) - 1;
421 static constexpr uintptr_t bucketsMask = ~maskMask;
422 static_assert(!CONFIG_USE_PREOPT_CACHES, "preoptimized caches not supported");
423 #else
424 #error Unknown cache mask storage type.
425 #endif
426
427 bool isConstantEmptyCache() const;
428 bool canBeFreed() const;
429 mask_t mask() const;
430
431 #if CONFIG_USE_PREOPT_CACHES
432 void initializeToPreoptCacheInDisguise(const preopt_cache_t *cache);
433 const preopt_cache_t *disguised_preopt_cache() const;
434 #endif
435
436 void incrementOccupied();
437 void setBucketsAndMask(struct bucket_t *newBuckets, mask_t newMask);
438
439 void reallocate(mask_t oldCapacity, mask_t newCapacity, bool freeOld);
440 void collect_free(bucket_t *oldBuckets, mask_t oldCapacity);
441
442 static bucket_t *emptyBuckets();
443 static bucket_t *allocateBuckets(mask_t newCapacity);
444 static bucket_t *emptyBucketsForCapacity(mask_t capacity, bool allocate = true);
445 static struct bucket_t * endMarker(struct bucket_t *b, uint32_t cap);
446 void bad_cache(id receiver, SEL sel) __attribute__((noreturn, cold));
447
448 public:
449 // The following four fields are public for objcdt's use only.
450 // objcdt reaches into fields while the process is suspended
451 // hence doesn't care for locks and pesky little details like this
452 // and can safely use these.
453 unsigned capacity() const;
454 struct bucket_t *buckets() const;
455 Class cls() const;
456
457 #if CONFIG_USE_PREOPT_CACHES
458 const preopt_cache_t *preopt_cache() const;
459 #endif
460
461 mask_t occupied() const;
462 void initializeToEmpty();
463
464 #if CONFIG_USE_PREOPT_CACHES
465 bool isConstantOptimizedCache(bool strict = false, uintptr_t empty_addr = (uintptr_t)&_objc_empty_cache) const;
466 bool shouldFlush(SEL sel, IMP imp) const;
467 bool isConstantOptimizedCacheWithInlinedSels() const;
468 Class preoptFallbackClass() const;
469 void maybeConvertToPreoptimized();
470 void initializeToEmptyOrPreoptimizedInDisguise();
471 #else
472 inline bool isConstantOptimizedCache(bool strict = false, uintptr_t empty_addr = 0) const { return false; }
473 inline bool shouldFlush(SEL sel, IMP imp) const {
474 return cache_getImp(cls(), sel) == imp;
475 }
476 inline bool isConstantOptimizedCacheWithInlinedSels() const { return false; }
477 inline void initializeToEmptyOrPreoptimizedInDisguise() { initializeToEmpty(); }
478 #endif
479
480 void insert(SEL sel, IMP imp, id receiver);
481 void copyCacheNolock(objc_imp_cache_entry *buffer, int len);
482 void destroy();
483 void eraseNolock(const char *func);
484
485 static void init();
486 static void collectNolock(bool collectALot);
487 static size_t bytesForCapacity(uint32_t cap);
488
489 #if __LP64__
490 bool getBit(uint16_t flags) const {
491 return _flags & flags;
492 }
493 void setBit(uint16_t set) {
494 __c11_atomic_fetch_or((_Atomic(uint16_t) *)&_flags, set, __ATOMIC_RELAXED);
495 }
496 void clearBit(uint16_t clear) {
497 __c11_atomic_fetch_and((_Atomic(uint16_t) *)&_flags, ~clear, __ATOMIC_RELAXED);
498 }
499 #endif
500
501 #if FAST_CACHE_ALLOC_MASK
502 bool hasFastInstanceSize(size_t extra) const
503 {
504 if (__builtin_constant_p(extra) && extra == 0) {
505 return _flags & FAST_CACHE_ALLOC_MASK16;
506 }
507 return _flags & FAST_CACHE_ALLOC_MASK;
508 }
509
510 size_t fastInstanceSize(size_t extra) const
511 {
512 ASSERT(hasFastInstanceSize(extra));
513
514 if (__builtin_constant_p(extra) && extra == 0) {
515 return _flags & FAST_CACHE_ALLOC_MASK16;
516 } else {
517 size_t size = _flags & FAST_CACHE_ALLOC_MASK;
518 // remove the FAST_CACHE_ALLOC_DELTA16 that was added
519 // by setFastInstanceSize
520 return align16(size + extra - FAST_CACHE_ALLOC_DELTA16);
521 }
522 }
523
524 void setFastInstanceSize(size_t newSize)
525 {
526 // Set during realization or construction only. No locking needed.
527 uint16_t newBits = _flags & ~FAST_CACHE_ALLOC_MASK;
528 uint16_t sizeBits;
529
530 // Adding FAST_CACHE_ALLOC_DELTA16 allows for FAST_CACHE_ALLOC_MASK16
531 // to yield the proper 16byte aligned allocation size with a single mask
532 sizeBits = word_align(newSize) + FAST_CACHE_ALLOC_DELTA16;
533 sizeBits &= FAST_CACHE_ALLOC_MASK;
534 if (newSize <= sizeBits) {
535 newBits |= sizeBits;
536 }
537 _flags = newBits;
538 }
539 #else
540 bool hasFastInstanceSize(size_t extra) const {
541 return false;
542 }
543 size_t fastInstanceSize(size_t extra) const {
544 abort();
545 }
546 void setFastInstanceSize(size_t extra) {
547 // nothing
548 }
549 #endif
550 };
551
552
553 // classref_t is unremapped class_t*
554 typedef struct classref * classref_t;
555
556
557 /***********************************************************************
558 * RelativePointer<T>
559 * A pointer stored as an offset from the address of that offset.
560 *
561 * The target address is computed by taking the address of this struct
562 * and adding the offset stored within it. This is a 32-bit signed
563 * offset giving ±2GB of range.
564 **********************************************************************/
565 template <typename T>
566 struct RelativePointer: nocopy_t {
567 int32_t offset;
568
569 T get() const {
570 if (offset == 0)
571 return nullptr;
572 uintptr_t base = (uintptr_t)&offset;
573 uintptr_t signExtendedOffset = (uintptr_t)(intptr_t)offset;
574 uintptr_t pointer = base + signExtendedOffset;
575 return (T)pointer;
576 }
577 };
578
579
580 #ifdef __PTRAUTH_INTRINSICS__
581 # define StubClassInitializerPtrauth __ptrauth(ptrauth_key_function_pointer, 1, 0xc671)
582 #else
583 # define StubClassInitializerPtrauth
584 #endif
585 struct stub_class_t {
586 uintptr_t isa;
587 _objc_swiftMetadataInitializer StubClassInitializerPtrauth initializer;
588 };
589
590 // A pointer modifier that does nothing to the pointer.
591 struct PointerModifierNop {
592 template <typename ListType, typename T>
593 static T *modify(__unused const ListType &list, T *ptr) { return ptr; }
594 };
595
596 /***********************************************************************
597 * entsize_list_tt<Element, List, FlagMask, PointerModifier>
598 * Generic implementation of an array of non-fragile structs.
599 *
600 * Element is the struct type (e.g. method_t)
601 * List is the specialization of entsize_list_tt (e.g. method_list_t)
602 * FlagMask is used to stash extra bits in the entsize field
603 * (e.g. method list fixup markers)
604 * PointerModifier is applied to the element pointers retrieved from
605 * the array.
606 **********************************************************************/
607 template <typename Element, typename List, uint32_t FlagMask, typename PointerModifier = PointerModifierNop>
608 struct entsize_list_tt {
609 uint32_t entsizeAndFlags;
610 uint32_t count;
611
612 uint32_t entsize() const {
613 return entsizeAndFlags & ~FlagMask;
614 }
615 uint32_t flags() const {
616 return entsizeAndFlags & FlagMask;
617 }
618
619 Element& getOrEnd(uint32_t i) const {
620 ASSERT(i <= count);
621 return *PointerModifier::modify(*this, (Element *)((uint8_t *)this + sizeof(*this) + i*entsize()));
622 }
623 Element& get(uint32_t i) const {
624 ASSERT(i < count);
625 return getOrEnd(i);
626 }
627
628 size_t byteSize() const {
629 return byteSize(entsize(), count);
630 }
631
632 static size_t byteSize(uint32_t entsize, uint32_t count) {
633 return sizeof(entsize_list_tt) + count*entsize;
634 }
635
636 struct iterator;
637 const iterator begin() const {
638 return iterator(*static_cast<const List*>(this), 0);
639 }
640 iterator begin() {
641 return iterator(*static_cast<const List*>(this), 0);
642 }
643 const iterator end() const {
644 return iterator(*static_cast<const List*>(this), count);
645 }
646 iterator end() {
647 return iterator(*static_cast<const List*>(this), count);
648 }
649
650 struct iterator {
651 uint32_t entsize;
652 uint32_t index; // keeping track of this saves a divide in operator-
653 Element* element;
654
655 typedef std::random_access_iterator_tag iterator_category;
656 typedef Element value_type;
657 typedef ptrdiff_t difference_type;
658 typedef Element* pointer;
659 typedef Element& reference;
660
661 iterator() { }
662
663 iterator(const List& list, uint32_t start = 0)
664 : entsize(list.entsize())
665 , index(start)
666 , element(&list.getOrEnd(start))
667 { }
668
669 const iterator& operator += (ptrdiff_t delta) {
670 element = (Element*)((uint8_t *)element + delta*entsize);
671 index += (int32_t)delta;
672 return *this;
673 }
674 const iterator& operator -= (ptrdiff_t delta) {
675 element = (Element*)((uint8_t *)element - delta*entsize);
676 index -= (int32_t)delta;
677 return *this;
678 }
679 const iterator operator + (ptrdiff_t delta) const {
680 return iterator(*this) += delta;
681 }
682 const iterator operator - (ptrdiff_t delta) const {
683 return iterator(*this) -= delta;
684 }
685
686 iterator& operator ++ () { *this += 1; return *this; }
687 iterator& operator -- () { *this -= 1; return *this; }
688 iterator operator ++ (int) {
689 iterator result(*this); *this += 1; return result;
690 }
691 iterator operator -- (int) {
692 iterator result(*this); *this -= 1; return result;
693 }
694
695 ptrdiff_t operator - (const iterator& rhs) const {
696 return (ptrdiff_t)this->index - (ptrdiff_t)rhs.index;
697 }
698
699 Element& operator * () const { return *element; }
700 Element* operator -> () const { return element; }
701
702 operator Element& () const { return *element; }
703
704 bool operator == (const iterator& rhs) const {
705 return this->element == rhs.element;
706 }
707 bool operator != (const iterator& rhs) const {
708 return this->element != rhs.element;
709 }
710
711 bool operator < (const iterator& rhs) const {
712 return this->element < rhs.element;
713 }
714 bool operator > (const iterator& rhs) const {
715 return this->element > rhs.element;
716 }
717 };
718 };
719
720
721 namespace objc {
722 // Let method_t::small use this from objc-private.h.
723 static inline bool inSharedCache(uintptr_t ptr);
724 }
725
726 struct method_t {
727 static const uint32_t smallMethodListFlag = 0x80000000;
728
729 method_t(const method_t &other) = delete;
730
731 // The representation of a "big" method. This is the traditional
732 // representation of three pointers storing the selector, types
733 // and implementation.
734 struct big {
735 SEL name;
736 const char *types;
737 MethodListIMP imp;
738 };
739
740 private:
741 bool isSmall() const {
742 return ((uintptr_t)this & 1) == 1;
743 }
744
745 // The representation of a "small" method. This stores three
746 // relative offsets to the name, types, and implementation.
747 struct small {
748 // The name field either refers to a selector (in the shared
749 // cache) or a selref (everywhere else).
750 RelativePointer<const void *> name;
751 RelativePointer<const char *> types;
752 RelativePointer<IMP> imp;
753
754 bool inSharedCache() const {
755 return (CONFIG_SHARED_CACHE_RELATIVE_DIRECT_SELECTORS &&
756 objc::inSharedCache((uintptr_t)this));
757 }
758 };
759
760 small &small() const {
761 ASSERT(isSmall());
762 return *(struct small *)((uintptr_t)this & ~(uintptr_t)1);
763 }
764
765 IMP remappedImp(bool needsLock) const;
766 void remapImp(IMP imp);
767 objc_method_description *getSmallDescription() const;
768
769 public:
770 static const auto bigSize = sizeof(struct big);
771 static const auto smallSize = sizeof(struct small);
772
773 // The pointer modifier used with method lists. When the method
774 // list contains small methods, set the bottom bit of the pointer.
775 // We use that bottom bit elsewhere to distinguish between big
776 // and small methods.
777 struct pointer_modifier {
778 template <typename ListType>
779 static method_t *modify(const ListType &list, method_t *ptr) {
780 if (list.flags() & smallMethodListFlag)
781 return (method_t *)((uintptr_t)ptr | 1);
782 return ptr;
783 }
784 };
785
786 big &big() const {
787 ASSERT(!isSmall());
788 return *(struct big *)this;
789 }
790
791 SEL name() const {
792 if (isSmall()) {
793 return (small().inSharedCache()
794 ? (SEL)small().name.get()
795 : *(SEL *)small().name.get());
796 } else {
797 return big().name;
798 }
799 }
800 const char *types() const {
801 return isSmall() ? small().types.get() : big().types;
802 }
803 IMP imp(bool needsLock) const {
804 if (isSmall()) {
805 IMP imp = remappedImp(needsLock);
806 if (!imp)
807 imp = ptrauth_sign_unauthenticated(small().imp.get(),
808 ptrauth_key_function_pointer, 0);
809 return imp;
810 }
811 return big().imp;
812 }
813
814 SEL getSmallNameAsSEL() const {
815 ASSERT(small().inSharedCache());
816 return (SEL)small().name.get();
817 }
818
819 SEL getSmallNameAsSELRef() const {
820 ASSERT(!small().inSharedCache());
821 return *(SEL *)small().name.get();
822 }
823
824 void setName(SEL name) {
825 if (isSmall()) {
826 ASSERT(!small().inSharedCache());
827 *(SEL *)small().name.get() = name;
828 } else {
829 big().name = name;
830 }
831 }
832
833 void setImp(IMP imp) {
834 if (isSmall()) {
835 remapImp(imp);
836 } else {
837 big().imp = imp;
838 }
839 }
840
841 objc_method_description *getDescription() const {
842 return isSmall() ? getSmallDescription() : (struct objc_method_description *)this;
843 }
844
845 struct SortBySELAddress :
846 public std::binary_function<const struct method_t::big&,
847 const struct method_t::big&, bool>
848 {
849 bool operator() (const struct method_t::big& lhs,
850 const struct method_t::big& rhs)
851 { return lhs.name < rhs.name; }
852 };
853
854 method_t &operator=(const method_t &other) {
855 ASSERT(!isSmall());
856 big().name = other.name();
857 big().types = other.types();
858 big().imp = other.imp(false);
859 return *this;
860 }
861 };
862
863 struct ivar_t {
864 #if __x86_64__
865 // *offset was originally 64-bit on some x86_64 platforms.
866 // We read and write only 32 bits of it.
867 // Some metadata provides all 64 bits. This is harmless for unsigned
868 // little-endian values.
869 // Some code uses all 64 bits. class_addIvar() over-allocates the
870 // offset for their benefit.
871 #endif
872 int32_t *offset;
873 const char *name;
874 const char *type;
875 // alignment is sometimes -1; use alignment() instead
876 uint32_t alignment_raw;
877 uint32_t size;
878
879 uint32_t alignment() const {
880 if (alignment_raw == ~(uint32_t)0) return 1U << WORD_SHIFT;
881 return 1 << alignment_raw;
882 }
883 };
884
885 struct property_t {
886 const char *name;
887 const char *attributes;
888 };
889
890 // Two bits of entsize are used for fixup markers.
891 // Reserve the top half of entsize for more flags. We never
892 // need entry sizes anywhere close to 64kB.
893 //
894 // Currently there is one flag defined: the small method list flag,
895 // method_t::smallMethodListFlag. Other flags are currently ignored.
896 // (NOTE: these bits are only ignored on runtimes that support small
897 // method lists. Older runtimes will treat them as part of the entry
898 // size!)
899 struct method_list_t : entsize_list_tt<method_t, method_list_t, 0xffff0003, method_t::pointer_modifier> {
900 bool isUniqued() const;
901 bool isFixedUp() const;
902 void setFixedUp();
903
904 uint32_t indexOfMethod(const method_t *meth) const {
905 uint32_t i =
906 (uint32_t)(((uintptr_t)meth - (uintptr_t)this) / entsize());
907 ASSERT(i < count);
908 return i;
909 }
910
911 bool isSmallList() const {
912 return flags() & method_t::smallMethodListFlag;
913 }
914
915 bool isExpectedSize() const {
916 if (isSmallList())
917 return entsize() == method_t::smallSize;
918 else
919 return entsize() == method_t::bigSize;
920 }
921
922 method_list_t *duplicate() const {
923 method_list_t *dup;
924 if (isSmallList()) {
925 dup = (method_list_t *)calloc(byteSize(method_t::bigSize, count), 1);
926 dup->entsizeAndFlags = method_t::bigSize;
927 } else {
928 dup = (method_list_t *)calloc(this->byteSize(), 1);
929 dup->entsizeAndFlags = this->entsizeAndFlags;
930 }
931 dup->count = this->count;
932 std::copy(begin(), end(), dup->begin());
933 return dup;
934 }
935 };
936
937 struct ivar_list_t : entsize_list_tt<ivar_t, ivar_list_t, 0> {
938 bool containsIvar(Ivar ivar) const {
939 return (ivar >= (Ivar)&*begin() && ivar < (Ivar)&*end());
940 }
941 };
942
943 struct property_list_t : entsize_list_tt<property_t, property_list_t, 0> {
944 };
945
946
947 typedef uintptr_t protocol_ref_t; // protocol_t *, but unremapped
948
949 // Values for protocol_t->flags
950 #define PROTOCOL_FIXED_UP_2 (1<<31) // must never be set by compiler
951 #define PROTOCOL_FIXED_UP_1 (1<<30) // must never be set by compiler
952 #define PROTOCOL_IS_CANONICAL (1<<29) // must never be set by compiler
953 // Bits 0..15 are reserved for Swift's use.
954
955 #define PROTOCOL_FIXED_UP_MASK (PROTOCOL_FIXED_UP_1 | PROTOCOL_FIXED_UP_2)
956
957 struct protocol_t : objc_object {
958 const char *mangledName;
959 struct protocol_list_t *protocols;
960 method_list_t *instanceMethods;
961 method_list_t *classMethods;
962 method_list_t *optionalInstanceMethods;
963 method_list_t *optionalClassMethods;
964 property_list_t *instanceProperties;
965 uint32_t size; // sizeof(protocol_t)
966 uint32_t flags;
967 // Fields below this point are not always present on disk.
968 const char **_extendedMethodTypes;
969 const char *_demangledName;
970 property_list_t *_classProperties;
971
972 const char *demangledName();
973
974 const char *nameForLogging() {
975 return demangledName();
976 }
977
978 bool isFixedUp() const;
979 void setFixedUp();
980
981 bool isCanonical() const;
982 void clearIsCanonical();
983
984 # define HAS_FIELD(f) ((uintptr_t)(&f) < ((uintptr_t)this + size))
985
986 bool hasExtendedMethodTypesField() const {
987 return HAS_FIELD(_extendedMethodTypes);
988 }
989 bool hasDemangledNameField() const {
990 return HAS_FIELD(_demangledName);
991 }
992 bool hasClassPropertiesField() const {
993 return HAS_FIELD(_classProperties);
994 }
995
996 # undef HAS_FIELD
997
998 const char **extendedMethodTypes() const {
999 return hasExtendedMethodTypesField() ? _extendedMethodTypes : nil;
1000 }
1001
1002 property_list_t *classProperties() const {
1003 return hasClassPropertiesField() ? _classProperties : nil;
1004 }
1005 };
1006
1007 struct protocol_list_t {
1008 // count is pointer-sized by accident.
1009 uintptr_t count;
1010 protocol_ref_t list[0]; // variable-size
1011
1012 size_t byteSize() const {
1013 return sizeof(*this) + count*sizeof(list[0]);
1014 }
1015
1016 protocol_list_t *duplicate() const {
1017 return (protocol_list_t *)memdup(this, this->byteSize());
1018 }
1019
1020 typedef protocol_ref_t* iterator;
1021 typedef const protocol_ref_t* const_iterator;
1022
1023 const_iterator begin() const {
1024 return list;
1025 }
1026 iterator begin() {
1027 return list;
1028 }
1029 const_iterator end() const {
1030 return list + count;
1031 }
1032 iterator end() {
1033 return list + count;
1034 }
1035 };
1036
1037 struct class_ro_t {
1038 uint32_t flags;
1039 uint32_t instanceStart;
1040 uint32_t instanceSize;
1041 #ifdef __LP64__
1042 uint32_t reserved;
1043 #endif
1044
1045 union {
1046 const uint8_t * ivarLayout;
1047 Class nonMetaclass;
1048 };
1049
1050 explicit_atomic<const char *> name;
1051 // With ptrauth, this is signed if it points to a small list, but
1052 // may be unsigned if it points to a big list.
1053 void *baseMethodList;
1054 protocol_list_t * baseProtocols;
1055 const ivar_list_t * ivars;
1056
1057 const uint8_t * weakIvarLayout;
1058 property_list_t *baseProperties;
1059
1060 // This field exists only when RO_HAS_SWIFT_INITIALIZER is set.
1061 _objc_swiftMetadataInitializer __ptrauth_objc_method_list_imp _swiftMetadataInitializer_NEVER_USE[0];
1062
1063 _objc_swiftMetadataInitializer swiftMetadataInitializer() const {
1064 if (flags & RO_HAS_SWIFT_INITIALIZER) {
1065 return _swiftMetadataInitializer_NEVER_USE[0];
1066 } else {
1067 return nil;
1068 }
1069 }
1070
1071 const char *getName() const {
1072 return name.load(std::memory_order_acquire);
1073 }
1074
1075 static const uint16_t methodListPointerDiscriminator = 0xC310;
1076 #if 0 // FIXME: enable this when we get a non-empty definition of __ptrauth_objc_method_list_pointer from ptrauth.h.
1077 static_assert(std::is_same<
1078 void * __ptrauth_objc_method_list_pointer *,
1079 void * __ptrauth(ptrauth_key_method_list_pointer, 1, methodListPointerDiscriminator) *>::value,
1080 "Method list pointer signing discriminator must match ptrauth.h");
1081 #endif
1082
1083 method_list_t *baseMethods() const {
1084 #if __has_feature(ptrauth_calls)
1085 method_list_t *ptr = ptrauth_strip((method_list_t *)baseMethodList, ptrauth_key_method_list_pointer);
1086 if (ptr == nullptr)
1087 return nullptr;
1088
1089 // Don't auth if the class_ro and the method list are both in the shared cache.
1090 // This is secure since they'll be read-only, and this allows the shared cache
1091 // to cut down on the number of signed pointers it has.
1092 bool roInSharedCache = objc::inSharedCache((uintptr_t)this);
1093 bool listInSharedCache = objc::inSharedCache((uintptr_t)ptr);
1094 if (roInSharedCache && listInSharedCache)
1095 return ptr;
1096
1097 // Auth all other small lists.
1098 if (ptr->isSmallList())
1099 ptr = ptrauth_auth_data((method_list_t *)baseMethodList,
1100 ptrauth_key_method_list_pointer,
1101 ptrauth_blend_discriminator(&baseMethodList,
1102 methodListPointerDiscriminator));
1103 return ptr;
1104 #else
1105 return (method_list_t *)baseMethodList;
1106 #endif
1107 }
1108
1109 uintptr_t baseMethodListPtrauthData() const {
1110 return ptrauth_blend_discriminator(&baseMethodList,
1111 methodListPointerDiscriminator);
1112 }
1113
1114 class_ro_t *duplicate() const {
1115 bool hasSwiftInitializer = flags & RO_HAS_SWIFT_INITIALIZER;
1116
1117 size_t size = sizeof(*this);
1118 if (hasSwiftInitializer)
1119 size += sizeof(_swiftMetadataInitializer_NEVER_USE[0]);
1120
1121 class_ro_t *ro = (class_ro_t *)memdup(this, size);
1122
1123 if (hasSwiftInitializer)
1124 ro->_swiftMetadataInitializer_NEVER_USE[0] = this->_swiftMetadataInitializer_NEVER_USE[0];
1125
1126 #if __has_feature(ptrauth_calls)
1127 // Re-sign the method list pointer if it was signed.
1128 // NOTE: It is possible for a signed pointer to have a signature
1129 // that is all zeroes. This is indistinguishable from a raw pointer.
1130 // This code will treat such a pointer as signed and re-sign it. A
1131 // false positive is safe: method list pointers are either authed or
1132 // stripped, so if baseMethods() doesn't expect it to be signed, it
1133 // will ignore the signature.
1134 void *strippedBaseMethodList = ptrauth_strip(baseMethodList, ptrauth_key_method_list_pointer);
1135 void *signedBaseMethodList = ptrauth_sign_unauthenticated(strippedBaseMethodList,
1136 ptrauth_key_method_list_pointer,
1137 baseMethodListPtrauthData());
1138 if (baseMethodList == signedBaseMethodList) {
1139 ro->baseMethodList = ptrauth_auth_and_resign(baseMethodList,
1140 ptrauth_key_method_list_pointer,
1141 baseMethodListPtrauthData(),
1142 ptrauth_key_method_list_pointer,
1143 ro->baseMethodListPtrauthData());
1144 } else {
1145 // Special case: a class_ro_t in the shared cache pointing to a
1146 // method list in the shared cache will not have a signed pointer,
1147 // but the duplicate will be expected to have a signed pointer since
1148 // it's not in the shared cache. Detect that and sign it.
1149 bool roInSharedCache = objc::inSharedCache((uintptr_t)this);
1150 bool listInSharedCache = objc::inSharedCache((uintptr_t)strippedBaseMethodList);
1151 if (roInSharedCache && listInSharedCache)
1152 ro->baseMethodList = ptrauth_sign_unauthenticated(strippedBaseMethodList,
1153 ptrauth_key_method_list_pointer,
1154 ro->baseMethodListPtrauthData());
1155 }
1156 #endif
1157
1158 return ro;
1159 }
1160
1161 Class getNonMetaclass() const {
1162 ASSERT(flags & RO_META);
1163 return nonMetaclass;
1164 }
1165
1166 const uint8_t *getIvarLayout() const {
1167 if (flags & RO_META)
1168 return nullptr;
1169 return ivarLayout;
1170 }
1171 };
1172
1173
1174 /***********************************************************************
1175 * list_array_tt<Element, List, Ptr>
1176 * Generic implementation for metadata that can be augmented by categories.
1177 *
1178 * Element is the underlying metadata type (e.g. method_t)
1179 * List is the metadata's list type (e.g. method_list_t)
1180 * List is a template applied to Element to make Element*. Useful for
1181 * applying qualifiers to the pointer type.
1182 *
1183 * A list_array_tt has one of three values:
1184 * - empty
1185 * - a pointer to a single list
1186 * - an array of pointers to lists
1187 *
1188 * countLists/beginLists/endLists iterate the metadata lists
1189 * count/begin/end iterate the underlying metadata elements
1190 **********************************************************************/
1191 template <typename Element, typename List, template<typename> class Ptr>
1192 class list_array_tt {
1193 struct array_t {
1194 uint32_t count;
1195 Ptr<List> lists[0];
1196
1197 static size_t byteSize(uint32_t count) {
1198 return sizeof(array_t) + count*sizeof(lists[0]);
1199 }
1200 size_t byteSize() {
1201 return byteSize(count);
1202 }
1203 };
1204
1205 protected:
1206 class iterator {
1207 const Ptr<List> *lists;
1208 const Ptr<List> *listsEnd;
1209 typename List::iterator m, mEnd;
1210
1211 public:
1212 iterator(const Ptr<List> *begin, const Ptr<List> *end)
1213 : lists(begin), listsEnd(end)
1214 {
1215 if (begin != end) {
1216 m = (*begin)->begin();
1217 mEnd = (*begin)->end();
1218 }
1219 }
1220
1221 const Element& operator * () const {
1222 return *m;
1223 }
1224 Element& operator * () {
1225 return *m;
1226 }
1227
1228 bool operator != (const iterator& rhs) const {
1229 if (lists != rhs.lists) return true;
1230 if (lists == listsEnd) return false; // m is undefined
1231 if (m != rhs.m) return true;
1232 return false;
1233 }
1234
1235 const iterator& operator ++ () {
1236 ASSERT(m != mEnd);
1237 m++;
1238 if (m == mEnd) {
1239 ASSERT(lists != listsEnd);
1240 lists++;
1241 if (lists != listsEnd) {
1242 m = (*lists)->begin();
1243 mEnd = (*lists)->end();
1244 }
1245 }
1246 return *this;
1247 }
1248 };
1249
1250 private:
1251 union {
1252 Ptr<List> list;
1253 uintptr_t arrayAndFlag;
1254 };
1255
1256 bool hasArray() const {
1257 return arrayAndFlag & 1;
1258 }
1259
1260 array_t *array() const {
1261 return (array_t *)(arrayAndFlag & ~1);
1262 }
1263
1264 void setArray(array_t *array) {
1265 arrayAndFlag = (uintptr_t)array | 1;
1266 }
1267
1268 void validate() {
1269 for (auto cursor = beginLists(), end = endLists(); cursor != end; cursor++)
1270 cursor->validate();
1271 }
1272
1273 public:
1274 list_array_tt() : list(nullptr) { }
1275 list_array_tt(List *l) : list(l) { }
1276 list_array_tt(const list_array_tt &other) {
1277 *this = other;
1278 }
1279
1280 list_array_tt &operator =(const list_array_tt &other) {
1281 if (other.hasArray()) {
1282 arrayAndFlag = other.arrayAndFlag;
1283 } else {
1284 list = other.list;
1285 }
1286 return *this;
1287 }
1288
1289 uint32_t count() const {
1290 uint32_t result = 0;
1291 for (auto lists = beginLists(), end = endLists();
1292 lists != end;
1293 ++lists)
1294 {
1295 result += (*lists)->count;
1296 }
1297 return result;
1298 }
1299
1300 iterator begin() const {
1301 return iterator(beginLists(), endLists());
1302 }
1303
1304 iterator end() const {
1305 auto e = endLists();
1306 return iterator(e, e);
1307 }
1308
1309 inline uint32_t countLists(const std::function<const array_t * (const array_t *)> & peek) const {
1310 if (hasArray()) {
1311 return peek(array())->count;
1312 } else if (list) {
1313 return 1;
1314 } else {
1315 return 0;
1316 }
1317 }
1318
1319 uint32_t countLists() {
1320 return countLists([](array_t *x) { return x; });
1321 }
1322
1323 const Ptr<List>* beginLists() const {
1324 if (hasArray()) {
1325 return array()->lists;
1326 } else {
1327 return &list;
1328 }
1329 }
1330
1331 const Ptr<List>* endLists() const {
1332 if (hasArray()) {
1333 return array()->lists + array()->count;
1334 } else if (list) {
1335 return &list + 1;
1336 } else {
1337 return &list;
1338 }
1339 }
1340
1341 void attachLists(List* const * addedLists, uint32_t addedCount) {
1342 if (addedCount == 0) return;
1343
1344 if (hasArray()) {
1345 // many lists -> many lists
1346 uint32_t oldCount = array()->count;
1347 uint32_t newCount = oldCount + addedCount;
1348 array_t *newArray = (array_t *)malloc(array_t::byteSize(newCount));
1349 newArray->count = newCount;
1350 array()->count = newCount;
1351
1352 for (int i = oldCount - 1; i >= 0; i--)
1353 newArray->lists[i + addedCount] = array()->lists[i];
1354 for (unsigned i = 0; i < addedCount; i++)
1355 newArray->lists[i] = addedLists[i];
1356 free(array());
1357 setArray(newArray);
1358 validate();
1359 }
1360 else if (!list && addedCount == 1) {
1361 // 0 lists -> 1 list
1362 list = addedLists[0];
1363 validate();
1364 }
1365 else {
1366 // 1 list -> many lists
1367 Ptr<List> oldList = list;
1368 uint32_t oldCount = oldList ? 1 : 0;
1369 uint32_t newCount = oldCount + addedCount;
1370 setArray((array_t *)malloc(array_t::byteSize(newCount)));
1371 array()->count = newCount;
1372 if (oldList) array()->lists[addedCount] = oldList;
1373 for (unsigned i = 0; i < addedCount; i++)
1374 array()->lists[i] = addedLists[i];
1375 validate();
1376 }
1377 }
1378
1379 void tryFree() {
1380 if (hasArray()) {
1381 for (uint32_t i = 0; i < array()->count; i++) {
1382 try_free(array()->lists[i]);
1383 }
1384 try_free(array());
1385 }
1386 else if (list) {
1387 try_free(list);
1388 }
1389 }
1390
1391 template<typename Other>
1392 void duplicateInto(Other &other) {
1393 if (hasArray()) {
1394 array_t *a = array();
1395 other.setArray((array_t *)memdup(a, a->byteSize()));
1396 for (uint32_t i = 0; i < a->count; i++) {
1397 other.array()->lists[i] = a->lists[i]->duplicate();
1398 }
1399 } else if (list) {
1400 other.list = list->duplicate();
1401 } else {
1402 other.list = nil;
1403 }
1404 }
1405 };
1406
1407
1408 DECLARE_AUTHED_PTR_TEMPLATE(method_list_t)
1409
1410 class method_array_t :
1411 public list_array_tt<method_t, method_list_t, method_list_t_authed_ptr>
1412 {
1413 typedef list_array_tt<method_t, method_list_t, method_list_t_authed_ptr> Super;
1414
1415 public:
1416 method_array_t() : Super() { }
1417 method_array_t(method_list_t *l) : Super(l) { }
1418
1419 const method_list_t_authed_ptr<method_list_t> *beginCategoryMethodLists() const {
1420 return beginLists();
1421 }
1422
1423 const method_list_t_authed_ptr<method_list_t> *endCategoryMethodLists(Class cls) const;
1424 };
1425
1426
1427 class property_array_t :
1428 public list_array_tt<property_t, property_list_t, RawPtr>
1429 {
1430 typedef list_array_tt<property_t, property_list_t, RawPtr> Super;
1431
1432 public:
1433 property_array_t() : Super() { }
1434 property_array_t(property_list_t *l) : Super(l) { }
1435 };
1436
1437
1438 class protocol_array_t :
1439 public list_array_tt<protocol_ref_t, protocol_list_t, RawPtr>
1440 {
1441 typedef list_array_tt<protocol_ref_t, protocol_list_t, RawPtr> Super;
1442
1443 public:
1444 protocol_array_t() : Super() { }
1445 protocol_array_t(protocol_list_t *l) : Super(l) { }
1446 };
1447
1448 struct class_rw_ext_t {
1449 DECLARE_AUTHED_PTR_TEMPLATE(class_ro_t)
1450 class_ro_t_authed_ptr<const class_ro_t> ro;
1451 method_array_t methods;
1452 property_array_t properties;
1453 protocol_array_t protocols;
1454 char *demangledName;
1455 uint32_t version;
1456 };
1457
1458 struct class_rw_t {
1459 // Be warned that Symbolication knows the layout of this structure.
1460 uint32_t flags;
1461 uint16_t witness;
1462 #if SUPPORT_INDEXED_ISA
1463 uint16_t index;
1464 #endif
1465
1466 explicit_atomic<uintptr_t> ro_or_rw_ext;
1467
1468 Class firstSubclass;
1469 Class nextSiblingClass;
1470
1471 private:
1472 using ro_or_rw_ext_t = objc::PointerUnion<const class_ro_t, class_rw_ext_t, PTRAUTH_STR("class_ro_t"), PTRAUTH_STR("class_rw_ext_t")>;
1473
1474 const ro_or_rw_ext_t get_ro_or_rwe() const {
1475 return ro_or_rw_ext_t{ro_or_rw_ext};
1476 }
1477
1478 void set_ro_or_rwe(const class_ro_t *ro) {
1479 ro_or_rw_ext_t{ro, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_relaxed);
1480 }
1481
1482 void set_ro_or_rwe(class_rw_ext_t *rwe, const class_ro_t *ro) {
1483 // the release barrier is so that the class_rw_ext_t::ro initialization
1484 // is visible to lockless readers
1485 rwe->ro = ro;
1486 ro_or_rw_ext_t{rwe, &ro_or_rw_ext}.storeAt(ro_or_rw_ext, memory_order_release);
1487 }
1488
1489 class_rw_ext_t *extAlloc(const class_ro_t *ro, bool deep = false);
1490
1491 public:
1492 void setFlags(uint32_t set)
1493 {
1494 __c11_atomic_fetch_or((_Atomic(uint32_t) *)&flags, set, __ATOMIC_RELAXED);
1495 }
1496
1497 void clearFlags(uint32_t clear)
1498 {
1499 __c11_atomic_fetch_and((_Atomic(uint32_t) *)&flags, ~clear, __ATOMIC_RELAXED);
1500 }
1501
1502 // set and clear must not overlap
1503 void changeFlags(uint32_t set, uint32_t clear)
1504 {
1505 ASSERT((set & clear) == 0);
1506
1507 uint32_t oldf, newf;
1508 do {
1509 oldf = flags;
1510 newf = (oldf | set) & ~clear;
1511 } while (!OSAtomicCompareAndSwap32Barrier(oldf, newf, (volatile int32_t *)&flags));
1512 }
1513
1514 class_rw_ext_t *ext() const {
1515 return get_ro_or_rwe().dyn_cast<class_rw_ext_t *>(&ro_or_rw_ext);
1516 }
1517
1518 class_rw_ext_t *extAllocIfNeeded() {
1519 auto v = get_ro_or_rwe();
1520 if (fastpath(v.is<class_rw_ext_t *>())) {
1521 return v.get<class_rw_ext_t *>(&ro_or_rw_ext);
1522 } else {
1523 return extAlloc(v.get<const class_ro_t *>(&ro_or_rw_ext));
1524 }
1525 }
1526
1527 class_rw_ext_t *deepCopy(const class_ro_t *ro) {
1528 return extAlloc(ro, true);
1529 }
1530
1531 const class_ro_t *ro() const {
1532 auto v = get_ro_or_rwe();
1533 if (slowpath(v.is<class_rw_ext_t *>())) {
1534 return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro;
1535 }
1536 return v.get<const class_ro_t *>(&ro_or_rw_ext);
1537 }
1538
1539 void set_ro(const class_ro_t *ro) {
1540 auto v = get_ro_or_rwe();
1541 if (v.is<class_rw_ext_t *>()) {
1542 v.get<class_rw_ext_t *>(&ro_or_rw_ext)->ro = ro;
1543 } else {
1544 set_ro_or_rwe(ro);
1545 }
1546 }
1547
1548 const method_array_t methods() const {
1549 auto v = get_ro_or_rwe();
1550 if (v.is<class_rw_ext_t *>()) {
1551 return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->methods;
1552 } else {
1553 return method_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseMethods()};
1554 }
1555 }
1556
1557 const property_array_t properties() const {
1558 auto v = get_ro_or_rwe();
1559 if (v.is<class_rw_ext_t *>()) {
1560 return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->properties;
1561 } else {
1562 return property_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProperties};
1563 }
1564 }
1565
1566 const protocol_array_t protocols() const {
1567 auto v = get_ro_or_rwe();
1568 if (v.is<class_rw_ext_t *>()) {
1569 return v.get<class_rw_ext_t *>(&ro_or_rw_ext)->protocols;
1570 } else {
1571 return protocol_array_t{v.get<const class_ro_t *>(&ro_or_rw_ext)->baseProtocols};
1572 }
1573 }
1574 };
1575
1576
1577 struct class_data_bits_t {
1578 friend objc_class;
1579
1580 // Values are the FAST_ flags above.
1581 uintptr_t bits;
1582 private:
1583 bool getBit(uintptr_t bit) const
1584 {
1585 return bits & bit;
1586 }
1587
1588 // Atomically set the bits in `set` and clear the bits in `clear`.
1589 // set and clear must not overlap.
1590 void setAndClearBits(uintptr_t set, uintptr_t clear)
1591 {
1592 ASSERT((set & clear) == 0);
1593 uintptr_t newBits, oldBits = LoadExclusive(&bits);
1594 do {
1595 newBits = (oldBits | set) & ~clear;
1596 } while (slowpath(!StoreReleaseExclusive(&bits, &oldBits, newBits)));
1597 }
1598
1599 void setBits(uintptr_t set) {
1600 __c11_atomic_fetch_or((_Atomic(uintptr_t) *)&bits, set, __ATOMIC_RELAXED);
1601 }
1602
1603 void clearBits(uintptr_t clear) {
1604 __c11_atomic_fetch_and((_Atomic(uintptr_t) *)&bits, ~clear, __ATOMIC_RELAXED);
1605 }
1606
1607 public:
1608
1609 class_rw_t* data() const {
1610 return (class_rw_t *)(bits & FAST_DATA_MASK);
1611 }
1612 void setData(class_rw_t *newData)
1613 {
1614 ASSERT(!data() || (newData->flags & (RW_REALIZING | RW_FUTURE)));
1615 // Set during realization or construction only. No locking needed.
1616 // Use a store-release fence because there may be concurrent
1617 // readers of data and data's contents.
1618 uintptr_t newBits = (bits & ~FAST_DATA_MASK) | (uintptr_t)newData;
1619 atomic_thread_fence(memory_order_release);
1620 bits = newBits;
1621 }
1622
1623 // Get the class's ro data, even in the presence of concurrent realization.
1624 // fixme this isn't really safe without a compiler barrier at least
1625 // and probably a memory barrier when realizeClass changes the data field
1626 const class_ro_t *safe_ro() const {
1627 class_rw_t *maybe_rw = data();
1628 if (maybe_rw->flags & RW_REALIZED) {
1629 // maybe_rw is rw
1630 return maybe_rw->ro();
1631 } else {
1632 // maybe_rw is actually ro
1633 return (class_ro_t *)maybe_rw;
1634 }
1635 }
1636
1637 #if SUPPORT_INDEXED_ISA
1638 void setClassArrayIndex(unsigned Idx) {
1639 // 0 is unused as then we can rely on zero-initialisation from calloc.
1640 ASSERT(Idx > 0);
1641 data()->index = Idx;
1642 }
1643 #else
1644 void setClassArrayIndex(__unused unsigned Idx) {
1645 }
1646 #endif
1647
1648 unsigned classArrayIndex() {
1649 #if SUPPORT_INDEXED_ISA
1650 return data()->index;
1651 #else
1652 return 0;
1653 #endif
1654 }
1655
1656 bool isAnySwift() {
1657 return isSwiftStable() || isSwiftLegacy();
1658 }
1659
1660 bool isSwiftStable() {
1661 return getBit(FAST_IS_SWIFT_STABLE);
1662 }
1663 void setIsSwiftStable() {
1664 setAndClearBits(FAST_IS_SWIFT_STABLE, FAST_IS_SWIFT_LEGACY);
1665 }
1666
1667 bool isSwiftLegacy() {
1668 return getBit(FAST_IS_SWIFT_LEGACY);
1669 }
1670 void setIsSwiftLegacy() {
1671 setAndClearBits(FAST_IS_SWIFT_LEGACY, FAST_IS_SWIFT_STABLE);
1672 }
1673
1674 // fixme remove this once the Swift runtime uses the stable bits
1675 bool isSwiftStable_ButAllowLegacyForNow() {
1676 return isAnySwift();
1677 }
1678
1679 _objc_swiftMetadataInitializer swiftMetadataInitializer() {
1680 // This function is called on un-realized classes without
1681 // holding any locks.
1682 // Beware of races with other realizers.
1683 return safe_ro()->swiftMetadataInitializer();
1684 }
1685 };
1686
1687
1688 struct objc_class : objc_object {
1689 objc_class(const objc_class&) = delete;
1690 objc_class(objc_class&&) = delete;
1691 void operator=(const objc_class&) = delete;
1692 void operator=(objc_class&&) = delete;
1693 // Class ISA;
1694 Class superclass;
1695 cache_t cache; // formerly cache pointer and vtable
1696 class_data_bits_t bits; // class_rw_t * plus custom rr/alloc flags
1697
1698 Class getSuperclass() const {
1699 #if __has_feature(ptrauth_calls)
1700 # if ISA_SIGNING_AUTH_MODE == ISA_SIGNING_AUTH
1701 if (superclass == Nil)
1702 return Nil;
1703
1704 #if SUPERCLASS_SIGNING_TREAT_UNSIGNED_AS_NIL
1705 void *stripped = ptrauth_strip((void *)superclass, ISA_SIGNING_KEY);
1706 if ((void *)superclass == stripped) {
1707 void *resigned = ptrauth_sign_unauthenticated(stripped, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
1708 if ((void *)superclass != resigned)
1709 return Nil;
1710 }
1711 #endif
1712
1713 void *result = ptrauth_auth_data((void *)superclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
1714 return (Class)result;
1715
1716 # else
1717 return (Class)ptrauth_strip((void *)superclass, ISA_SIGNING_KEY);
1718 # endif
1719 #else
1720 return superclass;
1721 #endif
1722 }
1723
1724 void setSuperclass(Class newSuperclass) {
1725 #if ISA_SIGNING_SIGN_MODE == ISA_SIGNING_SIGN_ALL
1726 superclass = (Class)ptrauth_sign_unauthenticated((void *)newSuperclass, ISA_SIGNING_KEY, ptrauth_blend_discriminator(&superclass, ISA_SIGNING_DISCRIMINATOR_CLASS_SUPERCLASS));
1727 #else
1728 superclass = newSuperclass;
1729 #endif
1730 }
1731
1732 class_rw_t *data() const {
1733 return bits.data();
1734 }
1735 void setData(class_rw_t *newData) {
1736 bits.setData(newData);
1737 }
1738
1739 void setInfo(uint32_t set) {
1740 ASSERT(isFuture() || isRealized());
1741 data()->setFlags(set);
1742 }
1743
1744 void clearInfo(uint32_t clear) {
1745 ASSERT(isFuture() || isRealized());
1746 data()->clearFlags(clear);
1747 }
1748
1749 // set and clear must not overlap
1750 void changeInfo(uint32_t set, uint32_t clear) {
1751 ASSERT(isFuture() || isRealized());
1752 ASSERT((set & clear) == 0);
1753 data()->changeFlags(set, clear);
1754 }
1755
1756 #if FAST_HAS_DEFAULT_RR
1757 bool hasCustomRR() const {
1758 return !bits.getBit(FAST_HAS_DEFAULT_RR);
1759 }
1760 void setHasDefaultRR() {
1761 bits.setBits(FAST_HAS_DEFAULT_RR);
1762 }
1763 void setHasCustomRR() {
1764 bits.clearBits(FAST_HAS_DEFAULT_RR);
1765 }
1766 #else
1767 bool hasCustomRR() const {
1768 return !(bits.data()->flags & RW_HAS_DEFAULT_RR);
1769 }
1770 void setHasDefaultRR() {
1771 bits.data()->setFlags(RW_HAS_DEFAULT_RR);
1772 }
1773 void setHasCustomRR() {
1774 bits.data()->clearFlags(RW_HAS_DEFAULT_RR);
1775 }
1776 #endif
1777
1778 #if FAST_CACHE_HAS_DEFAULT_AWZ
1779 bool hasCustomAWZ() const {
1780 return !cache.getBit(FAST_CACHE_HAS_DEFAULT_AWZ);
1781 }
1782 void setHasDefaultAWZ() {
1783 cache.setBit(FAST_CACHE_HAS_DEFAULT_AWZ);
1784 }
1785 void setHasCustomAWZ() {
1786 cache.clearBit(FAST_CACHE_HAS_DEFAULT_AWZ);
1787 }
1788 #else
1789 bool hasCustomAWZ() const {
1790 return !(bits.data()->flags & RW_HAS_DEFAULT_AWZ);
1791 }
1792 void setHasDefaultAWZ() {
1793 bits.data()->setFlags(RW_HAS_DEFAULT_AWZ);
1794 }
1795 void setHasCustomAWZ() {
1796 bits.data()->clearFlags(RW_HAS_DEFAULT_AWZ);
1797 }
1798 #endif
1799
1800 #if FAST_CACHE_HAS_DEFAULT_CORE
1801 bool hasCustomCore() const {
1802 return !cache.getBit(FAST_CACHE_HAS_DEFAULT_CORE);
1803 }
1804 void setHasDefaultCore() {
1805 return cache.setBit(FAST_CACHE_HAS_DEFAULT_CORE);
1806 }
1807 void setHasCustomCore() {
1808 return cache.clearBit(FAST_CACHE_HAS_DEFAULT_CORE);
1809 }
1810 #else
1811 bool hasCustomCore() const {
1812 return !(bits.data()->flags & RW_HAS_DEFAULT_CORE);
1813 }
1814 void setHasDefaultCore() {
1815 bits.data()->setFlags(RW_HAS_DEFAULT_CORE);
1816 }
1817 void setHasCustomCore() {
1818 bits.data()->clearFlags(RW_HAS_DEFAULT_CORE);
1819 }
1820 #endif
1821
1822 #if FAST_CACHE_HAS_CXX_CTOR
1823 bool hasCxxCtor() {
1824 ASSERT(isRealized());
1825 return cache.getBit(FAST_CACHE_HAS_CXX_CTOR);
1826 }
1827 void setHasCxxCtor() {
1828 cache.setBit(FAST_CACHE_HAS_CXX_CTOR);
1829 }
1830 #else
1831 bool hasCxxCtor() {
1832 ASSERT(isRealized());
1833 return bits.data()->flags & RW_HAS_CXX_CTOR;
1834 }
1835 void setHasCxxCtor() {
1836 bits.data()->setFlags(RW_HAS_CXX_CTOR);
1837 }
1838 #endif
1839
1840 #if FAST_CACHE_HAS_CXX_DTOR
1841 bool hasCxxDtor() {
1842 ASSERT(isRealized());
1843 return cache.getBit(FAST_CACHE_HAS_CXX_DTOR);
1844 }
1845 void setHasCxxDtor() {
1846 cache.setBit(FAST_CACHE_HAS_CXX_DTOR);
1847 }
1848 #else
1849 bool hasCxxDtor() {
1850 ASSERT(isRealized());
1851 return bits.data()->flags & RW_HAS_CXX_DTOR;
1852 }
1853 void setHasCxxDtor() {
1854 bits.data()->setFlags(RW_HAS_CXX_DTOR);
1855 }
1856 #endif
1857
1858 #if FAST_CACHE_REQUIRES_RAW_ISA
1859 bool instancesRequireRawIsa() {
1860 return cache.getBit(FAST_CACHE_REQUIRES_RAW_ISA);
1861 }
1862 void setInstancesRequireRawIsa() {
1863 cache.setBit(FAST_CACHE_REQUIRES_RAW_ISA);
1864 }
1865 #elif SUPPORT_NONPOINTER_ISA
1866 bool instancesRequireRawIsa() {
1867 return bits.data()->flags & RW_REQUIRES_RAW_ISA;
1868 }
1869 void setInstancesRequireRawIsa() {
1870 bits.data()->setFlags(RW_REQUIRES_RAW_ISA);
1871 }
1872 #else
1873 bool instancesRequireRawIsa() {
1874 return true;
1875 }
1876 void setInstancesRequireRawIsa() {
1877 // nothing
1878 }
1879 #endif
1880 void setInstancesRequireRawIsaRecursively(bool inherited = false);
1881 void printInstancesRequireRawIsa(bool inherited);
1882
1883 #if CONFIG_USE_PREOPT_CACHES
1884 bool allowsPreoptCaches() const {
1885 return !(bits.data()->flags & RW_NOPREOPT_CACHE);
1886 }
1887 bool allowsPreoptInlinedSels() const {
1888 return !(bits.data()->flags & RW_NOPREOPT_SELS);
1889 }
1890 void setDisallowPreoptCaches() {
1891 bits.data()->setFlags(RW_NOPREOPT_CACHE | RW_NOPREOPT_SELS);
1892 }
1893 void setDisallowPreoptInlinedSels() {
1894 bits.data()->setFlags(RW_NOPREOPT_SELS);
1895 }
1896 void setDisallowPreoptCachesRecursively(const char *why);
1897 void setDisallowPreoptInlinedSelsRecursively(const char *why);
1898 #else
1899 bool allowsPreoptCaches() const { return false; }
1900 bool allowsPreoptInlinedSels() const { return false; }
1901 void setDisallowPreoptCaches() { }
1902 void setDisallowPreoptInlinedSels() { }
1903 void setDisallowPreoptCachesRecursively(const char *why) { }
1904 void setDisallowPreoptInlinedSelsRecursively(const char *why) { }
1905 #endif
1906
1907 bool canAllocNonpointer() {
1908 ASSERT(!isFuture());
1909 return !instancesRequireRawIsa();
1910 }
1911
1912 bool isSwiftStable() {
1913 return bits.isSwiftStable();
1914 }
1915
1916 bool isSwiftLegacy() {
1917 return bits.isSwiftLegacy();
1918 }
1919
1920 bool isAnySwift() {
1921 return bits.isAnySwift();
1922 }
1923
1924 bool isSwiftStable_ButAllowLegacyForNow() {
1925 return bits.isSwiftStable_ButAllowLegacyForNow();
1926 }
1927
1928 uint32_t swiftClassFlags() {
1929 return *(uint32_t *)(&bits + 1);
1930 }
1931
1932 bool usesSwiftRefcounting() {
1933 if (!isSwiftStable()) return false;
1934 return bool(swiftClassFlags() & 2); //ClassFlags::UsesSwiftRefcounting
1935 }
1936
1937 bool canCallSwiftRR() {
1938 // !hasCustomCore() is being used as a proxy for isInitialized(). All
1939 // classes with Swift refcounting are !hasCustomCore() (unless there are
1940 // category or swizzling shenanigans), but that bit is not set until a
1941 // class is initialized. Checking isInitialized requires an extra
1942 // indirection that we want to avoid on RR fast paths.
1943 //
1944 // In the unlikely event that someone causes a class with Swift
1945 // refcounting to be hasCustomCore(), we'll fall back to sending -retain
1946 // or -release, which is still correct.
1947 return !hasCustomCore() && usesSwiftRefcounting();
1948 }
1949
1950 bool isStubClass() const {
1951 uintptr_t isa = (uintptr_t)isaBits();
1952 return 1 <= isa && isa < 16;
1953 }
1954
1955 // Swift stable ABI built for old deployment targets looks weird.
1956 // The is-legacy bit is set for compatibility with old libobjc.
1957 // We are on a "new" deployment target so we need to rewrite that bit.
1958 // These stable-with-legacy-bit classes are distinguished from real
1959 // legacy classes using another bit in the Swift data
1960 // (ClassFlags::IsSwiftPreStableABI)
1961
1962 bool isUnfixedBackwardDeployingStableSwift() {
1963 // Only classes marked as Swift legacy need apply.
1964 if (!bits.isSwiftLegacy()) return false;
1965
1966 // Check the true legacy vs stable distinguisher.
1967 // The low bit of Swift's ClassFlags is SET for true legacy
1968 // and UNSET for stable pretending to be legacy.
1969 bool isActuallySwiftLegacy = bool(swiftClassFlags() & 1);
1970 return !isActuallySwiftLegacy;
1971 }
1972
1973 void fixupBackwardDeployingStableSwift() {
1974 if (isUnfixedBackwardDeployingStableSwift()) {
1975 // Class really is stable Swift, pretending to be pre-stable.
1976 // Fix its lie.
1977 bits.setIsSwiftStable();
1978 }
1979 }
1980
1981 _objc_swiftMetadataInitializer swiftMetadataInitializer() {
1982 return bits.swiftMetadataInitializer();
1983 }
1984
1985 // Return YES if the class's ivars are managed by ARC,
1986 // or the class is MRC but has ARC-style weak ivars.
1987 bool hasAutomaticIvars() {
1988 return data()->ro()->flags & (RO_IS_ARC | RO_HAS_WEAK_WITHOUT_ARC);
1989 }
1990
1991 // Return YES if the class's ivars are managed by ARC.
1992 bool isARC() {
1993 return data()->ro()->flags & RO_IS_ARC;
1994 }
1995
1996
1997 bool forbidsAssociatedObjects() {
1998 return (data()->flags & RW_FORBIDS_ASSOCIATED_OBJECTS);
1999 }
2000
2001 #if SUPPORT_NONPOINTER_ISA
2002 // Tracked in non-pointer isas; not tracked otherwise
2003 #else
2004 bool instancesHaveAssociatedObjects() {
2005 // this may be an unrealized future class in the CF-bridged case
2006 ASSERT(isFuture() || isRealized());
2007 return data()->flags & RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS;
2008 }
2009
2010 void setInstancesHaveAssociatedObjects() {
2011 // this may be an unrealized future class in the CF-bridged case
2012 ASSERT(isFuture() || isRealized());
2013 setInfo(RW_INSTANCES_HAVE_ASSOCIATED_OBJECTS);
2014 }
2015 #endif
2016
2017 bool shouldGrowCache() {
2018 return true;
2019 }
2020
2021 void setShouldGrowCache(bool) {
2022 // fixme good or bad for memory use?
2023 }
2024
2025 bool isInitializing() {
2026 return getMeta()->data()->flags & RW_INITIALIZING;
2027 }
2028
2029 void setInitializing() {
2030 ASSERT(!isMetaClass());
2031 ISA()->setInfo(RW_INITIALIZING);
2032 }
2033
2034 bool isInitialized() {
2035 return getMeta()->data()->flags & RW_INITIALIZED;
2036 }
2037
2038 void setInitialized();
2039
2040 bool isLoadable() {
2041 ASSERT(isRealized());
2042 return true; // any class registered for +load is definitely loadable
2043 }
2044
2045 IMP getLoadMethod();
2046
2047 // Locking: To prevent concurrent realization, hold runtimeLock.
2048 bool isRealized() const {
2049 return !isStubClass() && (data()->flags & RW_REALIZED);
2050 }
2051
2052 // Returns true if this is an unrealized future class.
2053 // Locking: To prevent concurrent realization, hold runtimeLock.
2054 bool isFuture() const {
2055 if (isStubClass())
2056 return false;
2057 return data()->flags & RW_FUTURE;
2058 }
2059
2060 bool isMetaClass() const {
2061 ASSERT_THIS_NOT_NULL;
2062 ASSERT(isRealized());
2063 #if FAST_CACHE_META
2064 return cache.getBit(FAST_CACHE_META);
2065 #else
2066 return data()->flags & RW_META;
2067 #endif
2068 }
2069
2070 // Like isMetaClass, but also valid on un-realized classes
2071 bool isMetaClassMaybeUnrealized() {
2072 static_assert(offsetof(class_rw_t, flags) == offsetof(class_ro_t, flags), "flags alias");
2073 static_assert(RO_META == RW_META, "flags alias");
2074 if (isStubClass())
2075 return false;
2076 return data()->flags & RW_META;
2077 }
2078
2079 // NOT identical to this->ISA when this is a metaclass
2080 Class getMeta() {
2081 if (isMetaClassMaybeUnrealized()) return (Class)this;
2082 else return this->ISA();
2083 }
2084
2085 bool isRootClass() {
2086 return getSuperclass() == nil;
2087 }
2088 bool isRootMetaclass() {
2089 return ISA() == (Class)this;
2090 }
2091
2092 // If this class does not have a name already, we can ask Swift to construct one for us.
2093 const char *installMangledNameForLazilyNamedClass();
2094
2095 // Get the class's mangled name, or NULL if the class has a lazy
2096 // name that hasn't been created yet.
2097 const char *nonlazyMangledName() const {
2098 return bits.safe_ro()->getName();
2099 }
2100
2101 const char *mangledName() {
2102 // fixme can't assert locks here
2103 ASSERT_THIS_NOT_NULL;
2104
2105 const char *result = nonlazyMangledName();
2106
2107 if (!result) {
2108 // This class lazily instantiates its name. Emplace and
2109 // return it.
2110 result = installMangledNameForLazilyNamedClass();
2111 }
2112
2113 return result;
2114 }
2115
2116 const char *demangledName(bool needsLock);
2117 const char *nameForLogging();
2118
2119 // May be unaligned depending on class's ivars.
2120 uint32_t unalignedInstanceStart() const {
2121 ASSERT(isRealized());
2122 return data()->ro()->instanceStart;
2123 }
2124
2125 // Class's instance start rounded up to a pointer-size boundary.
2126 // This is used for ARC layout bitmaps.
2127 uint32_t alignedInstanceStart() const {
2128 return word_align(unalignedInstanceStart());
2129 }
2130
2131 // May be unaligned depending on class's ivars.
2132 uint32_t unalignedInstanceSize() const {
2133 ASSERT(isRealized());
2134 return data()->ro()->instanceSize;
2135 }
2136
2137 // Class's ivar size rounded up to a pointer-size boundary.
2138 uint32_t alignedInstanceSize() const {
2139 return word_align(unalignedInstanceSize());
2140 }
2141
2142 inline size_t instanceSize(size_t extraBytes) const {
2143 if (fastpath(cache.hasFastInstanceSize(extraBytes))) {
2144 return cache.fastInstanceSize(extraBytes);
2145 }
2146
2147 size_t size = alignedInstanceSize() + extraBytes;
2148 // CF requires all objects be at least 16 bytes.
2149 if (size < 16) size = 16;
2150 return size;
2151 }
2152
2153 void setInstanceSize(uint32_t newSize) {
2154 ASSERT(isRealized());
2155 ASSERT(data()->flags & RW_REALIZING);
2156 auto ro = data()->ro();
2157 if (newSize != ro->instanceSize) {
2158 ASSERT(data()->flags & RW_COPIED_RO);
2159 *const_cast<uint32_t *>(&ro->instanceSize) = newSize;
2160 }
2161 cache.setFastInstanceSize(newSize);
2162 }
2163
2164 void chooseClassArrayIndex();
2165
2166 void setClassArrayIndex(unsigned Idx) {
2167 bits.setClassArrayIndex(Idx);
2168 }
2169
2170 unsigned classArrayIndex() {
2171 return bits.classArrayIndex();
2172 }
2173 };
2174
2175
2176 struct swift_class_t : objc_class {
2177 uint32_t flags;
2178 uint32_t instanceAddressOffset;
2179 uint32_t instanceSize;
2180 uint16_t instanceAlignMask;
2181 uint16_t reserved;
2182
2183 uint32_t classSize;
2184 uint32_t classAddressOffset;
2185 void *description;
2186 // ...
2187
2188 void *baseAddress() {
2189 return (void *)((uint8_t *)this - classAddressOffset);
2190 }
2191 };
2192
2193
2194 struct category_t {
2195 const char *name;
2196 classref_t cls;
2197 WrappedPtr<method_list_t, PtrauthStrip> instanceMethods;
2198 WrappedPtr<method_list_t, PtrauthStrip> classMethods;
2199 struct protocol_list_t *protocols;
2200 struct property_list_t *instanceProperties;
2201 // Fields below this point are not always present on disk.
2202 struct property_list_t *_classProperties;
2203
2204 method_list_t *methodsForMeta(bool isMeta) {
2205 if (isMeta) return classMethods;
2206 else return instanceMethods;
2207 }
2208
2209 property_list_t *propertiesForMeta(bool isMeta, struct header_info *hi);
2210
2211 protocol_list_t *protocolsForMeta(bool isMeta) {
2212 if (isMeta) return nullptr;
2213 else return protocols;
2214 }
2215 };
2216
2217 struct objc_super2 {
2218 id receiver;
2219 Class current_class;
2220 };
2221
2222 struct message_ref_t {
2223 IMP imp;
2224 SEL sel;
2225 };
2226
2227
2228 extern Method protocol_getMethod(protocol_t *p, SEL sel, bool isRequiredMethod, bool isInstanceMethod, bool recursive);
2229
2230 #endif