]> git.saurik.com Git - apple/network_cmds.git/blob - unbound/validator/val_sigcrypt.c
network_cmds-596.100.2.tar.gz
[apple/network_cmds.git] / unbound / validator / val_sigcrypt.c
1 /*
2 * validator/val_sigcrypt.c - validator signature crypto functions.
3 *
4 * Copyright (c) 2007, NLnet Labs. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of the NLNET LABS nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
25 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
26 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
27 * HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
28 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
29 * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
30 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
31 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
32 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
33 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /**
37 * \file
38 *
39 * This file contains helper functions for the validator module.
40 * The functions help with signature verification and checking, the
41 * bridging between RR wireformat data and crypto calls.
42 */
43 #include "config.h"
44 #include "validator/val_sigcrypt.h"
45 #include "validator/val_secalgo.h"
46 #include "validator/validator.h"
47 #include "util/data/msgreply.h"
48 #include "util/data/msgparse.h"
49 #include "util/data/dname.h"
50 #include "util/rbtree.h"
51 #include "util/module.h"
52 #include "util/net_help.h"
53 #include "util/regional.h"
54 #include "ldns/keyraw.h"
55 #include "ldns/sbuffer.h"
56 #include "ldns/parseutil.h"
57 #include "ldns/wire2str.h"
58
59 #include <ctype.h>
60 #if !defined(HAVE_SSL) && !defined(HAVE_NSS)
61 #error "Need crypto library to do digital signature cryptography"
62 #endif
63
64 #ifdef HAVE_OPENSSL_ERR_H
65 #include <openssl/err.h>
66 #endif
67
68 #ifdef HAVE_OPENSSL_RAND_H
69 #include <openssl/rand.h>
70 #endif
71
72 #ifdef HAVE_OPENSSL_CONF_H
73 #include <openssl/conf.h>
74 #endif
75
76 #ifdef HAVE_OPENSSL_ENGINE_H
77 #include <openssl/engine.h>
78 #endif
79
80 /** return number of rrs in an rrset */
81 static size_t
82 rrset_get_count(struct ub_packed_rrset_key* rrset)
83 {
84 struct packed_rrset_data* d = (struct packed_rrset_data*)
85 rrset->entry.data;
86 if(!d) return 0;
87 return d->count;
88 }
89
90 /**
91 * Get RR signature count
92 */
93 static size_t
94 rrset_get_sigcount(struct ub_packed_rrset_key* k)
95 {
96 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
97 return d->rrsig_count;
98 }
99
100 /**
101 * Get signature keytag value
102 * @param k: rrset (with signatures)
103 * @param sig_idx: signature index.
104 * @return keytag or 0 if malformed rrsig.
105 */
106 static uint16_t
107 rrset_get_sig_keytag(struct ub_packed_rrset_key* k, size_t sig_idx)
108 {
109 uint16_t t;
110 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
111 log_assert(sig_idx < d->rrsig_count);
112 if(d->rr_len[d->count + sig_idx] < 2+18)
113 return 0;
114 memmove(&t, d->rr_data[d->count + sig_idx]+2+16, 2);
115 return ntohs(t);
116 }
117
118 /**
119 * Get signature signing algorithm value
120 * @param k: rrset (with signatures)
121 * @param sig_idx: signature index.
122 * @return algo or 0 if malformed rrsig.
123 */
124 static int
125 rrset_get_sig_algo(struct ub_packed_rrset_key* k, size_t sig_idx)
126 {
127 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
128 log_assert(sig_idx < d->rrsig_count);
129 if(d->rr_len[d->count + sig_idx] < 2+3)
130 return 0;
131 return (int)d->rr_data[d->count + sig_idx][2+2];
132 }
133
134 /** get rdata pointer and size */
135 static void
136 rrset_get_rdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** rdata,
137 size_t* len)
138 {
139 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
140 log_assert(d && idx < (d->count + d->rrsig_count));
141 *rdata = d->rr_data[idx];
142 *len = d->rr_len[idx];
143 }
144
145 uint16_t
146 dnskey_get_flags(struct ub_packed_rrset_key* k, size_t idx)
147 {
148 uint8_t* rdata;
149 size_t len;
150 uint16_t f;
151 rrset_get_rdata(k, idx, &rdata, &len);
152 if(len < 2+2)
153 return 0;
154 memmove(&f, rdata+2, 2);
155 f = ntohs(f);
156 return f;
157 }
158
159 /**
160 * Get DNSKEY protocol value from rdata
161 * @param k: DNSKEY rrset.
162 * @param idx: which key.
163 * @return protocol octet value
164 */
165 static int
166 dnskey_get_protocol(struct ub_packed_rrset_key* k, size_t idx)
167 {
168 uint8_t* rdata;
169 size_t len;
170 rrset_get_rdata(k, idx, &rdata, &len);
171 if(len < 2+4)
172 return 0;
173 return (int)rdata[2+2];
174 }
175
176 int
177 dnskey_get_algo(struct ub_packed_rrset_key* k, size_t idx)
178 {
179 uint8_t* rdata;
180 size_t len;
181 rrset_get_rdata(k, idx, &rdata, &len);
182 if(len < 2+4)
183 return 0;
184 return (int)rdata[2+3];
185 }
186
187 /** get public key rdata field from a dnskey RR and do some checks */
188 static void
189 dnskey_get_pubkey(struct ub_packed_rrset_key* k, size_t idx,
190 unsigned char** pk, unsigned int* pklen)
191 {
192 uint8_t* rdata;
193 size_t len;
194 rrset_get_rdata(k, idx, &rdata, &len);
195 if(len < 2+5) {
196 *pk = NULL;
197 *pklen = 0;
198 return;
199 }
200 *pk = (unsigned char*)rdata+2+4;
201 *pklen = (unsigned)len-2-4;
202 }
203
204 int
205 ds_get_key_algo(struct ub_packed_rrset_key* k, size_t idx)
206 {
207 uint8_t* rdata;
208 size_t len;
209 rrset_get_rdata(k, idx, &rdata, &len);
210 if(len < 2+3)
211 return 0;
212 return (int)rdata[2+2];
213 }
214
215 int
216 ds_get_digest_algo(struct ub_packed_rrset_key* k, size_t idx)
217 {
218 uint8_t* rdata;
219 size_t len;
220 rrset_get_rdata(k, idx, &rdata, &len);
221 if(len < 2+4)
222 return 0;
223 return (int)rdata[2+3];
224 }
225
226 uint16_t
227 ds_get_keytag(struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
228 {
229 uint16_t t;
230 uint8_t* rdata;
231 size_t len;
232 rrset_get_rdata(ds_rrset, ds_idx, &rdata, &len);
233 if(len < 2+2)
234 return 0;
235 memmove(&t, rdata+2, 2);
236 return ntohs(t);
237 }
238
239 /**
240 * Return pointer to the digest in a DS RR.
241 * @param k: DS rrset.
242 * @param idx: which DS.
243 * @param digest: digest data is returned.
244 * on error, this is NULL.
245 * @param len: length of digest is returned.
246 * on error, the length is 0.
247 */
248 static void
249 ds_get_sigdata(struct ub_packed_rrset_key* k, size_t idx, uint8_t** digest,
250 size_t* len)
251 {
252 uint8_t* rdata;
253 size_t rdlen;
254 rrset_get_rdata(k, idx, &rdata, &rdlen);
255 if(rdlen < 2+5) {
256 *digest = NULL;
257 *len = 0;
258 return;
259 }
260 *digest = rdata + 2 + 4;
261 *len = rdlen - 2 - 4;
262 }
263
264 /**
265 * Return size of DS digest according to its hash algorithm.
266 * @param k: DS rrset.
267 * @param idx: which DS.
268 * @return size in bytes of digest, or 0 if not supported.
269 */
270 static size_t
271 ds_digest_size_algo(struct ub_packed_rrset_key* k, size_t idx)
272 {
273 return ds_digest_size_supported(ds_get_digest_algo(k, idx));
274 }
275
276 /**
277 * Create a DS digest for a DNSKEY entry.
278 *
279 * @param env: module environment. Uses scratch space.
280 * @param dnskey_rrset: DNSKEY rrset.
281 * @param dnskey_idx: index of RR in rrset.
282 * @param ds_rrset: DS rrset
283 * @param ds_idx: index of RR in DS rrset.
284 * @param digest: digest is returned in here (must be correctly sized).
285 * @return false on error.
286 */
287 static int
288 ds_create_dnskey_digest(struct module_env* env,
289 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
290 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx,
291 uint8_t* digest)
292 {
293 sldns_buffer* b = env->scratch_buffer;
294 uint8_t* dnskey_rdata;
295 size_t dnskey_len;
296 rrset_get_rdata(dnskey_rrset, dnskey_idx, &dnskey_rdata, &dnskey_len);
297
298 /* create digest source material in buffer
299 * digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
300 * DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key. */
301 sldns_buffer_clear(b);
302 sldns_buffer_write(b, dnskey_rrset->rk.dname,
303 dnskey_rrset->rk.dname_len);
304 query_dname_tolower(sldns_buffer_begin(b));
305 sldns_buffer_write(b, dnskey_rdata+2, dnskey_len-2); /* skip rdatalen*/
306 sldns_buffer_flip(b);
307
308 return secalgo_ds_digest(ds_get_digest_algo(ds_rrset, ds_idx),
309 (unsigned char*)sldns_buffer_begin(b), sldns_buffer_limit(b),
310 (unsigned char*)digest);
311 }
312
313 int ds_digest_match_dnskey(struct module_env* env,
314 struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx,
315 struct ub_packed_rrset_key* ds_rrset, size_t ds_idx)
316 {
317 uint8_t* ds; /* DS digest */
318 size_t dslen;
319 uint8_t* digest; /* generated digest */
320 size_t digestlen = ds_digest_size_algo(ds_rrset, ds_idx);
321
322 if(digestlen == 0) {
323 verbose(VERB_QUERY, "DS fail: not supported, or DS RR "
324 "format error");
325 return 0; /* not supported, or DS RR format error */
326 }
327 /* check digest length in DS with length from hash function */
328 ds_get_sigdata(ds_rrset, ds_idx, &ds, &dslen);
329 if(!ds || dslen != digestlen) {
330 verbose(VERB_QUERY, "DS fail: DS RR algo and digest do not "
331 "match each other");
332 return 0; /* DS algorithm and digest do not match */
333 }
334
335 digest = regional_alloc(env->scratch, digestlen);
336 if(!digest) {
337 verbose(VERB_QUERY, "DS fail: out of memory");
338 return 0; /* mem error */
339 }
340 if(!ds_create_dnskey_digest(env, dnskey_rrset, dnskey_idx, ds_rrset,
341 ds_idx, digest)) {
342 verbose(VERB_QUERY, "DS fail: could not calc key digest");
343 return 0; /* digest algo failed */
344 }
345 if(memcmp(digest, ds, dslen) != 0) {
346 verbose(VERB_QUERY, "DS fail: digest is different");
347 return 0; /* digest different */
348 }
349 return 1;
350 }
351
352 int
353 ds_digest_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
354 size_t ds_idx)
355 {
356 return (ds_digest_size_algo(ds_rrset, ds_idx) != 0);
357 }
358
359 int
360 ds_key_algo_is_supported(struct ub_packed_rrset_key* ds_rrset,
361 size_t ds_idx)
362 {
363 return dnskey_algo_id_is_supported(ds_get_key_algo(ds_rrset, ds_idx));
364 }
365
366 uint16_t
367 dnskey_calc_keytag(struct ub_packed_rrset_key* dnskey_rrset, size_t dnskey_idx)
368 {
369 uint8_t* data;
370 size_t len;
371 rrset_get_rdata(dnskey_rrset, dnskey_idx, &data, &len);
372 /* do not pass rdatalen to ldns */
373 return sldns_calc_keytag_raw(data+2, len-2);
374 }
375
376 int dnskey_algo_is_supported(struct ub_packed_rrset_key* dnskey_rrset,
377 size_t dnskey_idx)
378 {
379 return dnskey_algo_id_is_supported(dnskey_get_algo(dnskey_rrset,
380 dnskey_idx));
381 }
382
383 void algo_needs_init_dnskey_add(struct algo_needs* n,
384 struct ub_packed_rrset_key* dnskey, uint8_t* sigalg)
385 {
386 uint8_t algo;
387 size_t i, total = n->num;
388 size_t num = rrset_get_count(dnskey);
389
390 for(i=0; i<num; i++) {
391 algo = (uint8_t)dnskey_get_algo(dnskey, i);
392 if(!dnskey_algo_id_is_supported((int)algo))
393 continue;
394 if(n->needs[algo] == 0) {
395 n->needs[algo] = 1;
396 sigalg[total] = algo;
397 total++;
398 }
399 }
400 sigalg[total] = 0;
401 n->num = total;
402 }
403
404 void algo_needs_init_list(struct algo_needs* n, uint8_t* sigalg)
405 {
406 uint8_t algo;
407 size_t total = 0;
408
409 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
410 while( (algo=*sigalg++) != 0) {
411 log_assert(dnskey_algo_id_is_supported((int)algo));
412 log_assert(n->needs[algo] == 0);
413 n->needs[algo] = 1;
414 total++;
415 }
416 n->num = total;
417 }
418
419 void algo_needs_init_ds(struct algo_needs* n, struct ub_packed_rrset_key* ds,
420 int fav_ds_algo, uint8_t* sigalg)
421 {
422 uint8_t algo;
423 size_t i, total = 0;
424 size_t num = rrset_get_count(ds);
425
426 memset(n->needs, 0, sizeof(uint8_t)*ALGO_NEEDS_MAX);
427 for(i=0; i<num; i++) {
428 if(ds_get_digest_algo(ds, i) != fav_ds_algo)
429 continue;
430 algo = (uint8_t)ds_get_key_algo(ds, i);
431 if(!dnskey_algo_id_is_supported((int)algo))
432 continue;
433 log_assert(algo != 0); /* we do not support 0 and is EOS */
434 if(n->needs[algo] == 0) {
435 n->needs[algo] = 1;
436 sigalg[total] = algo;
437 total++;
438 }
439 }
440 sigalg[total] = 0;
441 n->num = total;
442 }
443
444 int algo_needs_set_secure(struct algo_needs* n, uint8_t algo)
445 {
446 if(n->needs[algo]) {
447 n->needs[algo] = 0;
448 n->num --;
449 if(n->num == 0) /* done! */
450 return 1;
451 }
452 return 0;
453 }
454
455 void algo_needs_set_bogus(struct algo_needs* n, uint8_t algo)
456 {
457 if(n->needs[algo]) n->needs[algo] = 2; /* need it, but bogus */
458 }
459
460 size_t algo_needs_num_missing(struct algo_needs* n)
461 {
462 return n->num;
463 }
464
465 int algo_needs_missing(struct algo_needs* n)
466 {
467 int i;
468 /* first check if a needed algo was bogus - report that */
469 for(i=0; i<ALGO_NEEDS_MAX; i++)
470 if(n->needs[i] == 2)
471 return 0;
472 /* now check which algo is missing */
473 for(i=0; i<ALGO_NEEDS_MAX; i++)
474 if(n->needs[i] == 1)
475 return i;
476 return 0;
477 }
478
479 enum sec_status
480 dnskeyset_verify_rrset(struct module_env* env, struct val_env* ve,
481 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
482 uint8_t* sigalg, char** reason)
483 {
484 enum sec_status sec;
485 size_t i, num;
486 rbtree_t* sortree = NULL;
487 /* make sure that for all DNSKEY algorithms there are valid sigs */
488 struct algo_needs needs;
489 int alg;
490
491 num = rrset_get_sigcount(rrset);
492 if(num == 0) {
493 verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
494 "signatures");
495 *reason = "no signatures";
496 return sec_status_bogus;
497 }
498
499 if(sigalg) {
500 algo_needs_init_list(&needs, sigalg);
501 if(algo_needs_num_missing(&needs) == 0) {
502 verbose(VERB_QUERY, "zone has no known algorithms");
503 *reason = "zone has no known algorithms";
504 return sec_status_insecure;
505 }
506 }
507 for(i=0; i<num; i++) {
508 sec = dnskeyset_verify_rrset_sig(env, ve, *env->now, rrset,
509 dnskey, i, &sortree, reason);
510 /* see which algorithm has been fixed up */
511 if(sec == sec_status_secure) {
512 if(!sigalg)
513 return sec; /* done! */
514 else if(algo_needs_set_secure(&needs,
515 (uint8_t)rrset_get_sig_algo(rrset, i)))
516 return sec; /* done! */
517 } else if(sigalg && sec == sec_status_bogus) {
518 algo_needs_set_bogus(&needs,
519 (uint8_t)rrset_get_sig_algo(rrset, i));
520 }
521 }
522 if(sigalg && (alg=algo_needs_missing(&needs)) != 0) {
523 verbose(VERB_ALGO, "rrset failed to verify: "
524 "no valid signatures for %d algorithms",
525 (int)algo_needs_num_missing(&needs));
526 algo_needs_reason(env, alg, reason, "no signatures");
527 } else {
528 verbose(VERB_ALGO, "rrset failed to verify: "
529 "no valid signatures");
530 }
531 return sec_status_bogus;
532 }
533
534 void algo_needs_reason(struct module_env* env, int alg, char** reason, char* s)
535 {
536 char buf[256];
537 sldns_lookup_table *t = sldns_lookup_by_id(sldns_algorithms, alg);
538 if(t&&t->name)
539 snprintf(buf, sizeof(buf), "%s with algorithm %s", s, t->name);
540 else snprintf(buf, sizeof(buf), "%s with algorithm ALG%u", s,
541 (unsigned)alg);
542 *reason = regional_strdup(env->scratch, buf);
543 if(!*reason)
544 *reason = s;
545 }
546
547 enum sec_status
548 dnskey_verify_rrset(struct module_env* env, struct val_env* ve,
549 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
550 size_t dnskey_idx, char** reason)
551 {
552 enum sec_status sec;
553 size_t i, num, numchecked = 0;
554 rbtree_t* sortree = NULL;
555 int buf_canon = 0;
556 uint16_t tag = dnskey_calc_keytag(dnskey, dnskey_idx);
557 int algo = dnskey_get_algo(dnskey, dnskey_idx);
558
559 num = rrset_get_sigcount(rrset);
560 if(num == 0) {
561 verbose(VERB_QUERY, "rrset failed to verify due to a lack of "
562 "signatures");
563 *reason = "no signatures";
564 return sec_status_bogus;
565 }
566 for(i=0; i<num; i++) {
567 /* see if sig matches keytag and algo */
568 if(algo != rrset_get_sig_algo(rrset, i) ||
569 tag != rrset_get_sig_keytag(rrset, i))
570 continue;
571 buf_canon = 0;
572 sec = dnskey_verify_rrset_sig(env->scratch,
573 env->scratch_buffer, ve, *env->now, rrset,
574 dnskey, dnskey_idx, i, &sortree, &buf_canon, reason);
575 if(sec == sec_status_secure)
576 return sec;
577 numchecked ++;
578 }
579 verbose(VERB_ALGO, "rrset failed to verify: all signatures are bogus");
580 if(!numchecked) *reason = "signature missing";
581 return sec_status_bogus;
582 }
583
584 enum sec_status
585 dnskeyset_verify_rrset_sig(struct module_env* env, struct val_env* ve,
586 time_t now, struct ub_packed_rrset_key* rrset,
587 struct ub_packed_rrset_key* dnskey, size_t sig_idx,
588 struct rbtree_t** sortree, char** reason)
589 {
590 /* find matching keys and check them */
591 enum sec_status sec = sec_status_bogus;
592 uint16_t tag = rrset_get_sig_keytag(rrset, sig_idx);
593 int algo = rrset_get_sig_algo(rrset, sig_idx);
594 size_t i, num = rrset_get_count(dnskey);
595 size_t numchecked = 0;
596 int buf_canon = 0;
597 verbose(VERB_ALGO, "verify sig %d %d", (int)tag, algo);
598 if(!dnskey_algo_id_is_supported(algo)) {
599 verbose(VERB_QUERY, "verify sig: unknown algorithm");
600 return sec_status_insecure;
601 }
602
603 for(i=0; i<num; i++) {
604 /* see if key matches keytag and algo */
605 if(algo != dnskey_get_algo(dnskey, i) ||
606 tag != dnskey_calc_keytag(dnskey, i))
607 continue;
608 numchecked ++;
609
610 /* see if key verifies */
611 sec = dnskey_verify_rrset_sig(env->scratch,
612 env->scratch_buffer, ve, now, rrset, dnskey, i,
613 sig_idx, sortree, &buf_canon, reason);
614 if(sec == sec_status_secure)
615 return sec;
616 }
617 if(numchecked == 0) {
618 *reason = "signatures from unknown keys";
619 verbose(VERB_QUERY, "verify: could not find appropriate key");
620 return sec_status_bogus;
621 }
622 return sec_status_bogus;
623 }
624
625 /**
626 * RR entries in a canonical sorted tree of RRs
627 */
628 struct canon_rr {
629 /** rbtree node, key is this structure */
630 rbnode_t node;
631 /** rrset the RR is in */
632 struct ub_packed_rrset_key* rrset;
633 /** which RR in the rrset */
634 size_t rr_idx;
635 };
636
637 /**
638 * Compare two RR for canonical order, in a field-style sweep.
639 * @param d: rrset data
640 * @param desc: ldns wireformat descriptor.
641 * @param i: first RR to compare
642 * @param j: first RR to compare
643 * @return comparison code.
644 */
645 static int
646 canonical_compare_byfield(struct packed_rrset_data* d,
647 const sldns_rr_descriptor* desc, size_t i, size_t j)
648 {
649 /* sweep across rdata, keep track of some state:
650 * which rr field, and bytes left in field.
651 * current position in rdata, length left.
652 * are we in a dname, length left in a label.
653 */
654 int wfi = -1; /* current wireformat rdata field (rdf) */
655 int wfj = -1;
656 uint8_t* di = d->rr_data[i]+2; /* ptr to current rdata byte */
657 uint8_t* dj = d->rr_data[j]+2;
658 size_t ilen = d->rr_len[i]-2; /* length left in rdata */
659 size_t jlen = d->rr_len[j]-2;
660 int dname_i = 0; /* true if these bytes are part of a name */
661 int dname_j = 0;
662 size_t lablen_i = 0; /* 0 for label length byte,for first byte of rdf*/
663 size_t lablen_j = 0; /* otherwise remaining length of rdf or label */
664 int dname_num_i = (int)desc->_dname_count; /* decreased at root label */
665 int dname_num_j = (int)desc->_dname_count;
666
667 /* loop while there are rdata bytes available for both rrs,
668 * and still some lowercasing needs to be done; either the dnames
669 * have not been reached yet, or they are currently being processed */
670 while(ilen > 0 && jlen > 0 && (dname_num_i > 0 || dname_num_j > 0)) {
671 /* compare these two bytes */
672 /* lowercase if in a dname and not a label length byte */
673 if( ((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
674 != ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj)
675 ) {
676 if(((dname_i && lablen_i)?(uint8_t)tolower((int)*di):*di)
677 < ((dname_j && lablen_j)?(uint8_t)tolower((int)*dj):*dj))
678 return -1;
679 return 1;
680 }
681 ilen--;
682 jlen--;
683 /* bytes are equal */
684
685 /* advance field i */
686 /* lablen 0 means that this byte is the first byte of the
687 * next rdata field; inspect this rdata field and setup
688 * to process the rest of this rdata field.
689 * The reason to first read the byte, then setup the rdf,
690 * is that we are then sure the byte is available and short
691 * rdata is handled gracefully (even if it is a formerr). */
692 if(lablen_i == 0) {
693 if(dname_i) {
694 /* scan this dname label */
695 /* capture length to lowercase */
696 lablen_i = (size_t)*di;
697 if(lablen_i == 0) {
698 /* end root label */
699 dname_i = 0;
700 dname_num_i--;
701 /* if dname num is 0, then the
702 * remainder is binary only */
703 if(dname_num_i == 0)
704 lablen_i = ilen;
705 }
706 } else {
707 /* scan this rdata field */
708 wfi++;
709 if(desc->_wireformat[wfi]
710 == LDNS_RDF_TYPE_DNAME) {
711 dname_i = 1;
712 lablen_i = (size_t)*di;
713 if(lablen_i == 0) {
714 dname_i = 0;
715 dname_num_i--;
716 if(dname_num_i == 0)
717 lablen_i = ilen;
718 }
719 } else if(desc->_wireformat[wfi]
720 == LDNS_RDF_TYPE_STR)
721 lablen_i = (size_t)*di;
722 else lablen_i = get_rdf_size(
723 desc->_wireformat[wfi]) - 1;
724 }
725 } else lablen_i--;
726
727 /* advance field j; same as for i */
728 if(lablen_j == 0) {
729 if(dname_j) {
730 lablen_j = (size_t)*dj;
731 if(lablen_j == 0) {
732 dname_j = 0;
733 dname_num_j--;
734 if(dname_num_j == 0)
735 lablen_j = jlen;
736 }
737 } else {
738 wfj++;
739 if(desc->_wireformat[wfj]
740 == LDNS_RDF_TYPE_DNAME) {
741 dname_j = 1;
742 lablen_j = (size_t)*dj;
743 if(lablen_j == 0) {
744 dname_j = 0;
745 dname_num_j--;
746 if(dname_num_j == 0)
747 lablen_j = jlen;
748 }
749 } else if(desc->_wireformat[wfj]
750 == LDNS_RDF_TYPE_STR)
751 lablen_j = (size_t)*dj;
752 else lablen_j = get_rdf_size(
753 desc->_wireformat[wfj]) - 1;
754 }
755 } else lablen_j--;
756 di++;
757 dj++;
758 }
759 /* end of the loop; because we advanced byte by byte; now we have
760 * that the rdata has ended, or that there is a binary remainder */
761 /* shortest first */
762 if(ilen == 0 && jlen == 0)
763 return 0;
764 if(ilen == 0)
765 return -1;
766 if(jlen == 0)
767 return 1;
768 /* binary remainder, capture comparison in wfi variable */
769 if((wfi = memcmp(di, dj, (ilen<jlen)?ilen:jlen)) != 0)
770 return wfi;
771 if(ilen < jlen)
772 return -1;
773 if(jlen < ilen)
774 return 1;
775 return 0;
776 }
777
778 /**
779 * Compare two RRs in the same RRset and determine their relative
780 * canonical order.
781 * @param rrset: the rrset in which to perform compares.
782 * @param i: first RR to compare
783 * @param j: first RR to compare
784 * @return 0 if RR i== RR j, -1 if <, +1 if >.
785 */
786 static int
787 canonical_compare(struct ub_packed_rrset_key* rrset, size_t i, size_t j)
788 {
789 struct packed_rrset_data* d = (struct packed_rrset_data*)
790 rrset->entry.data;
791 const sldns_rr_descriptor* desc;
792 uint16_t type = ntohs(rrset->rk.type);
793 size_t minlen;
794 int c;
795
796 if(i==j)
797 return 0;
798 /* in case rdata-len is to be compared for canonical order
799 c = memcmp(d->rr_data[i], d->rr_data[j], 2);
800 if(c != 0)
801 return c; */
802
803 switch(type) {
804 /* These RR types have only a name as RDATA.
805 * This name has to be canonicalized.*/
806 case LDNS_RR_TYPE_NS:
807 case LDNS_RR_TYPE_MD:
808 case LDNS_RR_TYPE_MF:
809 case LDNS_RR_TYPE_CNAME:
810 case LDNS_RR_TYPE_MB:
811 case LDNS_RR_TYPE_MG:
812 case LDNS_RR_TYPE_MR:
813 case LDNS_RR_TYPE_PTR:
814 case LDNS_RR_TYPE_DNAME:
815 /* the wireread function has already checked these
816 * dname's for correctness, and this double checks */
817 if(!dname_valid(d->rr_data[i]+2, d->rr_len[i]-2) ||
818 !dname_valid(d->rr_data[j]+2, d->rr_len[j]-2))
819 return 0;
820 return query_dname_compare(d->rr_data[i]+2,
821 d->rr_data[j]+2);
822
823 /* These RR types have STR and fixed size rdata fields
824 * before one or more name fields that need canonicalizing,
825 * and after that a byte-for byte remainder can be compared.
826 */
827 /* type starts with the name; remainder is binary compared */
828 case LDNS_RR_TYPE_NXT:
829 /* use rdata field formats */
830 case LDNS_RR_TYPE_MINFO:
831 case LDNS_RR_TYPE_RP:
832 case LDNS_RR_TYPE_SOA:
833 case LDNS_RR_TYPE_RT:
834 case LDNS_RR_TYPE_AFSDB:
835 case LDNS_RR_TYPE_KX:
836 case LDNS_RR_TYPE_MX:
837 case LDNS_RR_TYPE_SIG:
838 /* RRSIG signer name has to be downcased */
839 case LDNS_RR_TYPE_RRSIG:
840 case LDNS_RR_TYPE_PX:
841 case LDNS_RR_TYPE_NAPTR:
842 case LDNS_RR_TYPE_SRV:
843 desc = sldns_rr_descript(type);
844 log_assert(desc);
845 /* this holds for the types that need canonicalizing */
846 log_assert(desc->_minimum == desc->_maximum);
847 return canonical_compare_byfield(d, desc, i, j);
848
849 case LDNS_RR_TYPE_HINFO: /* no longer downcased */
850 case LDNS_RR_TYPE_NSEC:
851 default:
852 /* For unknown RR types, or types not listed above,
853 * no canonicalization is needed, do binary compare */
854 /* byte for byte compare, equal means shortest first*/
855 minlen = d->rr_len[i]-2;
856 if(minlen > d->rr_len[j]-2)
857 minlen = d->rr_len[j]-2;
858 c = memcmp(d->rr_data[i]+2, d->rr_data[j]+2, minlen);
859 if(c!=0)
860 return c;
861 /* rdata equal, shortest is first */
862 if(d->rr_len[i] < d->rr_len[j])
863 return -1;
864 if(d->rr_len[i] > d->rr_len[j])
865 return 1;
866 /* rdata equal, length equal */
867 break;
868 }
869 return 0;
870 }
871
872 int
873 canonical_tree_compare(const void* k1, const void* k2)
874 {
875 struct canon_rr* r1 = (struct canon_rr*)k1;
876 struct canon_rr* r2 = (struct canon_rr*)k2;
877 log_assert(r1->rrset == r2->rrset);
878 return canonical_compare(r1->rrset, r1->rr_idx, r2->rr_idx);
879 }
880
881 /**
882 * Sort RRs for rrset in canonical order.
883 * Does not actually canonicalize the RR rdatas.
884 * Does not touch rrsigs.
885 * @param rrset: to sort.
886 * @param d: rrset data.
887 * @param sortree: tree to sort into.
888 * @param rrs: rr storage.
889 */
890 static void
891 canonical_sort(struct ub_packed_rrset_key* rrset, struct packed_rrset_data* d,
892 rbtree_t* sortree, struct canon_rr* rrs)
893 {
894 size_t i;
895 /* insert into rbtree to sort and detect duplicates */
896 for(i=0; i<d->count; i++) {
897 rrs[i].node.key = &rrs[i];
898 rrs[i].rrset = rrset;
899 rrs[i].rr_idx = i;
900 if(!rbtree_insert(sortree, &rrs[i].node)) {
901 /* this was a duplicate */
902 }
903 }
904 }
905
906 /**
907 * Inser canonical owner name into buffer.
908 * @param buf: buffer to insert into at current position.
909 * @param k: rrset with its owner name.
910 * @param sig: signature with signer name and label count.
911 * must be length checked, at least 18 bytes long.
912 * @param can_owner: position in buffer returned for future use.
913 * @param can_owner_len: length of canonical owner name.
914 */
915 static void
916 insert_can_owner(sldns_buffer* buf, struct ub_packed_rrset_key* k,
917 uint8_t* sig, uint8_t** can_owner, size_t* can_owner_len)
918 {
919 int rrsig_labels = (int)sig[3];
920 int fqdn_labels = dname_signame_label_count(k->rk.dname);
921 *can_owner = sldns_buffer_current(buf);
922 if(rrsig_labels == fqdn_labels) {
923 /* no change */
924 sldns_buffer_write(buf, k->rk.dname, k->rk.dname_len);
925 query_dname_tolower(*can_owner);
926 *can_owner_len = k->rk.dname_len;
927 return;
928 }
929 log_assert(rrsig_labels < fqdn_labels);
930 /* *. | fqdn(rightmost rrsig_labels) */
931 if(rrsig_labels < fqdn_labels) {
932 int i;
933 uint8_t* nm = k->rk.dname;
934 size_t len = k->rk.dname_len;
935 /* so skip fqdn_labels-rrsig_labels */
936 for(i=0; i<fqdn_labels-rrsig_labels; i++) {
937 dname_remove_label(&nm, &len);
938 }
939 *can_owner_len = len+2;
940 sldns_buffer_write(buf, (uint8_t*)"\001*", 2);
941 sldns_buffer_write(buf, nm, len);
942 query_dname_tolower(*can_owner);
943 }
944 }
945
946 /**
947 * Canonicalize Rdata in buffer.
948 * @param buf: buffer at position just after the rdata.
949 * @param rrset: rrset with type.
950 * @param len: length of the rdata (including rdatalen uint16).
951 */
952 static void
953 canonicalize_rdata(sldns_buffer* buf, struct ub_packed_rrset_key* rrset,
954 size_t len)
955 {
956 uint8_t* datstart = sldns_buffer_current(buf)-len+2;
957 switch(ntohs(rrset->rk.type)) {
958 case LDNS_RR_TYPE_NXT:
959 case LDNS_RR_TYPE_NS:
960 case LDNS_RR_TYPE_MD:
961 case LDNS_RR_TYPE_MF:
962 case LDNS_RR_TYPE_CNAME:
963 case LDNS_RR_TYPE_MB:
964 case LDNS_RR_TYPE_MG:
965 case LDNS_RR_TYPE_MR:
966 case LDNS_RR_TYPE_PTR:
967 case LDNS_RR_TYPE_DNAME:
968 /* type only has a single argument, the name */
969 query_dname_tolower(datstart);
970 return;
971 case LDNS_RR_TYPE_MINFO:
972 case LDNS_RR_TYPE_RP:
973 case LDNS_RR_TYPE_SOA:
974 /* two names after another */
975 query_dname_tolower(datstart);
976 query_dname_tolower(datstart +
977 dname_valid(datstart, len-2));
978 return;
979 case LDNS_RR_TYPE_RT:
980 case LDNS_RR_TYPE_AFSDB:
981 case LDNS_RR_TYPE_KX:
982 case LDNS_RR_TYPE_MX:
983 /* skip fixed part */
984 if(len < 2+2+1) /* rdlen, skiplen, 1byteroot */
985 return;
986 datstart += 2;
987 query_dname_tolower(datstart);
988 return;
989 case LDNS_RR_TYPE_SIG:
990 /* downcase the RRSIG, compat with BIND (kept it from SIG) */
991 case LDNS_RR_TYPE_RRSIG:
992 /* skip fixed part */
993 if(len < 2+18+1)
994 return;
995 datstart += 18;
996 query_dname_tolower(datstart);
997 return;
998 case LDNS_RR_TYPE_PX:
999 /* skip, then two names after another */
1000 if(len < 2+2+1)
1001 return;
1002 datstart += 2;
1003 query_dname_tolower(datstart);
1004 query_dname_tolower(datstart +
1005 dname_valid(datstart, len-2-2));
1006 return;
1007 case LDNS_RR_TYPE_NAPTR:
1008 if(len < 2+4)
1009 return;
1010 len -= 2+4;
1011 datstart += 4;
1012 if(len < (size_t)datstart[0]+1) /* skip text field */
1013 return;
1014 len -= (size_t)datstart[0]+1;
1015 datstart += (size_t)datstart[0]+1;
1016 if(len < (size_t)datstart[0]+1) /* skip text field */
1017 return;
1018 len -= (size_t)datstart[0]+1;
1019 datstart += (size_t)datstart[0]+1;
1020 if(len < (size_t)datstart[0]+1) /* skip text field */
1021 return;
1022 len -= (size_t)datstart[0]+1;
1023 datstart += (size_t)datstart[0]+1;
1024 if(len < 1) /* check name is at least 1 byte*/
1025 return;
1026 query_dname_tolower(datstart);
1027 return;
1028 case LDNS_RR_TYPE_SRV:
1029 /* skip fixed part */
1030 if(len < 2+6+1)
1031 return;
1032 datstart += 6;
1033 query_dname_tolower(datstart);
1034 return;
1035
1036 /* do not canonicalize NSEC rdata name, compat with
1037 * from bind 9.4 signer, where it does not do so */
1038 case LDNS_RR_TYPE_NSEC: /* type starts with the name */
1039 case LDNS_RR_TYPE_HINFO: /* not downcased */
1040 /* A6 not supported */
1041 default:
1042 /* nothing to do for unknown types */
1043 return;
1044 }
1045 }
1046
1047 int rrset_canonical_equal(struct regional* region,
1048 struct ub_packed_rrset_key* k1, struct ub_packed_rrset_key* k2)
1049 {
1050 struct rbtree_t sortree1, sortree2;
1051 struct canon_rr *rrs1, *rrs2, *p1, *p2;
1052 struct packed_rrset_data* d1=(struct packed_rrset_data*)k1->entry.data;
1053 struct packed_rrset_data* d2=(struct packed_rrset_data*)k2->entry.data;
1054 struct ub_packed_rrset_key fk;
1055 struct packed_rrset_data fd;
1056 size_t flen[2];
1057 uint8_t* fdata[2];
1058
1059 /* basic compare */
1060 if(k1->rk.dname_len != k2->rk.dname_len ||
1061 k1->rk.flags != k2->rk.flags ||
1062 k1->rk.type != k2->rk.type ||
1063 k1->rk.rrset_class != k2->rk.rrset_class ||
1064 query_dname_compare(k1->rk.dname, k2->rk.dname) != 0)
1065 return 0;
1066 if(d1->ttl != d2->ttl ||
1067 d1->count != d2->count ||
1068 d1->rrsig_count != d2->rrsig_count ||
1069 d1->trust != d2->trust ||
1070 d1->security != d2->security)
1071 return 0;
1072
1073 /* init */
1074 memset(&fk, 0, sizeof(fk));
1075 memset(&fd, 0, sizeof(fd));
1076 fk.entry.data = &fd;
1077 fd.count = 2;
1078 fd.rr_len = flen;
1079 fd.rr_data = fdata;
1080 rbtree_init(&sortree1, &canonical_tree_compare);
1081 rbtree_init(&sortree2, &canonical_tree_compare);
1082 rrs1 = regional_alloc(region, sizeof(struct canon_rr)*d1->count);
1083 rrs2 = regional_alloc(region, sizeof(struct canon_rr)*d2->count);
1084 if(!rrs1 || !rrs2) return 1; /* alloc failure */
1085
1086 /* sort */
1087 canonical_sort(k1, d1, &sortree1, rrs1);
1088 canonical_sort(k2, d2, &sortree2, rrs2);
1089
1090 /* compare canonical-sorted RRs for canonical-equality */
1091 if(sortree1.count != sortree2.count)
1092 return 0;
1093 p1 = (struct canon_rr*)rbtree_first(&sortree1);
1094 p2 = (struct canon_rr*)rbtree_first(&sortree2);
1095 while(p1 != (struct canon_rr*)RBTREE_NULL &&
1096 p2 != (struct canon_rr*)RBTREE_NULL) {
1097 flen[0] = d1->rr_len[p1->rr_idx];
1098 flen[1] = d2->rr_len[p2->rr_idx];
1099 fdata[0] = d1->rr_data[p1->rr_idx];
1100 fdata[1] = d2->rr_data[p2->rr_idx];
1101
1102 if(canonical_compare(&fk, 0, 1) != 0)
1103 return 0;
1104 p1 = (struct canon_rr*)rbtree_next(&p1->node);
1105 p2 = (struct canon_rr*)rbtree_next(&p2->node);
1106 }
1107 return 1;
1108 }
1109
1110 /**
1111 * Create canonical form of rrset in the scratch buffer.
1112 * @param region: temporary region.
1113 * @param buf: the buffer to use.
1114 * @param k: the rrset to insert.
1115 * @param sig: RRSIG rdata to include.
1116 * @param siglen: RRSIG rdata len excluding signature field, but inclusive
1117 * signer name length.
1118 * @param sortree: if NULL is passed a new sorted rrset tree is built.
1119 * Otherwise it is reused.
1120 * @return false on alloc error.
1121 */
1122 static int
1123 rrset_canonical(struct regional* region, sldns_buffer* buf,
1124 struct ub_packed_rrset_key* k, uint8_t* sig, size_t siglen,
1125 struct rbtree_t** sortree)
1126 {
1127 struct packed_rrset_data* d = (struct packed_rrset_data*)k->entry.data;
1128 uint8_t* can_owner = NULL;
1129 size_t can_owner_len = 0;
1130 struct canon_rr* walk;
1131 struct canon_rr* rrs;
1132
1133 if(!*sortree) {
1134 *sortree = (struct rbtree_t*)regional_alloc(region,
1135 sizeof(rbtree_t));
1136 if(!*sortree)
1137 return 0;
1138 rrs = regional_alloc(region, sizeof(struct canon_rr)*d->count);
1139 if(!rrs) {
1140 *sortree = NULL;
1141 return 0;
1142 }
1143 rbtree_init(*sortree, &canonical_tree_compare);
1144 canonical_sort(k, d, *sortree, rrs);
1145 }
1146
1147 sldns_buffer_clear(buf);
1148 sldns_buffer_write(buf, sig, siglen);
1149 /* canonicalize signer name */
1150 query_dname_tolower(sldns_buffer_begin(buf)+18);
1151 RBTREE_FOR(walk, struct canon_rr*, (*sortree)) {
1152 /* see if there is enough space left in the buffer */
1153 if(sldns_buffer_remaining(buf) < can_owner_len + 2 + 2 + 4
1154 + d->rr_len[walk->rr_idx]) {
1155 log_err("verify: failed to canonicalize, "
1156 "rrset too big");
1157 return 0;
1158 }
1159 /* determine canonical owner name */
1160 if(can_owner)
1161 sldns_buffer_write(buf, can_owner, can_owner_len);
1162 else insert_can_owner(buf, k, sig, &can_owner,
1163 &can_owner_len);
1164 sldns_buffer_write(buf, &k->rk.type, 2);
1165 sldns_buffer_write(buf, &k->rk.rrset_class, 2);
1166 sldns_buffer_write(buf, sig+4, 4);
1167 sldns_buffer_write(buf, d->rr_data[walk->rr_idx],
1168 d->rr_len[walk->rr_idx]);
1169 canonicalize_rdata(buf, k, d->rr_len[walk->rr_idx]);
1170 }
1171 sldns_buffer_flip(buf);
1172 return 1;
1173 }
1174
1175 /** pretty print rrsig error with dates */
1176 static void
1177 sigdate_error(const char* str, int32_t expi, int32_t incep, int32_t now)
1178 {
1179 struct tm tm;
1180 char expi_buf[16];
1181 char incep_buf[16];
1182 char now_buf[16];
1183 time_t te, ti, tn;
1184
1185 if(verbosity < VERB_QUERY)
1186 return;
1187 te = (time_t)expi;
1188 ti = (time_t)incep;
1189 tn = (time_t)now;
1190 memset(&tm, 0, sizeof(tm));
1191 if(gmtime_r(&te, &tm) && strftime(expi_buf, 15, "%Y%m%d%H%M%S", &tm)
1192 &&gmtime_r(&ti, &tm) && strftime(incep_buf, 15, "%Y%m%d%H%M%S", &tm)
1193 &&gmtime_r(&tn, &tm) && strftime(now_buf, 15, "%Y%m%d%H%M%S", &tm)) {
1194 log_info("%s expi=%s incep=%s now=%s", str, expi_buf,
1195 incep_buf, now_buf);
1196 } else
1197 log_info("%s expi=%u incep=%u now=%u", str, (unsigned)expi,
1198 (unsigned)incep, (unsigned)now);
1199 }
1200
1201 /** check rrsig dates */
1202 static int
1203 check_dates(struct val_env* ve, uint32_t unow,
1204 uint8_t* expi_p, uint8_t* incep_p, char** reason)
1205 {
1206 /* read out the dates */
1207 int32_t expi, incep, now;
1208 memmove(&expi, expi_p, sizeof(expi));
1209 memmove(&incep, incep_p, sizeof(incep));
1210 expi = ntohl(expi);
1211 incep = ntohl(incep);
1212
1213 /* get current date */
1214 if(ve->date_override) {
1215 if(ve->date_override == -1) {
1216 verbose(VERB_ALGO, "date override: ignore date");
1217 return 1;
1218 }
1219 now = ve->date_override;
1220 verbose(VERB_ALGO, "date override option %d", (int)now);
1221 } else now = (int32_t)unow;
1222
1223 /* check them */
1224 if(incep - expi > 0) {
1225 sigdate_error("verify: inception after expiration, "
1226 "signature bad", expi, incep, now);
1227 *reason = "signature inception after expiration";
1228 return 0;
1229 }
1230 if(incep - now > 0) {
1231 /* within skew ? (calc here to avoid calculation normally) */
1232 int32_t skew = (expi-incep)/10;
1233 if(skew < ve->skew_min) skew = ve->skew_min;
1234 if(skew > ve->skew_max) skew = ve->skew_max;
1235 if(incep - now > skew) {
1236 sigdate_error("verify: signature bad, current time is"
1237 " before inception date", expi, incep, now);
1238 *reason = "signature before inception date";
1239 return 0;
1240 }
1241 sigdate_error("verify warning suspicious signature inception "
1242 " or bad local clock", expi, incep, now);
1243 }
1244 if(now - expi > 0) {
1245 int32_t skew = (expi-incep)/10;
1246 if(skew < ve->skew_min) skew = ve->skew_min;
1247 if(skew > ve->skew_max) skew = ve->skew_max;
1248 if(now - expi > skew) {
1249 sigdate_error("verify: signature expired", expi,
1250 incep, now);
1251 *reason = "signature expired";
1252 return 0;
1253 }
1254 sigdate_error("verify warning suspicious signature expiration "
1255 " or bad local clock", expi, incep, now);
1256 }
1257 return 1;
1258 }
1259
1260 /** adjust rrset TTL for verified rrset, compare to original TTL and expi */
1261 static void
1262 adjust_ttl(struct val_env* ve, uint32_t unow,
1263 struct ub_packed_rrset_key* rrset, uint8_t* orig_p,
1264 uint8_t* expi_p, uint8_t* incep_p)
1265 {
1266 struct packed_rrset_data* d =
1267 (struct packed_rrset_data*)rrset->entry.data;
1268 /* read out the dates */
1269 int32_t origttl, expittl, expi, incep, now;
1270 memmove(&origttl, orig_p, sizeof(origttl));
1271 memmove(&expi, expi_p, sizeof(expi));
1272 memmove(&incep, incep_p, sizeof(incep));
1273 expi = ntohl(expi);
1274 incep = ntohl(incep);
1275 origttl = ntohl(origttl);
1276
1277 /* get current date */
1278 if(ve->date_override) {
1279 now = ve->date_override;
1280 } else now = (int32_t)unow;
1281 expittl = expi - now;
1282
1283 /* so now:
1284 * d->ttl: rrset ttl read from message or cache. May be reduced
1285 * origttl: original TTL from signature, authoritative TTL max.
1286 * expittl: TTL until the signature expires.
1287 *
1288 * Use the smallest of these.
1289 */
1290 if(d->ttl > (time_t)origttl) {
1291 verbose(VERB_QUERY, "rrset TTL larger than original TTL,"
1292 " adjusting TTL downwards");
1293 d->ttl = origttl;
1294 }
1295 if(expittl > 0 && d->ttl > (time_t)expittl) {
1296 verbose(VERB_ALGO, "rrset TTL larger than sig expiration ttl,"
1297 " adjusting TTL downwards");
1298 d->ttl = expittl;
1299 }
1300 }
1301
1302 enum sec_status
1303 dnskey_verify_rrset_sig(struct regional* region, sldns_buffer* buf,
1304 struct val_env* ve, time_t now,
1305 struct ub_packed_rrset_key* rrset, struct ub_packed_rrset_key* dnskey,
1306 size_t dnskey_idx, size_t sig_idx,
1307 struct rbtree_t** sortree, int* buf_canon, char** reason)
1308 {
1309 enum sec_status sec;
1310 uint8_t* sig; /* RRSIG rdata */
1311 size_t siglen;
1312 size_t rrnum = rrset_get_count(rrset);
1313 uint8_t* signer; /* rrsig signer name */
1314 size_t signer_len;
1315 unsigned char* sigblock; /* signature rdata field */
1316 unsigned int sigblock_len;
1317 uint16_t ktag; /* DNSKEY key tag */
1318 unsigned char* key; /* public key rdata field */
1319 unsigned int keylen;
1320 rrset_get_rdata(rrset, rrnum + sig_idx, &sig, &siglen);
1321 /* min length of rdatalen, fixed rrsig, root signer, 1 byte sig */
1322 if(siglen < 2+20) {
1323 verbose(VERB_QUERY, "verify: signature too short");
1324 *reason = "signature too short";
1325 return sec_status_bogus;
1326 }
1327
1328 if(!(dnskey_get_flags(dnskey, dnskey_idx) & DNSKEY_BIT_ZSK)) {
1329 verbose(VERB_QUERY, "verify: dnskey without ZSK flag");
1330 *reason = "dnskey without ZSK flag";
1331 return sec_status_bogus;
1332 }
1333
1334 if(dnskey_get_protocol(dnskey, dnskey_idx) != LDNS_DNSSEC_KEYPROTO) {
1335 /* RFC 4034 says DNSKEY PROTOCOL MUST be 3 */
1336 verbose(VERB_QUERY, "verify: dnskey has wrong key protocol");
1337 *reason = "dnskey has wrong protocolnumber";
1338 return sec_status_bogus;
1339 }
1340
1341 /* verify as many fields in rrsig as possible */
1342 signer = sig+2+18;
1343 signer_len = dname_valid(signer, siglen-2-18);
1344 if(!signer_len) {
1345 verbose(VERB_QUERY, "verify: malformed signer name");
1346 *reason = "signer name malformed";
1347 return sec_status_bogus; /* signer name invalid */
1348 }
1349 if(!dname_subdomain_c(rrset->rk.dname, signer)) {
1350 verbose(VERB_QUERY, "verify: signer name is off-tree");
1351 *reason = "signer name off-tree";
1352 return sec_status_bogus; /* signer name offtree */
1353 }
1354 sigblock = (unsigned char*)signer+signer_len;
1355 if(siglen < 2+18+signer_len+1) {
1356 verbose(VERB_QUERY, "verify: too short, no signature data");
1357 *reason = "signature too short, no signature data";
1358 return sec_status_bogus; /* sig rdf is < 1 byte */
1359 }
1360 sigblock_len = (unsigned int)(siglen - 2 - 18 - signer_len);
1361
1362 /* verify key dname == sig signer name */
1363 if(query_dname_compare(signer, dnskey->rk.dname) != 0) {
1364 verbose(VERB_QUERY, "verify: wrong key for rrsig");
1365 log_nametypeclass(VERB_QUERY, "RRSIG signername is",
1366 signer, 0, 0);
1367 log_nametypeclass(VERB_QUERY, "the key name is",
1368 dnskey->rk.dname, 0, 0);
1369 *reason = "signer name mismatches key name";
1370 return sec_status_bogus;
1371 }
1372
1373 /* verify covered type */
1374 /* memcmp works because type is in network format for rrset */
1375 if(memcmp(sig+2, &rrset->rk.type, 2) != 0) {
1376 verbose(VERB_QUERY, "verify: wrong type covered");
1377 *reason = "signature covers wrong type";
1378 return sec_status_bogus;
1379 }
1380 /* verify keytag and sig algo (possibly again) */
1381 if((int)sig[2+2] != dnskey_get_algo(dnskey, dnskey_idx)) {
1382 verbose(VERB_QUERY, "verify: wrong algorithm");
1383 *reason = "signature has wrong algorithm";
1384 return sec_status_bogus;
1385 }
1386 ktag = htons(dnskey_calc_keytag(dnskey, dnskey_idx));
1387 if(memcmp(sig+2+16, &ktag, 2) != 0) {
1388 verbose(VERB_QUERY, "verify: wrong keytag");
1389 *reason = "signature has wrong keytag";
1390 return sec_status_bogus;
1391 }
1392
1393 /* verify labels is in a valid range */
1394 if((int)sig[2+3] > dname_signame_label_count(rrset->rk.dname)) {
1395 verbose(VERB_QUERY, "verify: labelcount out of range");
1396 *reason = "signature labelcount out of range";
1397 return sec_status_bogus;
1398 }
1399
1400 /* original ttl, always ok */
1401
1402 if(!*buf_canon) {
1403 /* create rrset canonical format in buffer, ready for
1404 * signature */
1405 if(!rrset_canonical(region, buf, rrset, sig+2,
1406 18 + signer_len, sortree)) {
1407 log_err("verify: failed due to alloc error");
1408 return sec_status_unchecked;
1409 }
1410 *buf_canon = 1;
1411 }
1412
1413 /* check that dnskey is available */
1414 dnskey_get_pubkey(dnskey, dnskey_idx, &key, &keylen);
1415 if(!key) {
1416 verbose(VERB_QUERY, "verify: short DNSKEY RR");
1417 return sec_status_unchecked;
1418 }
1419
1420 /* verify */
1421 sec = verify_canonrrset(buf, (int)sig[2+2],
1422 sigblock, sigblock_len, key, keylen, reason);
1423
1424 if(sec == sec_status_secure) {
1425 /* check if TTL is too high - reduce if so */
1426 adjust_ttl(ve, now, rrset, sig+2+4, sig+2+8, sig+2+12);
1427
1428 /* verify inception, expiration dates
1429 * Do this last so that if you ignore expired-sigs the
1430 * rest is sure to be OK. */
1431 if(!check_dates(ve, now, sig+2+8, sig+2+12, reason)) {
1432 return sec_status_bogus;
1433 }
1434 }
1435
1436 return sec;
1437 }