]> git.saurik.com Git - apple/network_cmds.git/blob - unbound/dns64/dns64.c
network_cmds-480.tar.gz
[apple/network_cmds.git] / unbound / dns64 / dns64.c
1 /*
2 * dns64/dns64.c - DNS64 module
3 *
4 * Copyright (c) 2009, Viagénie. All rights reserved.
5 *
6 * This software is open source.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * Redistributions of source code must retain the above copyright notice,
13 * this list of conditions and the following disclaimer.
14 *
15 * Redistributions in binary form must reproduce the above copyright notice,
16 * this list of conditions and the following disclaimer in the documentation
17 * and/or other materials provided with the distribution.
18 *
19 * Neither the name of Viagénie nor the names of its contributors may
20 * be used to endorse or promote products derived from this software without
21 * specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
24 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE
27 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /**
37 * \file
38 *
39 * This file contains a module that performs DNS64 query processing.
40 */
41
42 #include "config.h"
43 #include "dns64/dns64.h"
44 #include "services/cache/dns.h"
45 #include "services/cache/rrset.h"
46 #include "util/config_file.h"
47 #include "util/data/msgreply.h"
48 #include "util/fptr_wlist.h"
49 #include "util/net_help.h"
50 #include "util/regional.h"
51
52 /******************************************************************************
53 * *
54 * STATIC CONSTANTS *
55 * *
56 ******************************************************************************/
57
58 /**
59 * This is the default DNS64 prefix that is used whent he dns64 module is listed
60 * in module-config but when the dns64-prefix variable is not present.
61 */
62 static const char DEFAULT_DNS64_PREFIX[] = "64:ff9b::/96";
63
64 /**
65 * Maximum length of a domain name in a PTR query in the .in-addr.arpa tree.
66 */
67 #define MAX_PTR_QNAME_IPV4 30
68
69 /**
70 * Per-query module-specific state. This is usually a dynamically-allocated
71 * structure, but in our case we only need to store one variable describing the
72 * state the query is in. So we repurpose the minfo pointer by storing an
73 * integer in there.
74 */
75 enum dns64_qstate {
76 DNS64_INTERNAL_QUERY, /**< Internally-generated query, no DNS64
77 processing. */
78 DNS64_NEW_QUERY, /**< Query for which we're the first module in
79 line. */
80 DNS64_SUBQUERY_FINISHED /**< Query for which we generated a sub-query, and
81 for which this sub-query is finished. */
82 };
83
84
85 /******************************************************************************
86 * *
87 * STRUCTURES *
88 * *
89 ******************************************************************************/
90
91 /**
92 * This structure contains module configuration information. One instance of
93 * this structure exists per instance of the module. Normally there is only one
94 * instance of the module.
95 */
96 struct dns64_env {
97 /**
98 * DNS64 prefix address. We're using a full sockaddr instead of just an
99 * in6_addr because we can reuse Unbound's generic string parsing functions.
100 * It will always contain a sockaddr_in6, and only the sin6_addr member will
101 * ever be used.
102 */
103 struct sockaddr_storage prefix_addr;
104
105 /**
106 * This is always sizeof(sockaddr_in6).
107 */
108 socklen_t prefix_addrlen;
109
110 /**
111 * This is the CIDR length of the prefix. It needs to be between 0 and 96.
112 */
113 int prefix_net;
114 };
115
116
117 /******************************************************************************
118 * *
119 * UTILITY FUNCTIONS *
120 * *
121 ******************************************************************************/
122
123 /**
124 * Generic macro for swapping two variables.
125 *
126 * \param t Type of the variables. (e.g. int)
127 * \param a First variable.
128 * \param b Second variable.
129 *
130 * \warning Do not attempt something foolish such as swap(int,a++,b++)!
131 */
132 #define swap(t,a,b) do {t x = a; a = b; b = x;} while(0)
133
134 /**
135 * Reverses a string.
136 *
137 * \param begin Points to the first character of the string.
138 * \param end Points one past the last character of the string.
139 */
140 static void
141 reverse(char* begin, char* end)
142 {
143 while ( begin < --end ) {
144 swap(char, *begin, *end);
145 ++begin;
146 }
147 }
148
149 /**
150 * Convert an unsigned integer to a string. The point of this function is that
151 * of being faster than sprintf().
152 *
153 * \param n The number to be converted.
154 * \param s The result will be written here. Must be large enough, be careful!
155 *
156 * \return The number of characters written.
157 */
158 static int
159 uitoa(unsigned n, char* s)
160 {
161 char* ss = s;
162 do {
163 *ss++ = '0' + n % 10;
164 } while (n /= 10);
165 reverse(s, ss);
166 return ss - s;
167 }
168
169 /**
170 * Extract an IPv4 address embedded in the IPv6 address \a ipv6 at offset \a
171 * offset (in bits). Note that bits are not necessarily aligned on bytes so we
172 * need to be careful.
173 *
174 * \param ipv6 IPv6 address represented as a 128-bit array in big-endian
175 * order.
176 * \param offset Index of the MSB of the IPv4 address embedded in the IPv6
177 * address.
178 */
179 static uint32_t
180 extract_ipv4(const uint8_t ipv6[16], const int offset)
181 {
182 uint32_t ipv4 = (uint32_t)ipv6[offset/8+0] << (24 + (offset%8))
183 | (uint32_t)ipv6[offset/8+1] << (16 + (offset%8))
184 | (uint32_t)ipv6[offset/8+2] << ( 8 + (offset%8))
185 | (uint32_t)ipv6[offset/8+3] << ( 0 + (offset%8));
186 if (offset/8+4 < 16)
187 ipv4 |= (uint32_t)ipv6[offset/8+4] >> (8 - offset%8);
188 return ipv4;
189 }
190
191 /**
192 * Builds the PTR query name corresponding to an IPv4 address. For example,
193 * given the number 3,464,175,361, this will build the string
194 * "\03206\03123\0231\011\07in-addr\04arpa".
195 *
196 * \param ipv4 IPv4 address represented as an unsigned 32-bit number.
197 * \param ptr The result will be written here. Must be large enough, be
198 * careful!
199 *
200 * \return The number of characters written.
201 */
202 static size_t
203 ipv4_to_ptr(uint32_t ipv4, char ptr[MAX_PTR_QNAME_IPV4])
204 {
205 static const char IPV4_PTR_SUFFIX[] = "\07in-addr\04arpa";
206 int i;
207 char* c = ptr;
208
209 for (i = 0; i < 4; ++i) {
210 *c = uitoa((unsigned int)(ipv4 % 256), c + 1);
211 c += *c + 1;
212 ipv4 /= 256;
213 }
214
215 memmove(c, IPV4_PTR_SUFFIX, sizeof(IPV4_PTR_SUFFIX));
216
217 return c + sizeof(IPV4_PTR_SUFFIX) - ptr;
218 }
219
220 /**
221 * Converts an IPv6-related domain name string from a PTR query into an IPv6
222 * address represented as a 128-bit array.
223 *
224 * \param ptr The domain name. (e.g. "\011[...]\010\012\016\012\03ip6\04arpa")
225 * \param ipv6 The result will be written here, in network byte order.
226 *
227 * \return 1 on success, 0 on failure.
228 */
229 static int
230 ptr_to_ipv6(const char* ptr, uint8_t ipv6[16])
231 {
232 int i;
233
234 for (i = 0; i < 64; i++) {
235 int x;
236
237 if (ptr[i++] != 1)
238 return 0;
239
240 if (ptr[i] >= '0' && ptr[i] <= '9') {
241 x = ptr[i] - '0';
242 } else if (ptr[i] >= 'a' && ptr[i] <= 'f') {
243 x = ptr[i] - 'a' + 10;
244 } else if (ptr[i] >= 'A' && ptr[i] <= 'F') {
245 x = ptr[i] - 'A' + 10;
246 } else {
247 return 0;
248 }
249
250 ipv6[15-i/4] |= x << (2 * ((i-1) % 4));
251 }
252
253 return 1;
254 }
255
256 /**
257 * Synthesize an IPv6 address based on an IPv4 address and the DNS64 prefix.
258 *
259 * \param prefix_addr DNS64 prefix address.
260 * \param prefix_net CIDR length of the DNS64 prefix. Must be between 0 and 96.
261 * \param a IPv4 address.
262 * \param aaaa IPv6 address. The result will be written here.
263 */
264 static void
265 synthesize_aaaa(const uint8_t prefix_addr[16], int prefix_net,
266 const uint8_t a[4], uint8_t aaaa[16])
267 {
268 memcpy(aaaa, prefix_addr, 16);
269 aaaa[prefix_net/8+0] |= a[0] >> (0+prefix_net%8);
270 aaaa[prefix_net/8+1] |= a[0] << (8-prefix_net%8);
271 aaaa[prefix_net/8+1] |= a[1] >> (0+prefix_net%8);
272 aaaa[prefix_net/8+2] |= a[1] << (8-prefix_net%8);
273 aaaa[prefix_net/8+2] |= a[2] >> (0+prefix_net%8);
274 aaaa[prefix_net/8+3] |= a[2] << (8-prefix_net%8);
275 aaaa[prefix_net/8+3] |= a[3] >> (0+prefix_net%8);
276 if (prefix_net/8+4 < 16) /* <-- my beautiful symmetry is destroyed! */
277 aaaa[prefix_net/8+4] |= a[3] << (8-prefix_net%8);
278 }
279
280
281 /******************************************************************************
282 * *
283 * DNS64 MODULE FUNCTIONS *
284 * *
285 ******************************************************************************/
286
287 /**
288 * This function applies the configuration found in the parsed configuration
289 * file \a cfg to this instance of the dns64 module. Currently only the DNS64
290 * prefix (a.k.a. Pref64) is configurable.
291 *
292 * \param dns64_env Module-specific global parameters.
293 * \param cfg Parsed configuration file.
294 */
295 static int
296 dns64_apply_cfg(struct dns64_env* dns64_env, struct config_file* cfg)
297 {
298 verbose(VERB_ALGO, "dns64-prefix: %s", cfg->dns64_prefix);
299 if (!netblockstrtoaddr(cfg->dns64_prefix ? cfg->dns64_prefix :
300 DEFAULT_DNS64_PREFIX, 0, &dns64_env->prefix_addr,
301 &dns64_env->prefix_addrlen, &dns64_env->prefix_net)) {
302 log_err("cannot parse dns64-prefix netblock: %s", cfg->dns64_prefix);
303 return 0;
304 }
305 if (!addr_is_ip6(&dns64_env->prefix_addr, dns64_env->prefix_addrlen)) {
306 log_err("dns64_prefix is not IPv6: %s", cfg->dns64_prefix);
307 return 0;
308 }
309 if (dns64_env->prefix_net < 0 || dns64_env->prefix_net > 96) {
310 log_err("dns64-prefix length it not between 0 and 96: %s",
311 cfg->dns64_prefix);
312 return 0;
313 }
314 return 1;
315 }
316
317 /**
318 * Initializes this instance of the dns64 module.
319 *
320 * \param env Global state of all module instances.
321 * \param id This instance's ID number.
322 */
323 int
324 dns64_init(struct module_env* env, int id)
325 {
326 struct dns64_env* dns64_env =
327 (struct dns64_env*)calloc(1, sizeof(struct dns64_env));
328 if (!dns64_env) {
329 log_err("malloc failure");
330 return 0;
331 }
332 env->modinfo[id] = (void*)dns64_env;
333 if (!dns64_apply_cfg(dns64_env, env->cfg)) {
334 log_err("dns64: could not apply configuration settings.");
335 return 0;
336 }
337 return 1;
338 }
339
340 /**
341 * Deinitializes this instance of the dns64 module.
342 *
343 * \param env Global state of all module instances.
344 * \param id This instance's ID number.
345 */
346 void
347 dns64_deinit(struct module_env* env, int id)
348 {
349 if (!env)
350 return;
351 free(env->modinfo[id]);
352 env->modinfo[id] = NULL;
353 }
354
355 /**
356 * Handle PTR queries for IPv6 addresses. If the address belongs to the DNS64
357 * prefix, we must do a PTR query for the corresponding IPv4 address instead.
358 *
359 * \param qstate Query state structure.
360 * \param id This module instance's ID number.
361 *
362 * \return The new state of the query.
363 */
364 static enum module_ext_state
365 handle_ipv6_ptr(struct module_qstate* qstate, int id)
366 {
367 struct dns64_env* dns64_env = (struct dns64_env*)qstate->env->modinfo[id];
368 struct module_qstate* subq = NULL;
369 struct query_info qinfo;
370 struct sockaddr_in6 sin6;
371
372 /* Convert the PTR query string to an IPv6 address. */
373 memset(&sin6, 0, sizeof(sin6));
374 sin6.sin6_family = AF_INET6;
375 if (!ptr_to_ipv6((char*)qstate->qinfo.qname, sin6.sin6_addr.s6_addr))
376 return module_wait_module; /* Let other module handle this. */
377
378 /*
379 * If this IPv6 address is not part of our DNS64 prefix, then we don't need
380 * to do anything. Let another module handle the query.
381 */
382 if (addr_in_common((struct sockaddr_storage*)&sin6, 128,
383 &dns64_env->prefix_addr, dns64_env->prefix_net,
384 (socklen_t)sizeof(sin6)) != dns64_env->prefix_net)
385 return module_wait_module;
386
387 verbose(VERB_ALGO, "dns64: rewrite PTR record");
388
389 /*
390 * Create a new PTR query info for the domain name corresponding to the IPv4
391 * address corresponding to the IPv6 address corresponding to the original
392 * PTR query domain name.
393 */
394 qinfo = qstate->qinfo;
395 if (!(qinfo.qname = regional_alloc(qstate->region, MAX_PTR_QNAME_IPV4)))
396 return module_error;
397 qinfo.qname_len = ipv4_to_ptr(extract_ipv4(sin6.sin6_addr.s6_addr,
398 dns64_env->prefix_net), (char*)qinfo.qname);
399
400 /* Create the new sub-query. */
401 fptr_ok(fptr_whitelist_modenv_attach_sub(qstate->env->attach_sub));
402 if(!(*qstate->env->attach_sub)(qstate, &qinfo, qstate->query_flags, 0, 0,
403 &subq))
404 return module_error;
405 if (subq) {
406 subq->curmod = id;
407 subq->ext_state[id] = module_state_initial;
408 subq->minfo[id] = NULL;
409 }
410
411 return module_wait_subquery;
412 }
413
414 /** allocate (special) rrset keys, return 0 on error */
415 static int
416 repinfo_alloc_rrset_keys(struct reply_info* rep,
417 struct regional* region)
418 {
419 size_t i;
420 for(i=0; i<rep->rrset_count; i++) {
421 if(region) {
422 rep->rrsets[i] = (struct ub_packed_rrset_key*)
423 regional_alloc(region,
424 sizeof(struct ub_packed_rrset_key));
425 if(rep->rrsets[i]) {
426 memset(rep->rrsets[i], 0,
427 sizeof(struct ub_packed_rrset_key));
428 rep->rrsets[i]->entry.key = rep->rrsets[i];
429 }
430 }
431 else return 0;/* rep->rrsets[i] = alloc_special_obtain(alloc);*/
432 if(!rep->rrsets[i])
433 return 0;
434 rep->rrsets[i]->entry.data = NULL;
435 }
436 return 1;
437 }
438
439 static enum module_ext_state
440 generate_type_A_query(struct module_qstate* qstate, int id)
441 {
442 struct module_qstate* subq = NULL;
443 struct query_info qinfo;
444
445 verbose(VERB_ALGO, "dns64: query A record");
446
447 /* Create a new query info. */
448 qinfo = qstate->qinfo;
449 qinfo.qtype = LDNS_RR_TYPE_A;
450
451 /* Start the sub-query. */
452 fptr_ok(fptr_whitelist_modenv_attach_sub(qstate->env->attach_sub));
453 if(!(*qstate->env->attach_sub)(qstate, &qinfo, qstate->query_flags, 0,
454 0, &subq))
455 {
456 verbose(VERB_ALGO, "dns64: sub-query creation failed");
457 return module_error;
458 }
459 if (subq) {
460 subq->curmod = id;
461 subq->ext_state[id] = module_state_initial;
462 subq->minfo[id] = NULL;
463 }
464
465 return module_wait_subquery;
466 }
467
468 /**
469 * Handles the "pass" event for a query. This event is received when a new query
470 * is received by this module. The query may have been generated internally by
471 * another module, in which case we don't want to do any special processing
472 * (this is an interesting discussion topic), or it may be brand new, e.g.
473 * received over a socket, in which case we do want to apply DNS64 processing.
474 *
475 * \param qstate A structure representing the state of the query that has just
476 * received the "pass" event.
477 * \param id This module's instance ID.
478 *
479 * \return The new state of the query.
480 */
481 static enum module_ext_state
482 handle_event_pass(struct module_qstate* qstate, int id)
483 {
484 if ((uintptr_t)qstate->minfo[id] == DNS64_NEW_QUERY
485 && qstate->qinfo.qtype == LDNS_RR_TYPE_PTR
486 && qstate->qinfo.qname_len == 74
487 && !strcmp((char*)&qstate->qinfo.qname[64], "\03ip6\04arpa"))
488 /* Handle PTR queries for IPv6 addresses. */
489 return handle_ipv6_ptr(qstate, id);
490
491 if (qstate->env->cfg->dns64_synthall &&
492 (uintptr_t)qstate->minfo[id] == DNS64_NEW_QUERY
493 && qstate->qinfo.qtype == LDNS_RR_TYPE_AAAA)
494 return generate_type_A_query(qstate, id);
495
496 /* We are finished when our sub-query is finished. */
497 if ((uintptr_t)qstate->minfo[id] == DNS64_SUBQUERY_FINISHED)
498 return module_finished;
499
500 /* Otherwise, pass request to next module. */
501 verbose(VERB_ALGO, "dns64: pass to next module");
502 return module_wait_module;
503 }
504
505 /**
506 * Handles the "done" event for a query. We need to analyze the response and
507 * maybe issue a new sub-query for the A record.
508 *
509 * \param qstate A structure representing the state of the query that has just
510 * received the "pass" event.
511 * \param id This module's instance ID.
512 *
513 * \return The new state of the query.
514 */
515 static enum module_ext_state
516 handle_event_moddone(struct module_qstate* qstate, int id)
517 {
518 /*
519 * In many cases we have nothing special to do. From most to least common:
520 *
521 * - An internal query.
522 * - A query for a record type other than AAAA.
523 * - CD FLAG was set on querier
524 * - An AAAA query for which an error was returned.
525 * - A successful AAAA query with an answer.
526 */
527 if ( (enum dns64_qstate)qstate->minfo[id] == DNS64_INTERNAL_QUERY
528 || qstate->qinfo.qtype != LDNS_RR_TYPE_AAAA
529 || (qstate->query_flags & BIT_CD)
530 || qstate->return_rcode != LDNS_RCODE_NOERROR
531 || (qstate->return_msg &&
532 qstate->return_msg->rep &&
533 reply_find_answer_rrset(&qstate->qinfo,
534 qstate->return_msg->rep)))
535 return module_finished;
536
537 /* So, this is a AAAA noerror/nodata answer */
538 return generate_type_A_query(qstate, id);
539 }
540
541 /**
542 * This is the module's main() function. It gets called each time a query
543 * receives an event which we may need to handle. We respond by updating the
544 * state of the query.
545 *
546 * \param qstate Structure containing the state of the query.
547 * \param event Event that has just been received.
548 * \param id This module's instance ID.
549 * \param outbound State of a DNS query on an authoritative server. We never do
550 * our own queries ourselves (other modules do it for us), so
551 * this is unused.
552 */
553 void
554 dns64_operate(struct module_qstate* qstate, enum module_ev event, int id,
555 struct outbound_entry* outbound)
556 {
557 (void)outbound;
558 verbose(VERB_QUERY, "dns64[module %d] operate: extstate:%s event:%s",
559 id, strextstate(qstate->ext_state[id]),
560 strmodulevent(event));
561 log_query_info(VERB_QUERY, "dns64 operate: query", &qstate->qinfo);
562
563 switch(event) {
564 case module_event_new:
565 /* Tag this query as being new and fall through. */
566 qstate->minfo[id] = (void*)DNS64_NEW_QUERY;
567 case module_event_pass:
568 qstate->ext_state[id] = handle_event_pass(qstate, id);
569 break;
570 case module_event_moddone:
571 qstate->ext_state[id] = handle_event_moddone(qstate, id);
572 break;
573 default:
574 qstate->ext_state[id] = module_finished;
575 break;
576 }
577 }
578
579 static void
580 dns64_synth_aaaa_data(const struct ub_packed_rrset_key* fk,
581 const struct packed_rrset_data* fd,
582 struct ub_packed_rrset_key *dk,
583 struct packed_rrset_data **dd_out, struct regional *region,
584 struct dns64_env* dns64_env )
585 {
586 struct packed_rrset_data *dd;
587 size_t i;
588 /*
589 * Create synthesized AAAA RR set data. We need to allocated extra memory
590 * for the RRs themselves. Each RR has a length, TTL, pointer to wireformat
591 * data, 2 bytes of data length, and 16 bytes of IPv6 address.
592 */
593 if (!(dd = *dd_out = regional_alloc(region,
594 sizeof(struct packed_rrset_data)
595 + fd->count * (sizeof(size_t) + sizeof(time_t) +
596 sizeof(uint8_t*) + 2 + 16)))) {
597 log_err("out of memory");
598 return;
599 }
600
601 /* Copy attributes from A RR set. */
602 dd->ttl = fd->ttl;
603 dd->count = fd->count;
604 dd->rrsig_count = 0;
605 dd->trust = fd->trust;
606 dd->security = fd->security;
607
608 /*
609 * Synthesize AAAA records. Adjust pointers in structure.
610 */
611 dd->rr_len =
612 (size_t*)((uint8_t*)dd + sizeof(struct packed_rrset_data));
613 dd->rr_data = (uint8_t**)&dd->rr_len[dd->count];
614 dd->rr_ttl = (time_t*)&dd->rr_data[dd->count];
615 for(i = 0; i < fd->count; ++i) {
616 if (fd->rr_len[i] != 6 || fd->rr_data[i][0] != 0
617 || fd->rr_data[i][1] != 4)
618 return;
619 dd->rr_len[i] = 18;
620 dd->rr_data[i] =
621 (uint8_t*)&dd->rr_ttl[dd->count] + 18*i;
622 dd->rr_data[i][0] = 0;
623 dd->rr_data[i][1] = 16;
624 synthesize_aaaa(
625 ((struct sockaddr_in6*)&dns64_env->prefix_addr)->sin6_addr.s6_addr,
626 dns64_env->prefix_net, &fd->rr_data[i][2],
627 &dd->rr_data[i][2] );
628 dd->rr_ttl[i] = fd->rr_ttl[i];
629 }
630
631 /*
632 * Create synthesized AAAA RR set key. This is mostly just bookkeeping,
633 * nothing interesting here.
634 */
635 if(!dk) {
636 log_err("no key");
637 return;
638 }
639
640 dk->rk.dname = (uint8_t*)regional_alloc_init(region,
641 fk->rk.dname, fk->rk.dname_len);
642
643 if(!dk->rk.dname) {
644 log_err("out of memory");
645 return;
646 }
647
648 dk->rk.type = htons(LDNS_RR_TYPE_AAAA);
649 memset(&dk->entry, 0, sizeof(dk->entry));
650 dk->entry.key = dk;
651 dk->entry.hash = rrset_key_hash(&dk->rk);
652 dk->entry.data = dd;
653
654 }
655
656 /**
657 * Synthesize an AAAA RR set from an A sub-query's answer and add it to the
658 * original empty response.
659 *
660 * \param id This module's instance ID.
661 * \param super Original AAAA query.
662 * \param qstate A query.
663 */
664 static void
665 dns64_adjust_a(int id, struct module_qstate* super, struct module_qstate* qstate)
666 {
667 struct dns64_env* dns64_env = (struct dns64_env*)super->env->modinfo[id];
668 struct reply_info *rep, *cp;
669 size_t i, s;
670 struct packed_rrset_data* fd, *dd;
671 struct ub_packed_rrset_key* fk, *dk;
672
673 verbose(VERB_ALGO, "converting A answers to AAAA answers");
674
675 log_assert(super->region);
676 log_assert(qstate->return_msg);
677 log_assert(qstate->return_msg->rep);
678
679 /* If dns64-synthall is enabled, return_msg is not initialized */
680 if(!super->return_msg) {
681 super->return_msg = (struct dns_msg*)regional_alloc(
682 super->region, sizeof(struct dns_msg));
683 if(!super->return_msg)
684 return;
685 memset(super->return_msg, 0, sizeof(*super->return_msg));
686 super->return_msg->qinfo = super->qinfo;
687 }
688
689 rep = qstate->return_msg->rep;
690
691 /*
692 * Build the actual reply.
693 */
694 cp = construct_reply_info_base(super->region, rep->flags, rep->qdcount,
695 rep->ttl, rep->prefetch_ttl, rep->an_numrrsets, rep->ns_numrrsets,
696 rep->ar_numrrsets, rep->rrset_count, rep->security);
697 if(!cp)
698 return;
699
700 /* allocate ub_key structures special or not */
701 if(!repinfo_alloc_rrset_keys(cp, super->region)) {
702 return;
703 }
704
705 /* copy everything and replace A by AAAA */
706 for(i=0; i<cp->rrset_count; i++) {
707 fk = rep->rrsets[i];
708 dk = cp->rrsets[i];
709 fd = (struct packed_rrset_data*)fk->entry.data;
710 dk->rk = fk->rk;
711 dk->id = fk->id;
712
713 if(i<rep->an_numrrsets && fk->rk.type == htons(LDNS_RR_TYPE_A)) {
714 /* also sets dk->entry.hash */
715 dns64_synth_aaaa_data(fk, fd, dk, &dd, super->region, dns64_env);
716 /* Delete negative AAAA record from cache stored by
717 * the iterator module */
718 rrset_cache_remove(super->env->rrset_cache, dk->rk.dname,
719 dk->rk.dname_len, LDNS_RR_TYPE_AAAA,
720 LDNS_RR_CLASS_IN, 0);
721 } else {
722 dk->entry.hash = fk->entry.hash;
723 dk->rk.dname = (uint8_t*)regional_alloc_init(super->region,
724 fk->rk.dname, fk->rk.dname_len);
725
726 if(!dk->rk.dname)
727 return;
728
729 s = packed_rrset_sizeof(fd);
730 dd = (struct packed_rrset_data*)regional_alloc_init(
731 super->region, fd, s);
732
733 if(!dd)
734 return;
735 }
736
737 packed_rrset_ptr_fixup(dd);
738 dk->entry.data = (void*)dd;
739 }
740
741 /* Commit changes. */
742 super->return_msg->rep = cp;
743 }
744
745 /**
746 * Generate a response for the original IPv6 PTR query based on an IPv4 PTR
747 * sub-query's response.
748 *
749 * \param qstate IPv4 PTR sub-query.
750 * \param super Original IPv6 PTR query.
751 */
752 static void
753 dns64_adjust_ptr(struct module_qstate* qstate, struct module_qstate* super)
754 {
755 struct ub_packed_rrset_key* answer;
756
757 verbose(VERB_ALGO, "adjusting PTR reply");
758
759 /* Copy the sub-query's reply to the parent. */
760 if (!(super->return_msg = (struct dns_msg*)regional_alloc(super->region,
761 sizeof(struct dns_msg))))
762 return;
763 super->return_msg->qinfo = super->qinfo;
764 super->return_msg->rep = reply_info_copy(qstate->return_msg->rep, NULL,
765 super->region);
766
767 /*
768 * Adjust the domain name of the answer RR set so that it matches the
769 * initial query's domain name.
770 */
771 answer = reply_find_answer_rrset(&qstate->qinfo, super->return_msg->rep);
772 log_assert(answer);
773 answer->rk.dname = super->qinfo.qname;
774 answer->rk.dname_len = super->qinfo.qname_len;
775 }
776
777 /**
778 * This function is called when a sub-query finishes to inform the parent query.
779 *
780 * We issue two kinds of sub-queries: PTR and A.
781 *
782 * \param qstate State of the sub-query.
783 * \param id This module's instance ID.
784 * \param super State of the super-query.
785 */
786 void
787 dns64_inform_super(struct module_qstate* qstate, int id,
788 struct module_qstate* super)
789 {
790 log_query_info(VERB_ALGO, "dns64: inform_super, sub is",
791 &qstate->qinfo);
792 log_query_info(VERB_ALGO, "super is", &super->qinfo);
793
794 /*
795 * Signal that the sub-query is finished, no matter whether we are
796 * successful or not. This lets the state machine terminate.
797 */
798 super->minfo[id] = (void*)DNS64_SUBQUERY_FINISHED;
799
800 /* If there is no successful answer, we're done. */
801 if (qstate->return_rcode != LDNS_RCODE_NOERROR
802 || !qstate->return_msg
803 || !qstate->return_msg->rep
804 || !reply_find_answer_rrset(&qstate->qinfo,
805 qstate->return_msg->rep))
806 return;
807
808 /* Generate a response suitable for the original query. */
809 if (qstate->qinfo.qtype == LDNS_RR_TYPE_A) {
810 dns64_adjust_a(id, super, qstate);
811 } else {
812 log_assert(qstate->qinfo.qtype == LDNS_RR_TYPE_PTR);
813 dns64_adjust_ptr(qstate, super);
814 }
815
816 /* Store the generated response in cache. */
817 if (!dns_cache_store(super->env, &super->qinfo, super->return_msg->rep,
818 0, 0, 0, NULL, super->query_flags))
819 log_err("out of memory");
820 }
821
822 /**
823 * Clear module-specific data from query state. Since we do not allocate memory,
824 * it's just a matter of setting a pointer to NULL.
825 *
826 * \param qstate Query state.
827 * \param id This module's instance ID.
828 */
829 void
830 dns64_clear(struct module_qstate* qstate, int id)
831 {
832 qstate->minfo[id] = NULL;
833 }
834
835 /**
836 * Returns the amount of global memory that this module uses, not including
837 * per-query data.
838 *
839 * \param env Module environment.
840 * \param id This module's instance ID.
841 */
842 size_t
843 dns64_get_mem(struct module_env* env, int id)
844 {
845 struct dns64_env* dns64_env = (struct dns64_env*)env->modinfo[id];
846 if (!dns64_env)
847 return 0;
848 return sizeof(*dns64_env);
849 }
850
851 /**
852 * The dns64 function block.
853 */
854 static struct module_func_block dns64_block = {
855 "dns64",
856 &dns64_init, &dns64_deinit, &dns64_operate, &dns64_inform_super,
857 &dns64_clear, &dns64_get_mem
858 };
859
860 /**
861 * Function for returning the above function block.
862 */
863 struct module_func_block *
864 dns64_get_funcblock()
865 {
866 return &dns64_block;
867 }