]> git.saurik.com Git - apple/mdnsresponder.git/blob - mDNSCore/DNSCommon.c
mDNSResponder-878.240.1.tar.gz
[apple/mdnsresponder.git] / mDNSCore / DNSCommon.c
1 /* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2018 Apple Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 // Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
19 #define mDNS_InstantiateInlines 1
20 #include "DNSCommon.h"
21 #include "CryptoAlg.h"
22 #include "anonymous.h"
23
24 #ifdef UNIT_TEST
25 #include "unittest.h"
26 #endif
27
28 // Disable certain benign warnings with Microsoft compilers
29 #if (defined(_MSC_VER))
30 // Disable "conditional expression is constant" warning for debug macros.
31 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
32 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
33 #pragma warning(disable:4127)
34 // Disable "array is too small to include a terminating null character" warning
35 // -- domain labels have an initial length byte, not a terminating null character
36 #pragma warning(disable:4295)
37 #endif
38
39 // ***************************************************************************
40 #if COMPILER_LIKES_PRAGMA_MARK
41 #pragma mark - Program Constants
42 #endif
43
44 mDNSexport const mDNSInterfaceID mDNSInterface_Any = 0;
45 mDNSexport const mDNSInterfaceID mDNSInterfaceMark = (mDNSInterfaceID)-1;
46 mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
47 mDNSexport const mDNSInterfaceID mDNSInterface_Unicast = (mDNSInterfaceID)-3;
48 mDNSexport const mDNSInterfaceID mDNSInterface_P2P = (mDNSInterfaceID)-4;
49 mDNSexport const mDNSInterfaceID uDNSInterfaceMark = (mDNSInterfaceID)-5;
50 mDNSexport const mDNSInterfaceID mDNSInterface_BLE = (mDNSInterfaceID)-6;
51
52 // Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
53 // Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
54 // port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
55 // LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
56 // Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
57 // with Microsoft's LLMNR client code.
58
59 #define DiscardPortAsNumber 9
60 #define SSHPortAsNumber 22
61 #define UnicastDNSPortAsNumber 53
62 #define SSDPPortAsNumber 1900
63 #define IPSECPortAsNumber 4500
64 #define NSIPCPortAsNumber 5030 // Port used for dnsextd to talk to local nameserver bound to loopback
65 #define NATPMPAnnouncementPortAsNumber 5350
66 #define NATPMPPortAsNumber 5351
67 #define DNSEXTPortAsNumber 5352 // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
68 #define MulticastDNSPortAsNumber 5353
69 #define LoopbackIPCPortAsNumber 5354
70 //#define MulticastDNSPortAsNumber 5355 // LLMNR
71 #define PrivateDNSPortAsNumber 5533
72
73 mDNSexport const mDNSIPPort DiscardPort = { { DiscardPortAsNumber >> 8, DiscardPortAsNumber & 0xFF } };
74 mDNSexport const mDNSIPPort SSHPort = { { SSHPortAsNumber >> 8, SSHPortAsNumber & 0xFF } };
75 mDNSexport const mDNSIPPort UnicastDNSPort = { { UnicastDNSPortAsNumber >> 8, UnicastDNSPortAsNumber & 0xFF } };
76 mDNSexport const mDNSIPPort SSDPPort = { { SSDPPortAsNumber >> 8, SSDPPortAsNumber & 0xFF } };
77 mDNSexport const mDNSIPPort IPSECPort = { { IPSECPortAsNumber >> 8, IPSECPortAsNumber & 0xFF } };
78 mDNSexport const mDNSIPPort NSIPCPort = { { NSIPCPortAsNumber >> 8, NSIPCPortAsNumber & 0xFF } };
79 mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
80 mDNSexport const mDNSIPPort NATPMPPort = { { NATPMPPortAsNumber >> 8, NATPMPPortAsNumber & 0xFF } };
81 mDNSexport const mDNSIPPort DNSEXTPort = { { DNSEXTPortAsNumber >> 8, DNSEXTPortAsNumber & 0xFF } };
82 mDNSexport const mDNSIPPort MulticastDNSPort = { { MulticastDNSPortAsNumber >> 8, MulticastDNSPortAsNumber & 0xFF } };
83 mDNSexport const mDNSIPPort LoopbackIPCPort = { { LoopbackIPCPortAsNumber >> 8, LoopbackIPCPortAsNumber & 0xFF } };
84 mDNSexport const mDNSIPPort PrivateDNSPort = { { PrivateDNSPortAsNumber >> 8, PrivateDNSPortAsNumber & 0xFF } };
85
86 mDNSexport const OwnerOptData zeroOwner = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
87
88 mDNSexport const mDNSIPPort zeroIPPort = { { 0 } };
89 mDNSexport const mDNSv4Addr zerov4Addr = { { 0 } };
90 mDNSexport const mDNSv6Addr zerov6Addr = { { 0 } };
91 mDNSexport const mDNSEthAddr zeroEthAddr = { { 0 } };
92 mDNSexport const mDNSv4Addr onesIPv4Addr = { { 255, 255, 255, 255 } };
93 mDNSexport const mDNSv6Addr onesIPv6Addr = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
94 mDNSexport const mDNSEthAddr onesEthAddr = { { 255, 255, 255, 255, 255, 255 } };
95 mDNSexport const mDNSAddr zeroAddr = { mDNSAddrType_None, {{{ 0 }}} };
96
97 mDNSexport const mDNSv4Addr AllDNSAdminGroup = { { 239, 255, 255, 251 } };
98 mDNSexport const mDNSv4Addr AllHosts_v4 = { { 224, 0, 0, 1 } }; // For NAT-PMP & PCP Annoucements
99 mDNSexport const mDNSv6Addr AllHosts_v6 = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
100 mDNSexport const mDNSv6Addr NDP_prefix = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } }; // FF02:0:0:0:0:1:FF00::/104
101 mDNSexport const mDNSEthAddr AllHosts_v6_Eth = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
102 mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 251 } } } };
103 //mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 252 } } } }; // LLMNR
104 mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
105 //mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
106
107 mDNSexport const mDNSOpaque16 zeroID = { { 0, 0 } };
108 mDNSexport const mDNSOpaque16 onesID = { { 255, 255 } };
109 mDNSexport const mDNSOpaque16 QueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery, 0 } };
110 mDNSexport const mDNSOpaque16 uQueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
111 mDNSexport const mDNSOpaque16 DNSSecQFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, kDNSFlag1_CD } };
112 mDNSexport const mDNSOpaque16 ResponseFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
113 mDNSexport const mDNSOpaque16 UpdateReqFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_Update, 0 } };
114 mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update, 0 } };
115 mDNSexport const mDNSOpaque16 SubscribeFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_Subscribe, 0 } };
116 mDNSexport const mDNSOpaque16 UnSubscribeFlags= { { kDNSFlag0_QR_Query | kDNSFlag0_OP_UnSubscribe, 0 } };
117
118 mDNSexport const mDNSOpaque64 zeroOpaque64 = { { 0 } };
119 mDNSexport const mDNSOpaque128 zeroOpaque128 = { { 0 } };
120
121 // ***************************************************************************
122 #if COMPILER_LIKES_PRAGMA_MARK
123 #pragma mark -
124 #pragma mark - General Utility Functions
125 #endif
126
127 // return true for RFC1918 private addresses
128 mDNSexport mDNSBool mDNSv4AddrIsRFC1918(const mDNSv4Addr * const addr)
129 {
130 return ((addr->b[0] == 10) || // 10/8 prefix
131 (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) || // 172.16/12
132 (addr->b[0] == 192 && addr->b[1] == 168)); // 192.168/16
133 }
134
135 mDNSexport void mDNSAddrMapIPv4toIPv6(mDNSv4Addr* in, mDNSv6Addr* out)
136 {
137 out->l[0] = 0;
138 out->l[1] = 0;
139 out->w[4] = 0;
140 out->w[5] = 0xffff;
141 out->b[12] = in->b[0];
142 out->b[13] = in->b[1];
143 out->b[14] = in->b[2];
144 out->b[15] = in->b[3];
145 }
146
147 mDNSexport mDNSBool mDNSAddrIPv4FromMappedIPv6(mDNSv6Addr *in, mDNSv4Addr* out)
148 {
149 if (in->l[0] != 0 || in->l[1] != 0 || in->w[4] != 0 || in->w[5] != 0xffff)
150 return mDNSfalse;
151
152 out->NotAnInteger = in->l[3];
153 return mDNStrue;
154 }
155
156 mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
157 {
158 while (intf && !intf->InterfaceActive) intf = intf->next;
159 return(intf);
160 }
161
162 mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
163 {
164 const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
165 if (next) return(next->InterfaceID);else return(mDNSNULL);
166 }
167
168 mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
169 {
170 mDNSu32 slot, used = 0;
171 CacheGroup *cg;
172 const CacheRecord *rr;
173 FORALL_CACHERECORDS(slot, cg, rr)
174 {
175 if (rr->resrec.InterfaceID == id)
176 used++;
177 }
178 return(used);
179 }
180
181 mDNSexport char *DNSTypeName(mDNSu16 rrtype)
182 {
183 switch (rrtype)
184 {
185 case kDNSType_A: return("Addr");
186 case kDNSType_NS: return("NS");
187 case kDNSType_CNAME: return("CNAME");
188 case kDNSType_SOA: return("SOA");
189 case kDNSType_NULL: return("NULL");
190 case kDNSType_PTR: return("PTR");
191 case kDNSType_HINFO: return("HINFO");
192 case kDNSType_TXT: return("TXT");
193 case kDNSType_AAAA: return("AAAA");
194 case kDNSType_SRV: return("SRV");
195 case kDNSType_OPT: return("OPT");
196 case kDNSType_NSEC: return("NSEC");
197 case kDNSType_NSEC3: return("NSEC3");
198 case kDNSType_NSEC3PARAM: return("NSEC3PARAM");
199 case kDNSType_TSIG: return("TSIG");
200 case kDNSType_RRSIG: return("RRSIG");
201 case kDNSType_DNSKEY: return("DNSKEY");
202 case kDNSType_DS: return("DS");
203 case kDNSQType_ANY: return("ANY");
204 default: {
205 static char buffer[16];
206 mDNS_snprintf(buffer, sizeof(buffer), "TYPE%d", rrtype);
207 return(buffer);
208 }
209 }
210 }
211
212 mDNSlocal char *DNSSECAlgName(mDNSu8 alg)
213 {
214 switch (alg)
215 {
216 case CRYPTO_RSA_SHA1: return "RSA_SHA1";
217 case CRYPTO_DSA_NSEC3_SHA1: return "DSA_NSEC3_SHA1";
218 case CRYPTO_RSA_NSEC3_SHA1: return "RSA_NSEC3_SHA1";
219 case CRYPTO_RSA_SHA256: return "RSA_SHA256";
220 case CRYPTO_RSA_SHA512: return "RSA_SHA512";
221 default: {
222 static char algbuffer[16];
223 mDNS_snprintf(algbuffer, sizeof(algbuffer), "ALG%d", alg);
224 return(algbuffer);
225 }
226 }
227 }
228
229 mDNSlocal char *DNSSECDigestName(mDNSu8 digest)
230 {
231 switch (digest)
232 {
233 case SHA1_DIGEST_TYPE: return "SHA1";
234 case SHA256_DIGEST_TYPE: return "SHA256";
235 default:
236 {
237 static char digbuffer[16];
238 mDNS_snprintf(digbuffer, sizeof(digbuffer), "DIG%d", digest);
239 return(digbuffer);
240 }
241 }
242 }
243
244 mDNSexport mDNSu32 swap32(mDNSu32 x)
245 {
246 mDNSu8 *ptr = (mDNSu8 *)&x;
247 return (mDNSu32)((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
248 }
249
250 mDNSexport mDNSu16 swap16(mDNSu16 x)
251 {
252 mDNSu8 *ptr = (mDNSu8 *)&x;
253 return (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
254 }
255
256 // RFC 4034 Appendix B: Get the keyid of a DNS KEY. It is not transmitted
257 // explicitly on the wire.
258 //
259 // Note: This just helps narrow down the list of keys to look at. It is possible
260 // for two DNS keys to have the same ID i.e., key ID is not a unqiue tag. We ignore
261 // MD5 keys.
262 //
263 // 1st argument - the RDATA part of the DNSKEY RR
264 // 2nd argument - the RDLENGTH
265 //
266 mDNSlocal mDNSu32 keytag(mDNSu8 *key, mDNSu32 keysize)
267 {
268 unsigned long ac;
269 unsigned int i;
270
271 for (ac = 0, i = 0; i < keysize; ++i)
272 ac += (i & 1) ? key[i] : key[i] << 8;
273 ac += (ac >> 16) & 0xFFFF;
274 return ac & 0xFFFF;
275 }
276
277 mDNSexport int baseEncode(char *buffer, int blen, const mDNSu8 *data, int len, int encAlg)
278 {
279 AlgContext *ctx;
280 mDNSu8 *outputBuffer;
281 int length;
282
283 ctx = AlgCreate(ENC_ALG, encAlg);
284 if (!ctx)
285 {
286 LogMsg("baseEncode: AlgCreate failed\n");
287 return 0;
288 }
289 AlgAdd(ctx, data, len);
290 outputBuffer = AlgEncode(ctx);
291 length = 0;
292 if (outputBuffer)
293 {
294 // Note: don't include any spaces in the format string below. This
295 // is also used by NSEC3 code for proving non-existence where it
296 // needs the base32 encoding without any spaces etc.
297 length = mDNS_snprintf(buffer, blen, "%s", outputBuffer);
298 }
299 AlgDestroy(ctx);
300 return length;
301 }
302
303 mDNSlocal void PrintTypeBitmap(const mDNSu8 *bmap, int bitmaplen, char *const buffer, mDNSu32 length)
304 {
305 int win, wlen, type;
306
307 while (bitmaplen > 0)
308 {
309 int i;
310
311 if (bitmaplen < 3)
312 {
313 LogMsg("PrintTypeBitmap: malformed bitmap, bitmaplen %d short", bitmaplen);
314 break;
315 }
316
317 win = *bmap++;
318 wlen = *bmap++;
319 bitmaplen -= 2;
320 if (bitmaplen < wlen || wlen < 1 || wlen > 32)
321 {
322 LogInfo("PrintTypeBitmap: malformed nsec, bitmaplen %d wlen %d", bitmaplen, wlen);
323 break;
324 }
325 if (win < 0 || win >= 256)
326 {
327 LogInfo("PrintTypeBitmap: malformed nsec, bad window win %d", win);
328 break;
329 }
330 type = win * 256;
331 for (i = 0; i < wlen * 8; i++)
332 {
333 if (bmap[i>>3] & (128 >> (i&7)))
334 length += mDNS_snprintf(buffer+length, (MaxMsg - 1) - length, "%s ", DNSTypeName(type + i));
335 }
336 bmap += wlen;
337 bitmaplen -= wlen;
338 }
339 }
340
341 // Parse the fields beyond the base header. NSEC3 should have been validated.
342 mDNSexport void NSEC3Parse(const ResourceRecord *const rr, mDNSu8 **salt, int *hashLength, mDNSu8 **nxtName, int *bitmaplen, mDNSu8 **bitmap)
343 {
344 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
345 rdataNSEC3 *nsec3 = (rdataNSEC3 *)rdb->data;
346 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
347 int hlen;
348
349 if (salt)
350 {
351 if (nsec3->saltLength)
352 *salt = p;
353 else
354 *salt = mDNSNULL;
355 }
356 p += nsec3->saltLength;
357 // p is pointing at hashLength
358 hlen = (int)*p;
359 if (hashLength)
360 *hashLength = hlen;
361 p++;
362 if (nxtName)
363 *nxtName = p;
364 p += hlen;
365 if (bitmaplen)
366 *bitmaplen = rr->rdlength - (int)(p - rdb->data);
367 if (bitmap)
368 *bitmap = p;
369 }
370
371 // Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
372 // the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
373 // long as this routine is only used for debugging messages, it probably isn't a big problem.
374 mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
375 {
376 const RDataBody2 *const rd = (RDataBody2 *)rd1;
377 #define RemSpc (MaxMsg-1-length)
378 char *ptr = buffer;
379 mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
380 if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
381 if (!rr->rdlength && rr->rrtype != kDNSType_OPT) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
382
383 switch (rr->rrtype)
384 {
385 case kDNSType_A: mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4); break;
386
387 case kDNSType_NS: // Same as PTR
388 case kDNSType_CNAME: // Same as PTR
389 case kDNSType_PTR: mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c); break;
390
391 case kDNSType_SOA: mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
392 rd->soa.mname.c, rd->soa.rname.c,
393 rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
394 break;
395
396 case kDNSType_HINFO: // Display this the same as TXT (show all constituent strings)
397 case kDNSType_TXT: {
398 const mDNSu8 *t = rd->txt.c;
399 while (t < rd->txt.c + rr->rdlength)
400 {
401 length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "¦" : "", t);
402 t += 1 + t[0];
403 }
404 } break;
405
406 case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6); break;
407 case kDNSType_SRV: mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
408 rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
409
410 case kDNSType_OPT: {
411 const rdataOPT *opt;
412 const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
413 length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
414 for (opt = &rd->opt[0]; opt < end; opt++)
415 {
416 switch(opt->opt)
417 {
418 case kDNSOpt_LLQ:
419 length += mDNS_snprintf(buffer+length, RemSpc, " LLQ");
420 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.llq.vers);
421 length += mDNS_snprintf(buffer+length, RemSpc, " Op %d", opt->u.llq.llqOp);
422 length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
423 length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
424 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.llq.llqlease);
425 break;
426 case kDNSOpt_Lease:
427 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.updatelease);
428 break;
429 case kDNSOpt_Owner:
430 length += mDNS_snprintf(buffer+length, RemSpc, " Owner");
431 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.owner.vers);
432 length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq); // Display as unsigned
433 length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a", opt->u.owner.HMAC.b);
434 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
435 {
436 length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
437 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
438 length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
439 }
440 break;
441 case kDNSOpt_Trace:
442 length += mDNS_snprintf(buffer+length, RemSpc, " Trace");
443 length += mDNS_snprintf(buffer+length, RemSpc, " Platform %d", opt->u.tracer.platf);
444 length += mDNS_snprintf(buffer+length, RemSpc, " mDNSVers %d", opt->u.tracer.mDNSv);
445 break;
446 default:
447 length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d", opt->opt);
448 break;
449 }
450 }
451 }
452 break;
453
454 case kDNSType_NSEC: {
455 domainname *next = (domainname *)rd->data;
456 int len, bitmaplen;
457 mDNSu8 *bmap;
458 len = DomainNameLength(next);
459 bitmaplen = rr->rdlength - len;
460 bmap = (mDNSu8 *)((mDNSu8 *)next + len);
461
462 if (UNICAST_NSEC(rr))
463 length += mDNS_snprintf(buffer+length, RemSpc, "%##s ", next->c);
464 PrintTypeBitmap(bmap, bitmaplen, buffer, length);
465
466 }
467 break;
468 case kDNSType_NSEC3: {
469 rdataNSEC3 *nsec3 = (rdataNSEC3 *)rd->data;
470 const mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
471 int hashLength, bitmaplen, i;
472
473 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s %d %d ",
474 DNSSECDigestName(nsec3->alg), nsec3->flags, swap16(nsec3->iterations));
475
476 if (!nsec3->saltLength)
477 {
478 length += mDNS_snprintf(buffer+length, RemSpc, "-");
479 }
480 else
481 {
482 for (i = 0; i < nsec3->saltLength; i++)
483 {
484 length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
485 }
486 }
487
488 // put a space at the end
489 length += mDNS_snprintf(buffer+length, RemSpc, " ");
490
491 p += nsec3->saltLength;
492 // p is pointing at hashLength
493 hashLength = (int)*p++;
494
495 length += baseEncode(buffer + length, RemSpc, p, hashLength, ENC_BASE32);
496
497 // put a space at the end
498 length += mDNS_snprintf(buffer+length, RemSpc, " ");
499
500 p += hashLength;
501 bitmaplen = rr->rdlength - (int)(p - rd->data);
502 PrintTypeBitmap(p, bitmaplen, buffer, length);
503 }
504 break;
505 case kDNSType_RRSIG: {
506 rdataRRSig *rrsig = (rdataRRSig *)rd->data;
507 mDNSu8 expTimeBuf[64];
508 mDNSu8 inceptTimeBuf[64];
509 unsigned long inceptClock;
510 unsigned long expClock;
511 int len;
512
513 expClock = (unsigned long)swap32(rrsig->sigExpireTime);
514 mDNSPlatformFormatTime(expClock, expTimeBuf, sizeof(expTimeBuf));
515
516 inceptClock = (unsigned long)swap32(rrsig->sigInceptTime);
517 mDNSPlatformFormatTime(inceptClock, inceptTimeBuf, sizeof(inceptTimeBuf));
518
519 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s %s %d %d %s %s %d %##s ",
520 DNSTypeName(swap16(rrsig->typeCovered)), DNSSECAlgName(rrsig->alg), rrsig->labels, swap32(rrsig->origTTL),
521 expTimeBuf, inceptTimeBuf, swap16(rrsig->keyTag), rrsig->signerName);
522
523 len = DomainNameLength((domainname *)&rrsig->signerName);
524 baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + len + RRSIG_FIXED_SIZE),
525 rr->rdlength - (len + RRSIG_FIXED_SIZE), ENC_BASE64);
526 }
527 break;
528 case kDNSType_DNSKEY: {
529 rdataDNSKey *rrkey = (rdataDNSKey *)rd->data;
530 length += mDNS_snprintf(buffer+length, RemSpc, "\t%d %d %s %u ", swap16(rrkey->flags), rrkey->proto,
531 DNSSECAlgName(rrkey->alg), (unsigned int)keytag((mDNSu8 *)rrkey, rr->rdlength));
532 baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + DNSKEY_FIXED_SIZE),
533 rr->rdlength - DNSKEY_FIXED_SIZE, ENC_BASE64);
534 }
535 break;
536 case kDNSType_DS: {
537 mDNSu8 *p;
538 int i;
539 rdataDS *rrds = (rdataDS *)rd->data;
540
541 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s\t%d\t%s ", DNSSECAlgName(rrds->alg), swap16(rrds->keyTag),
542 DNSSECDigestName(rrds->digestType));
543
544 p = (mDNSu8 *)(rd->data + DS_FIXED_SIZE);
545 for (i = 0; i < (rr->rdlength - DS_FIXED_SIZE); i++)
546 {
547 length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
548 }
549 }
550 break;
551
552 default: mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %.*s", rr->rdlength, rr->rdlength, rd->data);
553 // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
554 for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
555 break;
556 }
557 return(buffer);
558 }
559
560 // See comments in mDNSEmbeddedAPI.h
561 #if _PLATFORM_HAS_STRONG_PRNG_
562 #define mDNSRandomNumber mDNSPlatformRandomNumber
563 #else
564 mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
565 {
566 return seed * 21 + 1;
567 }
568
569 mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
570 {
571 return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
572 }
573
574 mDNSlocal mDNSu32 mDNSRandomNumber()
575 {
576 static mDNSBool seeded = mDNSfalse;
577 static mDNSu32 seed = 0;
578 if (!seeded)
579 {
580 seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
581 seeded = mDNStrue;
582 }
583 return (seed = mDNSRandomFromSeed(seed));
584 }
585 #endif // ! _PLATFORM_HAS_STRONG_PRNG_
586
587 mDNSexport mDNSu32 mDNSRandom(mDNSu32 max) // Returns pseudo-random result from zero to max inclusive
588 {
589 mDNSu32 ret = 0;
590 mDNSu32 mask = 1;
591
592 while (mask < max) mask = (mask << 1) | 1;
593
594 do ret = mDNSRandomNumber() & mask;
595 while (ret > max);
596
597 return ret;
598 }
599
600 mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
601 {
602 if (ip1->type == ip2->type)
603 {
604 switch (ip1->type)
605 {
606 case mDNSAddrType_None: return(mDNStrue); // Empty addresses have no data and are therefore always equal
607 case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
608 case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
609 }
610 }
611 return(mDNSfalse);
612 }
613
614 mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
615 {
616 switch(ip->type)
617 {
618 case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
619 case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
620 default: return(mDNSfalse);
621 }
622 }
623
624 // ***************************************************************************
625 #if COMPILER_LIKES_PRAGMA_MARK
626 #pragma mark -
627 #pragma mark - Domain Name Utility Functions
628 #endif
629
630 #if !APPLE_OSX_mDNSResponder
631
632 mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
633 {
634 int i;
635 const int len = *a++;
636
637 if (len > MAX_DOMAIN_LABEL)
638 { debugf("Malformed label (too long)"); return(mDNSfalse); }
639
640 if (len != *b++) return(mDNSfalse);
641 for (i=0; i<len; i++)
642 {
643 mDNSu8 ac = *a++;
644 mDNSu8 bc = *b++;
645 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
646 if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
647 if (ac != bc) return(mDNSfalse);
648 }
649 return(mDNStrue);
650 }
651
652 #endif // !APPLE_OSX_mDNSResponder
653
654 mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
655 {
656 const mDNSu8 * a = d1->c;
657 const mDNSu8 * b = d2->c;
658 const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME; // Maximum that's valid
659
660 while (*a || *b)
661 {
662 if (a + 1 + *a >= max)
663 { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
664 if (!SameDomainLabel(a, b)) return(mDNSfalse);
665 a += 1 + *a;
666 b += 1 + *b;
667 }
668
669 return(mDNStrue);
670 }
671
672 mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
673 {
674 mDNSu16 l1 = DomainNameLength(d1);
675 mDNSu16 l2 = DomainNameLength(d2);
676 return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
677 }
678
679 mDNSexport mDNSBool IsLocalDomain(const domainname *d)
680 {
681 // Domains that are defined to be resolved via link-local multicast are:
682 // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
683 static const domainname *nL = (const domainname*)"\x5" "local";
684 static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169" "\x7" "in-addr" "\x4" "arpa";
685 static const domainname *n8 = (const domainname*)"\x1" "8" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
686 static const domainname *n9 = (const domainname*)"\x1" "9" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
687 static const domainname *nA = (const domainname*)"\x1" "a" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
688 static const domainname *nB = (const domainname*)"\x1" "b" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
689
690 const domainname *d1, *d2, *d3, *d4, *d5; // Top-level domain, second-level domain, etc.
691 d1 = d2 = d3 = d4 = d5 = mDNSNULL;
692 while (d->c[0])
693 {
694 d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
695 d = (const domainname*)(d->c + 1 + d->c[0]);
696 }
697
698 if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
699 if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
700 if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
701 if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
702 if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
703 if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
704 return(mDNSfalse);
705 }
706
707 mDNSexport const mDNSu8 *LastLabel(const domainname *d)
708 {
709 const mDNSu8 *p = d->c;
710 while (d->c[0])
711 {
712 p = d->c;
713 d = (const domainname*)(d->c + 1 + d->c[0]);
714 }
715 return(p);
716 }
717
718 // Returns length of a domain name INCLUDING the byte for the final null label
719 // e.g. for the root label "." it returns one
720 // For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
721 // Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
722 // If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
723 mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
724 {
725 const mDNSu8 *src = name->c;
726 while (src < limit && *src <= MAX_DOMAIN_LABEL)
727 {
728 if (*src == 0) return((mDNSu16)(src - name->c + 1));
729 src += 1 + *src;
730 }
731 return(MAX_DOMAIN_NAME+1);
732 }
733
734 // CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
735 // for the final null label, e.g. for the root label "." it returns one.
736 // E.g. for the FQDN "foo.com." it returns 9
737 // (length, three data bytes, length, three more data bytes, final zero).
738 // In the case where a parent domain name is provided, and the given name is a child
739 // of that parent, CompressedDomainNameLength returns the length of the prefix portion
740 // of the child name, plus TWO bytes for the compression pointer.
741 // E.g. for the name "foo.com." with parent "com.", it returns 6
742 // (length, three data bytes, two-byte compression pointer).
743 mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
744 {
745 const mDNSu8 *src = name->c;
746 if (parent && parent->c[0] == 0) parent = mDNSNULL;
747 while (*src)
748 {
749 if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
750 if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
751 src += 1 + *src;
752 if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
753 }
754 return((mDNSu16)(src - name->c + 1));
755 }
756
757 // CountLabels() returns number of labels in name, excluding final root label
758 // (e.g. for "apple.com." CountLabels returns 2.)
759 mDNSexport int CountLabels(const domainname *d)
760 {
761 int count = 0;
762 const mDNSu8 *ptr;
763 for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
764 return count;
765 }
766
767 // SkipLeadingLabels skips over the first 'skip' labels in the domainname,
768 // returning a pointer to the suffix with 'skip' labels removed.
769 mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
770 {
771 while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
772 return(d);
773 }
774
775 // AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
776 // The C string contains the label as-is, with no escaping, etc.
777 // Any dots in the name are literal dots, not label separators
778 // If successful, AppendLiteralLabelString returns a pointer to the next unused byte
779 // in the domainname bufer (i.e. the next byte after the terminating zero).
780 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
781 // AppendLiteralLabelString returns mDNSNULL.
782 mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
783 {
784 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
785 const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
786 const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
787 const mDNSu8 *const lim = (lim1 < lim2) ? lim1 : lim2;
788 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
789
790 while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++; // Copy the data
791 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
792 *ptr++ = 0; // Put the null root label on the end
793 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
794 else return(ptr); // Success: return new value of ptr
795 }
796
797 // AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
798 // The C string is in conventional DNS syntax:
799 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
800 // If successful, AppendDNSNameString returns a pointer to the next unused byte
801 // in the domainname bufer (i.e. the next byte after the terminating zero).
802 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
803 // AppendDNSNameString returns mDNSNULL.
804 mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
805 {
806 const char *cstr = cstring;
807 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
808 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
809 while (*cstr && ptr < lim) // While more characters, and space to put them...
810 {
811 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
812 if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
813 while (*cstr && *cstr != '.' && ptr < lim) // While we have characters in the label...
814 {
815 mDNSu8 c = (mDNSu8)*cstr++; // Read the character
816 if (c == '\\') // If escape character, check next character
817 {
818 if (*cstr == '\0') break; // If this is the end of the string, then break
819 c = (mDNSu8)*cstr++; // Assume we'll just take the next character
820 if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
821 { // If three decimal digits,
822 int v0 = cstr[-1] - '0'; // then interpret as three-digit decimal
823 int v1 = cstr[ 0] - '0';
824 int v2 = cstr[ 1] - '0';
825 int val = v0 * 100 + v1 * 10 + v2;
826 if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it
827 }
828 }
829 *ptr++ = c; // Write the character
830 }
831 if (*cstr == '.') cstr++; // Skip over the trailing dot (if present)
832 if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL) // If illegal label, abort
833 return(mDNSNULL);
834 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
835 }
836
837 *ptr++ = 0; // Put the null root label on the end
838 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
839 else return(ptr); // Success: return new value of ptr
840 }
841
842 // AppendDomainLabel appends a single label to a name.
843 // If successful, AppendDomainLabel returns a pointer to the next unused byte
844 // in the domainname bufer (i.e. the next byte after the terminating zero).
845 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
846 // AppendDomainLabel returns mDNSNULL.
847 mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
848 {
849 int i;
850 mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
851
852 // Check label is legal
853 if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
854
855 // Check that ptr + length byte + data bytes + final zero does not exceed our limit
856 if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
857
858 for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i]; // Copy the label data
859 *ptr++ = 0; // Put the null root label on the end
860 return(ptr);
861 }
862
863 mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
864 {
865 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
866 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
867 const mDNSu8 * src = append->c;
868 while (src[0])
869 {
870 int i;
871 if (ptr + 1 + src[0] > lim) return(mDNSNULL);
872 for (i=0; i<=src[0]; i++) *ptr++ = src[i];
873 *ptr = 0; // Put the null root label on the end
874 src += i;
875 }
876 return(ptr);
877 }
878
879 // MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
880 // If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
881 // If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
882 // MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
883 // In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
884 // In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
885 mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
886 {
887 mDNSu8 * ptr = label->c + 1; // Where we're putting it
888 const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL; // The maximum we can put
889 while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++; // Copy the label
890 label->c[0] = (mDNSu8)(ptr - label->c - 1); // Set the length byte
891 return(*cstr == 0); // Return mDNStrue if we successfully consumed all input
892 }
893
894 // MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
895 // The C string is in conventional DNS syntax:
896 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
897 // If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
898 // in the domainname bufer (i.e. the next byte after the terminating zero).
899 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
900 // MakeDomainNameFromDNSNameString returns mDNSNULL.
901 mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
902 {
903 name->c[0] = 0; // Make an empty domain name
904 return(AppendDNSNameString(name, cstr)); // And then add this string to it
905 }
906
907 mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
908 {
909 const mDNSu8 * src = label->c; // Domain label we're reading
910 const mDNSu8 len = *src++; // Read length of this (non-null) label
911 const mDNSu8 *const end = src + len; // Work out where the label ends
912 if (len > MAX_DOMAIN_LABEL) return(mDNSNULL); // If illegal label, abort
913 while (src < end) // While we have characters in the label
914 {
915 mDNSu8 c = *src++;
916 if (esc)
917 {
918 if (c == '.' || c == esc) // If character is a dot or the escape character
919 *ptr++ = esc; // Output escape character
920 else if (c <= ' ') // If non-printing ascii,
921 { // Output decimal escape sequence
922 *ptr++ = esc;
923 *ptr++ = (char) ('0' + (c / 100) );
924 *ptr++ = (char) ('0' + (c / 10) % 10);
925 c = (mDNSu8)('0' + (c ) % 10);
926 }
927 }
928 *ptr++ = (char)c; // Copy the character
929 }
930 *ptr = 0; // Null-terminate the string
931 return(ptr); // and return
932 }
933
934 // Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
935 mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
936 {
937 const mDNSu8 *src = name->c; // Domain name we're reading
938 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
939
940 if (*src == 0) *ptr++ = '.'; // Special case: For root, just write a dot
941
942 while (*src) // While more characters in the domain name
943 {
944 if (src + 1 + *src >= max) return(mDNSNULL);
945 ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
946 if (!ptr) return(mDNSNULL);
947 src += 1 + *src;
948 *ptr++ = '.'; // Write the dot after the label
949 }
950
951 *ptr++ = 0; // Null-terminate the string
952 return(ptr); // and return
953 }
954
955 // RFC 1034 rules:
956 // Host names must start with a letter, end with a letter or digit,
957 // and have as interior characters only letters, digits, and hyphen.
958 // This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
959
960 mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
961 {
962 const mDNSu8 * src = &UTF8Name[1];
963 const mDNSu8 *const end = &UTF8Name[1] + UTF8Name[0];
964 mDNSu8 * ptr = &hostlabel->c[1];
965 const mDNSu8 *const lim = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
966 while (src < end)
967 {
968 // Delete apostrophes from source name
969 if (src[0] == '\'') { src++; continue; } // Standard straight single quote
970 if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
971 { src += 3; continue; } // Unicode curly apostrophe
972 if (ptr < lim)
973 {
974 if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
975 else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
976 }
977 src++;
978 }
979 while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks
980 hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
981 }
982
983 mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
984 const domainlabel *name, const domainname *type, const domainname *const domain)
985 {
986 int i, len;
987 mDNSu8 *dst = fqdn->c;
988 const mDNSu8 *src;
989 const char *errormsg;
990 #if APPLE_OSX_mDNSResponder
991 mDNSBool loggedUnderscore = mDNSfalse;
992 static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
993 #endif
994
995 // In the case where there is no name (and ONLY in that case),
996 // a single-label subtype is allowed as the first label of a three-part "type"
997 if (!name && type)
998 {
999 const mDNSu8 *s0 = type->c;
1000 if (s0[0] && s0[0] < 0x40) // If legal first label (at least one character, and no more than 63)
1001 {
1002 const mDNSu8 * s1 = s0 + 1 + s0[0];
1003 if (s1[0] && s1[0] < 0x40) // and legal second label (at least one character, and no more than 63)
1004 {
1005 const mDNSu8 *s2 = s1 + 1 + s1[0];
1006 if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0) // and we have three and only three labels
1007 {
1008 static const mDNSu8 SubTypeLabel[5] = mDNSSubTypeLabel;
1009 src = s0; // Copy the first label
1010 len = *src;
1011 for (i=0; i <= len; i++) *dst++ = *src++;
1012 for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
1013 type = (const domainname *)s1;
1014
1015 // Special support to enable the DNSServiceBrowse call made by Bonjour Browser
1016 // For these queries, we retract the "._sub" we just added between the subtype and the main type
1017 // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
1018 if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
1019 dst -= sizeof(SubTypeLabel);
1020 }
1021 }
1022 }
1023 }
1024
1025 if (name && name->c[0])
1026 {
1027 src = name->c; // Put the service name into the domain name
1028 len = *src;
1029 if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
1030 for (i=0; i<=len; i++) *dst++ = *src++;
1031 }
1032 else
1033 name = (domainlabel*)""; // Set this up to be non-null, to avoid errors if we have to call LogMsg() below
1034
1035 src = type->c; // Put the service type into the domain name
1036 len = *src;
1037 if (len < 2 || len > 16)
1038 {
1039 LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
1040 "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
1041 }
1042 if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
1043 if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
1044 for (i=2; i<=len; i++)
1045 {
1046 // Letters and digits are allowed anywhere
1047 if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
1048 // Hyphens are only allowed as interior characters
1049 // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
1050 // with the same rule as hyphens
1051 if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
1052 {
1053 #if APPLE_OSX_mDNSResponder
1054 if (src[i] == '_' && loggedUnderscore == mDNSfalse)
1055 {
1056 ConvertDomainNameToCString(type, typeBuf);
1057 LogInfo("ConstructServiceName: Service type with non-leading underscore %s", typeBuf);
1058 loggedUnderscore = mDNStrue;
1059 }
1060 #endif
1061 continue;
1062 }
1063 errormsg = "Application protocol name must contain only letters, digits, and hyphens";
1064 goto fail;
1065 }
1066 for (i=0; i<=len; i++) *dst++ = *src++;
1067
1068 len = *src;
1069 if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
1070 for (i=0; i<=len; i++) *dst++ = *src++;
1071
1072 if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
1073
1074 *dst = 0;
1075 if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
1076 if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
1077 { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
1078 dst = AppendDomainName(fqdn, domain);
1079 if (!dst) { errormsg = "Service domain too long"; goto fail; }
1080 return(dst);
1081
1082 fail:
1083 LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
1084 return(mDNSNULL);
1085 }
1086
1087 // A service name has the form: instance.application-protocol.transport-protocol.domain
1088 // DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
1089 // set or length limits for the protocol names, and the final domain is allowed to be empty.
1090 // However, if the given FQDN doesn't contain at least three labels,
1091 // DeconstructServiceName will reject it and return mDNSfalse.
1092 mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
1093 domainlabel *const name, domainname *const type, domainname *const domain)
1094 {
1095 int i, len;
1096 const mDNSu8 *src = fqdn->c;
1097 const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
1098 mDNSu8 *dst;
1099
1100 dst = name->c; // Extract the service name
1101 len = *src;
1102 if (!len) { debugf("DeconstructServiceName: FQDN empty!"); return(mDNSfalse); }
1103 if (len >= 0x40) { debugf("DeconstructServiceName: Instance name too long"); return(mDNSfalse); }
1104 for (i=0; i<=len; i++) *dst++ = *src++;
1105
1106 dst = type->c; // Extract the service type
1107 len = *src;
1108 if (!len) { debugf("DeconstructServiceName: FQDN contains only one label!"); return(mDNSfalse); }
1109 if (len >= 0x40) { debugf("DeconstructServiceName: Application protocol name too long"); return(mDNSfalse); }
1110 if (src[1] != '_') { debugf("DeconstructServiceName: No _ at start of application protocol"); return(mDNSfalse); }
1111 for (i=0; i<=len; i++) *dst++ = *src++;
1112
1113 len = *src;
1114 if (!len) { debugf("DeconstructServiceName: FQDN contains only two labels!"); return(mDNSfalse); }
1115 if (!ValidTransportProtocol(src))
1116 { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
1117 for (i=0; i<=len; i++) *dst++ = *src++;
1118 *dst++ = 0; // Put terminator on the end of service type
1119
1120 dst = domain->c; // Extract the service domain
1121 while (*src)
1122 {
1123 len = *src;
1124 if (len >= 0x40)
1125 { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
1126 if (src + 1 + len + 1 >= max)
1127 { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
1128 for (i=0; i<=len; i++) *dst++ = *src++;
1129 }
1130 *dst++ = 0; // Put the null root label on the end
1131
1132 return(mDNStrue);
1133 }
1134
1135 mDNSexport mStatus DNSNameToLowerCase(domainname *d, domainname *result)
1136 {
1137 const mDNSu8 *a = d->c;
1138 mDNSu8 *b = result->c;
1139 const mDNSu8 *const max = d->c + MAX_DOMAIN_NAME;
1140 int i, len;
1141
1142 while (*a)
1143 {
1144 if (a + 1 + *a >= max)
1145 {
1146 LogMsg("DNSNameToLowerCase: ERROR!! Malformed Domain name");
1147 return mStatus_BadParamErr;
1148 }
1149 len = *a++;
1150 *b++ = len;
1151 for (i = 0; i < len; i++)
1152 {
1153 mDNSu8 ac = *a++;
1154 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
1155 *b++ = ac;
1156 }
1157 }
1158 *b = 0;
1159
1160 return mStatus_NoError;
1161 }
1162
1163 mDNSexport const mDNSu8 *NSEC3HashName(const domainname *name, rdataNSEC3 *nsec3, const mDNSu8 *AnonData, int AnonDataLen,
1164 const mDNSu8 hash[NSEC3_MAX_HASH_LEN], int *dlen)
1165 {
1166 AlgContext *ctx;
1167 unsigned int i;
1168 unsigned int iterations;
1169 domainname lname;
1170 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
1171 const mDNSu8 *digest;
1172 int digestlen;
1173 mDNSBool first = mDNStrue;
1174
1175 if (DNSNameToLowerCase((domainname *)name, &lname) != mStatus_NoError)
1176 {
1177 LogMsg("NSEC3HashName: ERROR!! DNSNameToLowerCase failed");
1178 return mDNSNULL;
1179 }
1180
1181 digest = lname.c;
1182 digestlen = DomainNameLength(&lname);
1183
1184 // Note that it is "i <=". The first iteration is for digesting the name and salt.
1185 // The iteration count does not include that.
1186 iterations = swap16(nsec3->iterations);
1187 for (i = 0; i <= iterations; i++)
1188 {
1189 ctx = AlgCreate(DIGEST_ALG, nsec3->alg);
1190 if (!ctx)
1191 {
1192 LogMsg("NSEC3HashName: ERROR!! Cannot allocate context");
1193 return mDNSNULL;
1194 }
1195
1196 AlgAdd(ctx, digest, digestlen);
1197 if (nsec3->saltLength)
1198 AlgAdd(ctx, p, nsec3->saltLength);
1199 if (AnonDataLen)
1200 AlgAdd(ctx, AnonData, AnonDataLen);
1201 if (first)
1202 {
1203 first = mDNSfalse;
1204 digest = hash;
1205 digestlen = AlgLength(ctx);
1206 }
1207 AlgFinal(ctx, (void *)digest, digestlen);
1208 AlgDestroy(ctx);
1209 }
1210 *dlen = digestlen;
1211 return digest;
1212 }
1213
1214 // Notes on UTF-8:
1215 // 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
1216 // 10xxxxxx is a continuation byte of a multi-byte character
1217 // 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x 80 - 0x 800-1)
1218 // 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x 800 - 0x 10000-1)
1219 // 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x 10000 - 0x 200000-1)
1220 // 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
1221 // 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
1222 //
1223 // UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
1224 // Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
1225 // about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
1226 // The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
1227 // and the second is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
1228
1229 mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
1230 {
1231 if (length > max)
1232 {
1233 mDNSu8 c1 = string[max]; // First byte after cut point
1234 mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0; // Second byte after cut point
1235 length = max; // Trim length down
1236 while (length > 0)
1237 {
1238 // Check if the byte right after the chop point is a UTF-8 continuation byte,
1239 // or if the character right after the chop point is the second of a UTF-16 surrogate pair.
1240 // If so, then we continue to chop more bytes until we get to a legal chop point.
1241 mDNSBool continuation = ((c1 & 0xC0) == 0x80);
1242 mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
1243 if (!continuation && !secondsurrogate) break;
1244 c2 = c1;
1245 c1 = string[--length];
1246 }
1247 // Having truncated characters off the end of our string, also cut off any residual white space
1248 while (length > 0 && string[length-1] <= ' ') length--;
1249 }
1250 return(length);
1251 }
1252
1253 // Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
1254 // name ends in "-nnn", where n is some decimal number.
1255 mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
1256 {
1257 mDNSu16 l = name->c[0];
1258
1259 if (RichText)
1260 {
1261 if (l < 4) return mDNSfalse; // Need at least " (2)"
1262 if (name->c[l--] != ')') return mDNSfalse; // Last char must be ')'
1263 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Preceeded by a digit
1264 l--;
1265 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
1266 return (name->c[l] == '(' && name->c[l - 1] == ' ');
1267 }
1268 else
1269 {
1270 if (l < 2) return mDNSfalse; // Need at least "-2"
1271 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Last char must be a digit
1272 l--;
1273 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
1274 return (name->c[l] == '-');
1275 }
1276 }
1277
1278 // removes an auto-generated suffix (appended on a name collision) from a label. caller is
1279 // responsible for ensuring that the label does indeed contain a suffix. returns the number
1280 // from the suffix that was removed.
1281 mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
1282 {
1283 mDNSu32 val = 0, multiplier = 1;
1284
1285 // Chop closing parentheses from RichText suffix
1286 if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
1287
1288 // Get any existing numerical suffix off the name
1289 while (mDNSIsDigit(name->c[name->c[0]]))
1290 { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
1291
1292 // Chop opening parentheses or dash from suffix
1293 if (RichText)
1294 {
1295 if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
1296 }
1297 else
1298 {
1299 if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
1300 }
1301
1302 return(val);
1303 }
1304
1305 // appends a numerical suffix to a label, with the number following a whitespace and enclosed
1306 // in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
1307 mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
1308 {
1309 mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2")
1310 if (RichText) chars = 4; // Shortest possible RichText suffix is 4 characters (" (2)")
1311
1312 // Truncate trailing spaces from RichText names
1313 if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
1314
1315 while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
1316
1317 name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
1318
1319 if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
1320 else { name->c[++name->c[0]] = '-'; }
1321
1322 while (divisor)
1323 {
1324 name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
1325 val %= divisor;
1326 divisor /= 10;
1327 }
1328
1329 if (RichText) name->c[++name->c[0]] = ')';
1330 }
1331
1332 mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
1333 {
1334 mDNSu32 val = 0;
1335
1336 if (LabelContainsSuffix(name, RichText))
1337 val = RemoveLabelSuffix(name, RichText);
1338
1339 // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
1340 // If existing suffix in the range 2-9, increment it.
1341 // If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
1342 // so add a random increment to improve the chances of finding an available name next time.
1343 if (val == 0) val = 2;
1344 else if (val < 10) val++;
1345 else val += 1 + mDNSRandom(99);
1346
1347 AppendLabelSuffix(name, val, RichText);
1348 }
1349
1350 // ***************************************************************************
1351 #if COMPILER_LIKES_PRAGMA_MARK
1352 #pragma mark -
1353 #pragma mark - Resource Record Utility Functions
1354 #endif
1355
1356 // Set up a AuthRecord with sensible default values.
1357 // These defaults may be overwritten with new values before mDNS_Register is called
1358 mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
1359 mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
1360 {
1361 //
1362 // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
1363 // Most of the applications normally create with LocalOnly InterfaceID and we store them as
1364 // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
1365 // LocalOnly resource records can also be created with valid InterfaceID which happens today
1366 // when we create LocalOnly records for /etc/hosts.
1367
1368 if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
1369 {
1370 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
1371 }
1372 else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
1373 {
1374 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
1375 }
1376 else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
1377 {
1378 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
1379 }
1380
1381 // Don't try to store a TTL bigger than we can represent in platform time units
1382 if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
1383 ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
1384 else if (ttl == 0) // And Zero TTL is illegal
1385 ttl = DefaultTTLforRRType(rrtype);
1386
1387 // Field Group 1: The actual information pertaining to this resource record
1388 rr->resrec.RecordType = RecordType;
1389 rr->resrec.InterfaceID = InterfaceID;
1390 rr->resrec.name = &rr->namestorage;
1391 rr->resrec.rrtype = rrtype;
1392 rr->resrec.rrclass = kDNSClass_IN;
1393 rr->resrec.rroriginalttl = ttl;
1394 rr->resrec.rDNSServer = mDNSNULL;
1395 rr->resrec.AnonInfo = mDNSNULL;
1396 // rr->resrec.rdlength = MUST set by client and/or in mDNS_Register_internal
1397 // rr->resrec.rdestimate = set in mDNS_Register_internal
1398 // rr->resrec.rdata = MUST be set by client
1399
1400 if (RDataStorage)
1401 rr->resrec.rdata = RDataStorage;
1402 else
1403 {
1404 rr->resrec.rdata = &rr->rdatastorage;
1405 rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
1406 }
1407
1408 // Field Group 2: Persistent metadata for Authoritative Records
1409 rr->Additional1 = mDNSNULL;
1410 rr->Additional2 = mDNSNULL;
1411 rr->DependentOn = mDNSNULL;
1412 rr->RRSet = mDNSNULL;
1413 rr->RecordCallback = Callback;
1414 rr->RecordContext = Context;
1415
1416 rr->AutoTarget = Target_Manual;
1417 rr->AllowRemoteQuery = mDNSfalse;
1418 rr->ForceMCast = mDNSfalse;
1419
1420 rr->WakeUp = zeroOwner;
1421 rr->AddressProxy = zeroAddr;
1422 rr->TimeRcvd = 0;
1423 rr->TimeExpire = 0;
1424 rr->ARType = artype;
1425 rr->AuthFlags = 0;
1426
1427 // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
1428 // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
1429
1430 // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
1431 // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
1432 // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
1433 rr->state = regState_Zero;
1434 rr->uselease = 0;
1435 rr->expire = 0;
1436 rr->Private = 0;
1437 rr->updateid = zeroID;
1438 rr->zone = rr->resrec.name;
1439 rr->nta = mDNSNULL;
1440 rr->tcp = mDNSNULL;
1441 rr->OrigRData = 0;
1442 rr->OrigRDLen = 0;
1443 rr->InFlightRData = 0;
1444 rr->InFlightRDLen = 0;
1445 rr->QueuedRData = 0;
1446 rr->QueuedRDLen = 0;
1447 mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
1448 rr->SRVChanged = mDNSfalse;
1449 rr->mState = mergeState_Zero;
1450
1451 rr->namestorage.c[0] = 0; // MUST be set by client before calling mDNS_Register()
1452 }
1453
1454 mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
1455 const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
1456 {
1457 q->InterfaceID = InterfaceID;
1458 q->flags = 0;
1459 q->Target = zeroAddr;
1460 AssignDomainName(&q->qname, name);
1461 q->qtype = qtype;
1462 q->qclass = kDNSClass_IN;
1463 q->LongLived = (qtype == kDNSType_PTR);
1464 q->ExpectUnique = (qtype != kDNSType_PTR);
1465 q->ForceMCast = mDNSfalse;
1466 q->ReturnIntermed = mDNSfalse;
1467 q->SuppressUnusable = mDNSfalse;
1468 q->SearchListIndex = 0;
1469 q->AppendSearchDomains = 0;
1470 q->RetryWithSearchDomains = mDNSfalse;
1471 q->TimeoutQuestion = 0;
1472 q->WakeOnResolve = 0;
1473 q->UseBackgroundTrafficClass = mDNSfalse;
1474 q->ValidationRequired = 0;
1475 q->ValidatingResponse = 0;
1476 q->ProxyQuestion = 0;
1477 q->qnameOrig = mDNSNULL;
1478 q->AnonInfo = mDNSNULL;
1479 q->pid = mDNSPlatformGetPID();
1480 q->euid = 0;
1481 q->DisallowPID = mDNSfalse;
1482 q->ServiceID = -1;
1483 q->QuestionCallback = callback;
1484 q->QuestionContext = context;
1485 }
1486
1487 mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
1488 {
1489 int len = rr->rdlength;
1490 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1491 const mDNSu8 *ptr = rdb->data;
1492 mDNSu32 sum = 0;
1493
1494 switch(rr->rrtype)
1495 {
1496 case kDNSType_NS:
1497 case kDNSType_MD:
1498 case kDNSType_MF:
1499 case kDNSType_CNAME:
1500 case kDNSType_MB:
1501 case kDNSType_MG:
1502 case kDNSType_MR:
1503 case kDNSType_PTR:
1504 case kDNSType_NSAP_PTR:
1505 case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
1506
1507 case kDNSType_SOA: return rdb->soa.serial +
1508 rdb->soa.refresh +
1509 rdb->soa.retry +
1510 rdb->soa.expire +
1511 rdb->soa.min +
1512 DomainNameHashValue(&rdb->soa.mname) +
1513 DomainNameHashValue(&rdb->soa.rname);
1514
1515 case kDNSType_MX:
1516 case kDNSType_AFSDB:
1517 case kDNSType_RT:
1518 case kDNSType_KX: return DomainNameHashValue(&rdb->mx.exchange);
1519
1520 case kDNSType_MINFO:
1521 case kDNSType_RP: return DomainNameHashValue(&rdb->rp.mbox) + DomainNameHashValue(&rdb->rp.txt);
1522
1523 case kDNSType_PX: return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
1524
1525 case kDNSType_SRV: return DomainNameHashValue(&rdb->srv.target);
1526
1527 case kDNSType_OPT: return 0; // OPT is a pseudo-RR container structure; makes no sense to compare
1528
1529 case kDNSType_NSEC: {
1530 int dlen;
1531 dlen = DomainNameLength((domainname *)rdb->data);
1532 sum = DomainNameHashValue((domainname *)rdb->data);
1533 ptr += dlen;
1534 len -= dlen;
1535 /* FALLTHROUGH */
1536 }
1537
1538 default:
1539 {
1540 int i;
1541 for (i=0; i+1 < len; i+=2)
1542 {
1543 sum += (((mDNSu32)(ptr[i])) << 8) | ptr[i+1];
1544 sum = (sum<<3) | (sum>>29);
1545 }
1546 if (i < len)
1547 {
1548 sum += ((mDNSu32)(ptr[i])) << 8;
1549 }
1550 return(sum);
1551 }
1552 }
1553 }
1554
1555 // r1 has to be a full ResourceRecord including rrtype and rdlength
1556 // r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
1557 mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
1558 {
1559 const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
1560 const RDataBody2 *const b2 = (RDataBody2 *)r2;
1561 switch(r1->rrtype)
1562 {
1563 case kDNSType_NS:
1564 case kDNSType_MD:
1565 case kDNSType_MF:
1566 case kDNSType_CNAME:
1567 case kDNSType_MB:
1568 case kDNSType_MG:
1569 case kDNSType_MR:
1570 case kDNSType_PTR:
1571 case kDNSType_NSAP_PTR:
1572 case kDNSType_DNAME: return(SameDomainName(&b1->name, &b2->name));
1573
1574 case kDNSType_SOA: return (mDNSBool)( b1->soa.serial == b2->soa.serial &&
1575 b1->soa.refresh == b2->soa.refresh &&
1576 b1->soa.retry == b2->soa.retry &&
1577 b1->soa.expire == b2->soa.expire &&
1578 b1->soa.min == b2->soa.min &&
1579 samename(&b1->soa.mname, &b2->soa.mname) &&
1580 samename(&b1->soa.rname, &b2->soa.rname));
1581
1582 case kDNSType_MX:
1583 case kDNSType_AFSDB:
1584 case kDNSType_RT:
1585 case kDNSType_KX: return (mDNSBool)( b1->mx.preference == b2->mx.preference &&
1586 samename(&b1->mx.exchange, &b2->mx.exchange));
1587
1588 case kDNSType_MINFO:
1589 case kDNSType_RP: return (mDNSBool)( samename(&b1->rp.mbox, &b2->rp.mbox) &&
1590 samename(&b1->rp.txt, &b2->rp.txt));
1591
1592 case kDNSType_PX: return (mDNSBool)( b1->px.preference == b2->px.preference &&
1593 samename(&b1->px.map822, &b2->px.map822) &&
1594 samename(&b1->px.mapx400, &b2->px.mapx400));
1595
1596 case kDNSType_SRV: return (mDNSBool)( b1->srv.priority == b2->srv.priority &&
1597 b1->srv.weight == b2->srv.weight &&
1598 mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
1599 samename(&b1->srv.target, &b2->srv.target));
1600
1601 case kDNSType_OPT: return mDNSfalse; // OPT is a pseudo-RR container structure; makes no sense to compare
1602 case kDNSType_NSEC: {
1603 // If the "nxt" name changes in case, we want to delete the old
1604 // and store just the new one. If the caller passes in SameDomainCS for "samename",
1605 // we would return "false" when the only change between the two rdata is the case
1606 // change in "nxt".
1607 //
1608 // Note: rdlength of both the RData are same (ensured by the caller) and hence we can
1609 // use just r1->rdlength below
1610
1611 int dlen1 = DomainNameLength((domainname *)b1->data);
1612 int dlen2 = DomainNameLength((domainname *)b2->data);
1613 return (mDNSBool)(dlen1 == dlen2 &&
1614 samename((domainname *)b1->data, (domainname *)b2->data) &&
1615 mDNSPlatformMemSame(b1->data + dlen1, b2->data + dlen2, r1->rdlength - dlen1));
1616 }
1617
1618 default: return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
1619 }
1620 }
1621
1622 mDNSexport mDNSBool BitmapTypeCheck(mDNSu8 *bmap, int bitmaplen, mDNSu16 type)
1623 {
1624 int win, wlen;
1625 int wintype;
1626
1627 // The window that this type belongs to. NSEC has 256 windows that
1628 // comprises of 256 types.
1629 wintype = type >> 8;
1630
1631 while (bitmaplen > 0)
1632 {
1633 if (bitmaplen < 3)
1634 {
1635 LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d short", bitmaplen);
1636 return mDNSfalse;
1637 }
1638
1639 win = *bmap++;
1640 wlen = *bmap++;
1641 bitmaplen -= 2;
1642 if (bitmaplen < wlen || wlen < 1 || wlen > 32)
1643 {
1644 LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d wlen %d, win %d", bitmaplen, wlen, win);
1645 return mDNSfalse;
1646 }
1647 if (win < 0 || win >= 256)
1648 {
1649 LogInfo("BitmapTypeCheck: malformed nsec, wlen %d", wlen);
1650 return mDNSfalse;
1651 }
1652 if (win == wintype)
1653 {
1654 // First byte in the window serves 0 to 7, the next one serves 8 to 15 and so on.
1655 // Calculate the right byte offset first.
1656 int boff = (type & 0xff ) >> 3;
1657 if (wlen <= boff)
1658 return mDNSfalse;
1659 // The last three bits values 0 to 7 corresponds to bit positions
1660 // within the byte.
1661 return (bmap[boff] & (0x80 >> (type & 7)));
1662 }
1663 else
1664 {
1665 // If the windows are ordered, then we could check to see
1666 // if wintype > win and then return early.
1667 bmap += wlen;
1668 bitmaplen -= wlen;
1669 }
1670 }
1671 return mDNSfalse;
1672 }
1673
1674 // Don't call this function if the resource record is not NSEC. It will return false
1675 // which means that the type does not exist.
1676 mDNSexport mDNSBool RRAssertsExistence(const ResourceRecord *const rr, mDNSu16 type)
1677 {
1678 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1679 mDNSu8 *nsec = (mDNSu8 *)rdb->data;
1680 int len, bitmaplen;
1681 mDNSu8 *bmap;
1682
1683 if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1684
1685 len = DomainNameLength((domainname *)nsec);
1686
1687 bitmaplen = rr->rdlength - len;
1688 bmap = nsec + len;
1689 return (BitmapTypeCheck(bmap, bitmaplen, type));
1690 }
1691
1692 // Don't call this function if the resource record is not NSEC. It will return false
1693 // which means that the type exists.
1694 mDNSexport mDNSBool RRAssertsNonexistence(const ResourceRecord *const rr, mDNSu16 type)
1695 {
1696 if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1697
1698 return !RRAssertsExistence(rr, type);
1699 }
1700
1701 // Checks whether the RRSIG or NSEC record answers the question "q".
1702 mDNSlocal mDNSBool DNSSECRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q, mDNSBool *checkType)
1703 {
1704 *checkType = mDNStrue;
1705
1706 // This function is called for all questions and as long as the type matches,
1707 // return true. For the types (RRSIG and NSEC) that are specifically checked in
1708 // this function, returning true still holds good.
1709 if (q->qtype == rr->rrtype)
1710 return mDNStrue;
1711
1712 // For DS and DNSKEY questions, the types should match i.e., don't answer using CNAME
1713 // records as it answers any question type.
1714 //
1715 // - DS record comes from the parent zone where CNAME record cannot coexist and hence
1716 // cannot possibly answer it.
1717 //
1718 // - For DNSKEY, one could potentially follow CNAME but there could be a DNSKEY at
1719 // the "qname" itself. To keep it simple, we don't follow CNAME.
1720
1721 if ((q->qtype == kDNSType_DS || q->qtype == kDNSType_DNSKEY) && (q->qtype != rr->rrtype))
1722 {
1723 debugf("DNSSECRecordAnswersQuestion: %d type resource record matched question %##s (%s), ignoring", rr->rrtype,
1724 q->qname.c, DNSTypeName(q->qtype));
1725 return mDNSfalse;
1726 }
1727
1728 // If we are validating a response using DNSSEC, we might already have the records
1729 // for the "q->qtype" in the cache but we issued a query with DO bit set
1730 // to get the RRSIGs e.g., if you have two questions one of which does not require
1731 // DNSSEC validation. When the RRSIG is added to the cache, we need to deliver
1732 // the response to the question. The RRSIG type won't match the q->qtype and hence
1733 // we need to bypass the check in that case.
1734 if (rr->rrtype == kDNSType_RRSIG && q->ValidatingResponse)
1735 {
1736 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1737 rdataRRSig *rrsig = (rdataRRSig *)rdb->data;
1738 mDNSu16 typeCovered = swap16(rrsig->typeCovered);
1739 debugf("DNSSECRecordAnswersQuestion: Matching RRSIG typeCovered %s", DNSTypeName(typeCovered));
1740 if (typeCovered != kDNSType_CNAME && typeCovered != q->qtype)
1741 {
1742 debugf("DNSSECRecordAnswersQuestion: RRSIG did not match question %##s (%s)", q->qname.c,
1743 DNSTypeName(q->qtype));
1744 return mDNSfalse;
1745 }
1746 LogInfo("DNSSECRecordAnswersQuestion: RRSIG matched question %##s (%s)", q->qname.c,
1747 DNSTypeName(q->qtype));
1748 *checkType = mDNSfalse;
1749 return mDNStrue;
1750 }
1751 // If the NSEC record asserts the non-existence of a name looked up by the question, we would
1752 // typically answer that e.g., the bitmap asserts that q->qtype does not exist. If we have
1753 // to prove the non-existence as required by ValidatingResponse and ValidationRequired question,
1754 // then we should not answer that as it may not be the right one always. We may need more than
1755 // one NSEC to prove the non-existence.
1756 if (rr->rrtype == kDNSType_NSEC && DNSSECQuestion(q))
1757 {
1758 debugf("DNSSECRecordAnswersQuestion: Question %##s (%s) matched record %##s (NSEC)", q->qname.c,
1759 DNSTypeName(q->qtype), rr->name->c);
1760 return mDNSfalse;
1761 }
1762 return mDNStrue;
1763 }
1764
1765 // ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
1766 // SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
1767 // SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
1768 // because it has to check all the way to the end of the names to be sure.
1769 // In cases where we know in advance that the names match it's especially advantageous to skip the
1770 // SameDomainName() call because that's precisely the time when it's most expensive and least useful.
1771
1772 mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1773 {
1774 mDNSBool checkType = mDNStrue;
1775
1776 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1777 // are handled in LocalOnlyRecordAnswersQuestion
1778 if (LocalOnlyOrP2PInterface(rr->InterfaceID))
1779 {
1780 LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1781 return mDNSfalse;
1782 }
1783 if (QuerySuppressed(q))
1784 return mDNSfalse;
1785
1786 if (rr->InterfaceID &&
1787 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1788 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1789
1790 // Resource record received via unicast, the resolver group ID should match ?
1791 if (!rr->InterfaceID)
1792 {
1793 mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1794 mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1795 if (idr != idq) return(mDNSfalse);
1796 if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1797 }
1798
1799 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1800 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1801
1802 // CNAME answers question of any type and a negative cache record should not prevent us from querying other
1803 // valid types at the same name.
1804 if (rr->rrtype == kDNSType_CNAME && rr->RecordType == kDNSRecordTypePacketNegative && rr->rrtype != q->qtype)
1805 return mDNSfalse;
1806
1807 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1808 if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1809 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1810
1811 #if APPLE_OSX_mDNSResponder
1812 if (!mDNSPlatformValidRecordForQuestion(rr, q))
1813 return mDNSfalse;
1814 #endif // APPLE_OSX_mDNSResponder
1815
1816 if (!AnonInfoAnswersQuestion(rr, q))
1817 return mDNSfalse;
1818
1819 return(mDNStrue);
1820 }
1821
1822 mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1823 {
1824 if (!SameNameRecordAnswersQuestion(rr, q))
1825 return mDNSfalse;
1826
1827 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1828 }
1829
1830 // We have a separate function to handle LocalOnly AuthRecords because they can be created with
1831 // a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
1832 // multicast resource records (which has a valid InterfaceID) which can't be used to answer
1833 // unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
1834 // a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
1835 // LocalOnly records are truly identified by ARType in the AuthRecord. As P2P and LocalOnly record
1836 // are kept in the same hash table, we use the same function to make it easy for the callers when
1837 // they walk the hash table to answer LocalOnly/P2P questions
1838 //
1839 mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
1840 {
1841 ResourceRecord *rr = &ar->resrec;
1842
1843 // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
1844 // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
1845 if (RRAny(ar))
1846 {
1847 LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
1848 return mDNSfalse;
1849 }
1850
1851 // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
1852 // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
1853 // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
1854 // the InterfaceID in the resource record.
1855 //
1856 // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
1857
1858 if (rr->InterfaceID &&
1859 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
1860 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1861
1862 // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
1863 // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
1864 // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
1865 //
1866 // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
1867 //
1868 // 2) Question: Any, LocalOnly Record: scoped. This question should be answered with the record because
1869 // traditionally applications never specify scope e.g., getaddrinfo, but need to be able
1870 // to get to /etc/hosts entries.
1871 //
1872 // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
1873 // If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
1874 // non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
1875 // cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
1876 //
1877 // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
1878 // answered with any resource record where as if it has a valid InterfaceID, the scope should match.
1879 //
1880 // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
1881 // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
1882 // against the question.
1883 //
1884 // For P2P, InterfaceIDs of the question and the record should match.
1885
1886 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1887 // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
1888 // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
1889 // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
1890 // with names that don't end in local and have mDNSInterface_LocalOnly set.
1891 //
1892 // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
1893 // a question to match its names, it also has to end in .local and that question can't be a unicast question (See
1894 // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
1895 // and also makes it future proof.
1896
1897 if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1898
1899 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1900 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1901 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1902
1903 if (!AnonInfoAnswersQuestion(rr, q))
1904 return mDNSfalse;
1905
1906 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1907 }
1908
1909 mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1910 {
1911 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1912 // are handled in LocalOnlyRecordAnswersQuestion
1913 if (LocalOnlyOrP2PInterface(rr->InterfaceID))
1914 {
1915 LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1916 return mDNSfalse;
1917 }
1918 if (rr->InterfaceID &&
1919 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1920 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1921
1922 // Resource record received via unicast, the resolver group ID should match ?
1923 // Note that Auth Records are normally setup with NULL InterfaceID and
1924 // both the DNSServers are assumed to be NULL in that case
1925 if (!rr->InterfaceID)
1926 {
1927 mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1928 mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1929 if (idr != idq) return(mDNSfalse);
1930 }
1931
1932 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1933 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1934
1935 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1936
1937 if (!AnonInfoAnswersQuestion(rr, q))
1938 return mDNSfalse;
1939
1940 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1941 }
1942
1943 // This is called with both unicast resource record and multicast resource record. The question that
1944 // received the unicast response could be the regular unicast response from a DNS server or a response
1945 // to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
1946 // question and the resource record because the resource record is not completely initialized in
1947 // mDNSCoreReceiveResponse when this function is called.
1948 mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
1949 {
1950 mDNSBool checkType = mDNStrue;
1951
1952 if (QuerySuppressed(q))
1953 return mDNSfalse;
1954
1955 // For resource records created using multicast, the InterfaceIDs have to match
1956 if (rr->InterfaceID &&
1957 q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1958
1959 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1960 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1961
1962 if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1963
1964 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1965 if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1966
1967 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1968
1969 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1970 }
1971
1972 mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
1973 {
1974 const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
1975 const domainname *const name = estimate ? rr->name : mDNSNULL;
1976 if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength); // Used in update packets to mean "Delete An RRset" (RFC 2136)
1977 else switch (rr->rrtype)
1978 {
1979 case kDNSType_A: return(sizeof(rd->ipv4));
1980
1981 case kDNSType_NS:
1982 case kDNSType_CNAME:
1983 case kDNSType_PTR:
1984 case kDNSType_DNAME: return(CompressedDomainNameLength(&rd->name, name));
1985
1986 case kDNSType_SOA: return (mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
1987 CompressedDomainNameLength(&rd->soa.rname, name) +
1988 5 * sizeof(mDNSOpaque32));
1989
1990 case kDNSType_NULL:
1991 case kDNSType_TSIG:
1992 case kDNSType_TXT:
1993 case kDNSType_X25:
1994 case kDNSType_ISDN:
1995 case kDNSType_LOC:
1996 case kDNSType_DHCID: return(rr->rdlength); // Not self-describing, so have to just trust rdlength
1997
1998 case kDNSType_HINFO: return (mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
1999
2000 case kDNSType_MX:
2001 case kDNSType_AFSDB:
2002 case kDNSType_RT:
2003 case kDNSType_KX: return (mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
2004
2005 case kDNSType_RP: return (mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
2006 CompressedDomainNameLength(&rd->rp.txt, name));
2007
2008 case kDNSType_PX: return (mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
2009 CompressedDomainNameLength(&rd->px.mapx400, name));
2010
2011 case kDNSType_AAAA: return(sizeof(rd->ipv6));
2012
2013 case kDNSType_SRV: return (mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
2014
2015 case kDNSType_OPT: return(rr->rdlength);
2016
2017 case kDNSType_NSEC: {
2018 domainname *next = (domainname *)rd->data;
2019 int dlen = DomainNameLength(next);
2020 //
2021 if (UNICAST_NSEC(rr))
2022 return (mDNSu16)(CompressedDomainNameLength(next, name) + rr->rdlength - dlen);
2023 else
2024 return (mDNSu16)((estimate ? 2 : dlen) + rr->rdlength - dlen);
2025 }
2026
2027 default: debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
2028 return(rr->rdlength);
2029 }
2030 }
2031
2032 // When a local client registers (or updates) a record, we use this routine to do some simple validation checks
2033 // to help reduce the risk of bogus malformed data on the network
2034 mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
2035 {
2036 mDNSu16 len;
2037
2038 switch(rrtype)
2039 {
2040 case kDNSType_A: return(rdlength == sizeof(mDNSv4Addr));
2041
2042 case kDNSType_NS: // Same as PTR
2043 case kDNSType_MD: // Same as PTR
2044 case kDNSType_MF: // Same as PTR
2045 case kDNSType_CNAME: // Same as PTR
2046 //case kDNSType_SOA not checked
2047 case kDNSType_MB: // Same as PTR
2048 case kDNSType_MG: // Same as PTR
2049 case kDNSType_MR: // Same as PTR
2050 //case kDNSType_NULL not checked (no specified format, so always valid)
2051 //case kDNSType_WKS not checked
2052 case kDNSType_PTR: len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
2053 return(len <= MAX_DOMAIN_NAME && rdlength == len);
2054
2055 case kDNSType_HINFO: // Same as TXT (roughly)
2056 case kDNSType_MINFO: // Same as TXT (roughly)
2057 case kDNSType_TXT: if (!rdlength) return(mDNSfalse); // TXT record has to be at least one byte (RFC 1035)
2058 {
2059 const mDNSu8 *ptr = rd->u.txt.c;
2060 const mDNSu8 *end = rd->u.txt.c + rdlength;
2061 while (ptr < end) ptr += 1 + ptr[0];
2062 return (ptr == end);
2063 }
2064
2065 case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr));
2066
2067 case kDNSType_MX: // Must be at least two-byte preference, plus domainname
2068 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2069 len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
2070 return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
2071
2072 case kDNSType_SRV: // Must be at least priority+weight+port, plus domainname
2073 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2074 len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
2075 return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
2076
2077 //case kDNSType_NSEC not checked
2078
2079 default: return(mDNStrue); // Allow all other types without checking
2080 }
2081 }
2082
2083 // ***************************************************************************
2084 #if COMPILER_LIKES_PRAGMA_MARK
2085 #pragma mark -
2086 #pragma mark - DNS Message Creation Functions
2087 #endif
2088
2089 mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
2090 {
2091 h->id = id;
2092 h->flags = flags;
2093 h->numQuestions = 0;
2094 h->numAnswers = 0;
2095 h->numAuthorities = 0;
2096 h->numAdditionals = 0;
2097 }
2098
2099 mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
2100 {
2101 const mDNSu8 *result = end - *domname - 1;
2102
2103 if (*domname == 0) return(mDNSNULL); // There's no point trying to match just the root label
2104
2105 // This loop examines each possible starting position in packet, starting end of the packet and working backwards
2106 while (result >= base)
2107 {
2108 // If the length byte and first character of the label match, then check further to see
2109 // if this location in the packet will yield a useful name compression pointer.
2110 if (result[0] == domname[0] && result[1] == domname[1])
2111 {
2112 const mDNSu8 *name = domname;
2113 const mDNSu8 *targ = result;
2114 while (targ + *name < end)
2115 {
2116 // First see if this label matches
2117 int i;
2118 const mDNSu8 *pointertarget;
2119 for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
2120 if (i <= *name) break; // If label did not match, bail out
2121 targ += 1 + *name; // Else, did match, so advance target pointer
2122 name += 1 + *name; // and proceed to check next label
2123 if (*name == 0 && *targ == 0) return(result); // If no more labels, we found a match!
2124 if (*name == 0) break; // If no more labels to match, we failed, so bail out
2125
2126 // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
2127 if (targ[0] < 0x40) continue; // If length value, continue to check next label
2128 if (targ[0] < 0xC0) break; // If 40-BF, not valid
2129 if (targ+1 >= end) break; // Second byte not present!
2130 pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
2131 if (targ < pointertarget) break; // Pointertarget must point *backwards* in the packet
2132 if (pointertarget[0] >= 0x40) break; // Pointertarget must point to a valid length byte
2133 targ = pointertarget;
2134 }
2135 }
2136 result--; // We failed to match at this search position, so back up the tentative result pointer and try again
2137 }
2138 return(mDNSNULL);
2139 }
2140
2141 // domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
2142 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
2143 // end points to the end of the message so far
2144 // ptr points to where we want to put the name
2145 // limit points to one byte past the end of the buffer that we must not overrun
2146 // domainname is the name to put
2147 mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
2148 mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
2149 {
2150 const mDNSu8 *const base = (const mDNSu8 *)msg;
2151 const mDNSu8 * np = name->c;
2152 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
2153 const mDNSu8 * pointer = mDNSNULL;
2154 const mDNSu8 *const searchlimit = ptr;
2155
2156 if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
2157
2158 if (!*np) // If just writing one-byte root label, make sure we have space for that
2159 {
2160 if (ptr >= limit) return(mDNSNULL);
2161 }
2162 else // else, loop through writing labels and/or a compression offset
2163 {
2164 do {
2165 if (*np > MAX_DOMAIN_LABEL)
2166 { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
2167
2168 // This check correctly allows for the final trailing root label:
2169 // e.g.
2170 // Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
2171 // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
2172 // We know that max will be at name->c[256]
2173 // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
2174 // six bytes, then exit the loop, write the final terminating root label, and the domain
2175 // name we've written is exactly 256 bytes long, exactly at the correct legal limit.
2176 // If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
2177 if (np + 1 + *np >= max)
2178 { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
2179
2180 if (base) pointer = FindCompressionPointer(base, searchlimit, np);
2181 if (pointer) // Use a compression pointer if we can
2182 {
2183 const mDNSu16 offset = (mDNSu16)(pointer - base);
2184 if (ptr+2 > limit) return(mDNSNULL); // If we don't have two bytes of space left, give up
2185 *ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
2186 *ptr++ = (mDNSu8)( offset & 0xFF);
2187 return(ptr);
2188 }
2189 else // Else copy one label and try again
2190 {
2191 int i;
2192 mDNSu8 len = *np++;
2193 // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
2194 if (ptr + 1 + len >= limit) return(mDNSNULL);
2195 *ptr++ = len;
2196 for (i=0; i<len; i++) *ptr++ = *np++;
2197 }
2198 } while (*np); // While we've got characters remaining in the name, continue
2199 }
2200
2201 *ptr++ = 0; // Put the final root label
2202 return(ptr);
2203 }
2204
2205 mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
2206 {
2207 ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
2208 ptr[1] = (mDNSu8)((val ) & 0xFF);
2209 return ptr + sizeof(mDNSOpaque16);
2210 }
2211
2212 mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
2213 {
2214 ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
2215 ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
2216 ptr[2] = (mDNSu8)((val >> 8) & 0xFF);
2217 ptr[3] = (mDNSu8)((val ) & 0xFF);
2218 return ptr + sizeof(mDNSu32);
2219 }
2220
2221 // Copy the RDATA information. The actual in memory storage for the data might be bigger than what the rdlength
2222 // says. Hence, the only way to copy out the data from a resource record is to use putRData.
2223 // msg points to the message we're building (pass mDNSNULL for "msg" if we don't want to use compression pointers)
2224 mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
2225 {
2226 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
2227 switch (rr->rrtype)
2228 {
2229 case kDNSType_A: if (rr->rdlength != 4)
2230 { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
2231 if (ptr + 4 > limit) return(mDNSNULL);
2232 *ptr++ = rdb->ipv4.b[0];
2233 *ptr++ = rdb->ipv4.b[1];
2234 *ptr++ = rdb->ipv4.b[2];
2235 *ptr++ = rdb->ipv4.b[3];
2236 return(ptr);
2237
2238 case kDNSType_NS:
2239 case kDNSType_CNAME:
2240 case kDNSType_PTR:
2241 case kDNSType_DNAME: return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
2242
2243 case kDNSType_SOA: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
2244 if (!ptr) return(mDNSNULL);
2245 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
2246 if (!ptr || ptr + 20 > limit) return(mDNSNULL);
2247 ptr = putVal32(ptr, rdb->soa.serial);
2248 ptr = putVal32(ptr, rdb->soa.refresh);
2249 ptr = putVal32(ptr, rdb->soa.retry);
2250 ptr = putVal32(ptr, rdb->soa.expire);
2251 ptr = putVal32(ptr, rdb->soa.min);
2252 return(ptr);
2253
2254 case kDNSType_NULL:
2255 case kDNSType_HINFO:
2256 case kDNSType_TSIG:
2257 case kDNSType_TXT:
2258 case kDNSType_X25:
2259 case kDNSType_ISDN:
2260 case kDNSType_LOC:
2261 case kDNSType_DHCID: if (ptr + rr->rdlength > limit) return(mDNSNULL);
2262 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2263 return(ptr + rr->rdlength);
2264
2265 case kDNSType_MX:
2266 case kDNSType_AFSDB:
2267 case kDNSType_RT:
2268 case kDNSType_KX: if (ptr + 3 > limit) return(mDNSNULL);
2269 ptr = putVal16(ptr, rdb->mx.preference);
2270 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
2271
2272 case kDNSType_RP: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
2273 if (!ptr) return(mDNSNULL);
2274 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
2275 return(ptr);
2276
2277 case kDNSType_PX: if (ptr + 5 > limit) return(mDNSNULL);
2278 ptr = putVal16(ptr, rdb->px.preference);
2279 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
2280 if (!ptr) return(mDNSNULL);
2281 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
2282 return(ptr);
2283
2284 case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6))
2285 { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
2286 if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
2287 mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
2288 return(ptr + sizeof(rdb->ipv6));
2289
2290 case kDNSType_SRV: if (ptr + 7 > limit) return(mDNSNULL);
2291 *ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
2292 *ptr++ = (mDNSu8)(rdb->srv.priority & 0xFF);
2293 *ptr++ = (mDNSu8)(rdb->srv.weight >> 8);
2294 *ptr++ = (mDNSu8)(rdb->srv.weight & 0xFF);
2295 *ptr++ = rdb->srv.port.b[0];
2296 *ptr++ = rdb->srv.port.b[1];
2297 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
2298
2299 case kDNSType_OPT: {
2300 int len = 0;
2301 const rdataOPT *opt;
2302 const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
2303 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2304 len += DNSOpt_Data_Space(opt);
2305 if (ptr + len > limit)
2306 {
2307 LogMsg("ERROR: putOptRData - out of space");
2308 return mDNSNULL;
2309 }
2310 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2311 {
2312 const int space = DNSOpt_Data_Space(opt);
2313 ptr = putVal16(ptr, opt->opt);
2314 ptr = putVal16(ptr, (mDNSu16)space - 4);
2315 switch (opt->opt)
2316 {
2317 case kDNSOpt_LLQ:
2318 ptr = putVal16(ptr, opt->u.llq.vers);
2319 ptr = putVal16(ptr, opt->u.llq.llqOp);
2320 ptr = putVal16(ptr, opt->u.llq.err);
2321 mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8); // 8-byte id
2322 ptr += 8;
2323 ptr = putVal32(ptr, opt->u.llq.llqlease);
2324 break;
2325 case kDNSOpt_Lease:
2326 ptr = putVal32(ptr, opt->u.updatelease);
2327 break;
2328 case kDNSOpt_Owner:
2329 *ptr++ = opt->u.owner.vers;
2330 *ptr++ = opt->u.owner.seq;
2331 mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6); // 6-byte Host identifier
2332 ptr += 6;
2333 if (space >= DNSOpt_OwnerData_ID_Wake_Space)
2334 {
2335 mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6); // 6-byte interface MAC
2336 ptr += 6;
2337 if (space > DNSOpt_OwnerData_ID_Wake_Space)
2338 {
2339 mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
2340 ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
2341 }
2342 }
2343 break;
2344 case kDNSOpt_Trace:
2345 *ptr++ = opt->u.tracer.platf;
2346 ptr = putVal32(ptr, opt->u.tracer.mDNSv);
2347 break;
2348 }
2349 }
2350 return ptr;
2351 }
2352
2353 case kDNSType_NSEC: {
2354 // For NSEC records, rdlength represents the exact number of bytes
2355 // of in memory storage.
2356 mDNSu8 *nsec = (mDNSu8 *)rdb->data;
2357 domainname *name = (domainname *)nsec;
2358 const int dlen = DomainNameLength(name);
2359 nsec += dlen;
2360 // This function is called when we are sending a NSEC record as part of mDNS,
2361 // or to copy the data to any other buffer needed which could be a mDNS or uDNS
2362 // NSEC record. The only time compression is used that when we are sending it
2363 // in mDNS (indicated by non-NULL "msg") and hence we handle mDNS case
2364 // separately.
2365 if (!UNICAST_NSEC(rr))
2366 {
2367 mDNSu8 *save = ptr;
2368 int i, j, wlen;
2369 wlen = *(nsec + 1);
2370 nsec += 2; // Skip the window number and len
2371
2372 // For our simplified use of NSEC synthetic records:
2373 //
2374 // nextname is always the record's own name,
2375 // the block number is always 0,
2376 // the count byte is a value in the range 1-32,
2377 // followed by the 1-32 data bytes
2378 //
2379 // Note: When we send the NSEC record in mDNS, the window size is set to 32.
2380 // We need to find out what the last non-NULL byte is. If we are copying out
2381 // from an RDATA, we have the right length. As we need to handle both the case,
2382 // we loop to find the right value instead of blindly using len to copy.
2383
2384 for (i=wlen; i>0; i--) if (nsec[i-1]) break;
2385
2386 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2387 if (!ptr) { LogInfo("putRData: Can't put name, Length %d, record %##s", limit - save, rr->name->c); return(mDNSNULL); }
2388 if (i) // Only put a block if at least one type exists for this name
2389 {
2390 if (ptr + 2 + i > limit) { LogInfo("putRData: Can't put window, Length %d, i %d, record %##s", limit - ptr, i, rr->name->c); return(mDNSNULL); }
2391 *ptr++ = 0;
2392 *ptr++ = (mDNSu8)i;
2393 for (j=0; j<i; j++) *ptr++ = nsec[j];
2394 }
2395 return ptr;
2396 }
2397 else
2398 {
2399 int win, wlen;
2400 int len = rr->rdlength - dlen;
2401
2402 // Sanity check whether the bitmap is good
2403 while (len)
2404 {
2405 if (len < 3)
2406 { LogMsg("putRData: invalid length %d", len); return mDNSNULL; }
2407
2408 win = *nsec++;
2409 wlen = *nsec++;
2410 len -= 2;
2411 if (len < wlen || wlen < 1 || wlen > 32)
2412 { LogMsg("putRData: invalid window length %d", wlen); return mDNSNULL; }
2413 if (win < 0 || win >= 256)
2414 { LogMsg("putRData: invalid window %d", win); return mDNSNULL; }
2415
2416 nsec += wlen;
2417 len -= wlen;
2418 }
2419 if (ptr + rr->rdlength > limit) { LogMsg("putRData: NSEC rdlength beyond limit %##s (%s), ptr %p, rdlength %d, limit %p", rr->name->c, DNSTypeName(rr->rrtype), ptr, rr->rdlength, limit); return(mDNSNULL);}
2420
2421 // No compression allowed for "nxt", just copy the data.
2422 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2423 return(ptr + rr->rdlength);
2424 }
2425 }
2426
2427 default: debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
2428 if (ptr + rr->rdlength > limit) return(mDNSNULL);
2429 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2430 return(ptr + rr->rdlength);
2431 }
2432 }
2433
2434 #define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
2435
2436 mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
2437 {
2438 mDNSu8 *endofrdata;
2439 mDNSu16 actualLength;
2440 // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
2441 const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
2442
2443 if (rr->RecordType == kDNSRecordTypeUnregistered)
2444 {
2445 LogMsg("PutResourceRecordTTLWithLimit ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2446 return(ptr);
2447 }
2448
2449 if (!ptr)
2450 {
2451 LogMsg("PutResourceRecordTTLWithLimit ptr is null %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2452 return(mDNSNULL);
2453 }
2454
2455 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2456 // If we're out-of-space, return mDNSNULL
2457 if (!ptr || ptr + 10 >= limit)
2458 {
2459 LogInfo("PutResourceRecordTTLWithLimit: can't put name, out of space %##s (%s), ptr %p, limit %p", rr->name->c,
2460 DNSTypeName(rr->rrtype), ptr, limit);
2461 return(mDNSNULL);
2462 }
2463 ptr[0] = (mDNSu8)(rr->rrtype >> 8);
2464 ptr[1] = (mDNSu8)(rr->rrtype & 0xFF);
2465 ptr[2] = (mDNSu8)(rr->rrclass >> 8);
2466 ptr[3] = (mDNSu8)(rr->rrclass & 0xFF);
2467 ptr[4] = (mDNSu8)((ttl >> 24) & 0xFF);
2468 ptr[5] = (mDNSu8)((ttl >> 16) & 0xFF);
2469 ptr[6] = (mDNSu8)((ttl >> 8) & 0xFF);
2470 ptr[7] = (mDNSu8)( ttl & 0xFF);
2471 // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
2472
2473 endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
2474 if (!endofrdata)
2475 {
2476 LogInfo("PutResourceRecordTTLWithLimit: Ran out of space in PutResourceRecord for %##s (%s), ptr %p, limit %p", rr->name->c,
2477 DNSTypeName(rr->rrtype), ptr+10, limit);
2478 return(mDNSNULL);
2479 }
2480
2481 // Go back and fill in the actual number of data bytes we wrote
2482 // (actualLength can be less than rdlength when domain name compression is used)
2483 actualLength = (mDNSu16)(endofrdata - ptr - 10);
2484 ptr[8] = (mDNSu8)(actualLength >> 8);
2485 ptr[9] = (mDNSu8)(actualLength & 0xFF);
2486
2487 if (count) (*count)++;
2488 else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2489 return(endofrdata);
2490 }
2491
2492 mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
2493 {
2494 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
2495 if (!ptr || ptr + 10 > limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
2496 ptr[0] = (mDNSu8)(rr->resrec.rrtype >> 8); // Put type
2497 ptr[1] = (mDNSu8)(rr->resrec.rrtype & 0xFF);
2498 ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8); // Put class
2499 ptr[3] = (mDNSu8)(rr->resrec.rrclass & 0xFF);
2500 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // TTL is zero
2501 ptr[8] = ptr[9] = 0; // RDATA length is zero
2502 (*count)++;
2503 return(ptr + 10);
2504 }
2505
2506 mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
2507 {
2508 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2509 if (!ptr || ptr+4 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
2510 ptr[0] = (mDNSu8)(rrtype >> 8);
2511 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2512 ptr[2] = (mDNSu8)(rrclass >> 8);
2513 ptr[3] = (mDNSu8)(rrclass & 0xFF);
2514 msg->h.numQuestions++;
2515 return(ptr+4);
2516 }
2517
2518 // for dynamic updates
2519 mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
2520 {
2521 ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
2522 if (!ptr || ptr + 4 > limit) return mDNSNULL; // If we're out-of-space, return NULL
2523 *ptr++ = (mDNSu8)(kDNSType_SOA >> 8);
2524 *ptr++ = (mDNSu8)(kDNSType_SOA & 0xFF);
2525 *ptr++ = zoneClass.b[0];
2526 *ptr++ = zoneClass.b[1];
2527 msg->h.mDNS_numZones++;
2528 return ptr;
2529 }
2530
2531 // for dynamic updates
2532 mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
2533 {
2534 AuthRecord prereq;
2535 mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
2536 AssignDomainName(&prereq.namestorage, name);
2537 prereq.resrec.rrtype = kDNSQType_ANY;
2538 prereq.resrec.rrclass = kDNSClass_NONE;
2539 return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
2540 }
2541
2542 // for dynamic updates
2543 mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
2544 {
2545 // deletion: specify record w/ TTL 0, class NONE
2546 const mDNSu16 origclass = rr->rrclass;
2547 rr->rrclass = kDNSClass_NONE;
2548 ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
2549 rr->rrclass = origclass;
2550 return ptr;
2551 }
2552
2553 // for dynamic updates
2554 mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
2555 {
2556 // deletion: specify record w/ TTL 0, class NONE
2557 const mDNSu16 origclass = rr->rrclass;
2558 rr->rrclass = kDNSClass_NONE;
2559 ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
2560 rr->rrclass = origclass;
2561 return ptr;
2562 }
2563
2564 mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
2565 {
2566 mDNSu16 class = kDNSQClass_ANY;
2567
2568 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2569 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2570 ptr[0] = (mDNSu8)(rrtype >> 8);
2571 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2572 ptr[2] = (mDNSu8)(class >> 8);
2573 ptr[3] = (mDNSu8)(class & 0xFF);
2574 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2575 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2576
2577 msg->h.mDNS_numUpdates++;
2578 return ptr + 10;
2579 }
2580
2581 // for dynamic updates
2582 mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
2583 {
2584 const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
2585 mDNSu16 class = kDNSQClass_ANY;
2586 mDNSu16 rrtype = kDNSQType_ANY;
2587
2588 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2589 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2590 ptr[0] = (mDNSu8)(rrtype >> 8);
2591 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2592 ptr[2] = (mDNSu8)(class >> 8);
2593 ptr[3] = (mDNSu8)(class & 0xFF);
2594 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2595 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2596
2597 msg->h.mDNS_numUpdates++;
2598 return ptr + 10;
2599 }
2600
2601 // for dynamic updates
2602 mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *ptr, mDNSu32 lease)
2603 {
2604 AuthRecord rr;
2605 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2606 rr.resrec.rrclass = NormalMaxDNSMessageData;
2607 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
2608 rr.resrec.rdestimate = sizeof(rdataOPT);
2609 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
2610 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2611 ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.numAdditionals, &rr.resrec, 0);
2612 if (!ptr) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
2613 return ptr;
2614 }
2615
2616 // for dynamic updates
2617 mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *ptr, mDNSu32 lease, mDNSu8 *limit)
2618 {
2619 AuthRecord rr;
2620 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2621 rr.resrec.rrclass = NormalMaxDNSMessageData;
2622 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
2623 rr.resrec.rdestimate = sizeof(rdataOPT);
2624 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
2625 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2626 ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.numAdditionals, &rr.resrec, 0, limit);
2627 if (!ptr) { LogMsg("ERROR: putUpdateLeaseWithLimit - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2628 return ptr;
2629 }
2630
2631 mDNSexport mDNSu8 *putDNSSECOption(DNSMessage *msg, mDNSu8 *end, mDNSu8 *limit)
2632 {
2633 AuthRecord rr;
2634 mDNSu32 ttl = 0;
2635
2636 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2637 // It is still not clear what the right size is. We will have to fine tune this once we do
2638 // a lot of testing with DNSSEC.
2639 rr.resrec.rrclass = 4096;
2640 rr.resrec.rdlength = 0;
2641 rr.resrec.rdestimate = 0;
2642 // set the DO bit
2643 ttl |= 0x8000;
2644 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, ttl, limit);
2645 if (!end) { LogMsg("ERROR: putDNSSECOption - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2646 return end;
2647 }
2648
2649 mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
2650 {
2651 if (authInfo && authInfo->AutoTunnel)
2652 {
2653 AuthRecord hinfo;
2654 mDNSu8 *h = hinfo.rdatastorage.u.data;
2655 mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
2656 mDNSu8 *newptr;
2657 mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2658 AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
2659 AppendDomainName (&hinfo.namestorage, &authInfo->domain);
2660 hinfo.resrec.rroriginalttl = 0;
2661 mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
2662 h += 1 + (int)h[0];
2663 mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
2664 hinfo.resrec.rdlength = len;
2665 hinfo.resrec.rdestimate = len;
2666 newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
2667 return newptr;
2668 }
2669 else
2670 return end;
2671 }
2672
2673 // ***************************************************************************
2674 #if COMPILER_LIKES_PRAGMA_MARK
2675 #pragma mark -
2676 #pragma mark - DNS Message Parsing Functions
2677 #endif
2678
2679 mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
2680 {
2681 mDNSu32 sum = 0;
2682 const mDNSu8 *c;
2683
2684 for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
2685 {
2686 sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
2687 (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
2688 sum = (sum<<3) | (sum>>29);
2689 }
2690 if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
2691 return(sum);
2692 }
2693
2694 mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
2695 {
2696 domainname *target;
2697 if (NewRData)
2698 {
2699 rr->rdata = NewRData;
2700 rr->rdlength = rdlength;
2701 }
2702 // Must not try to get target pointer until after updating rr->rdata
2703 target = GetRRDomainNameTarget(rr);
2704 rr->rdlength = GetRDLength(rr, mDNSfalse);
2705 rr->rdestimate = GetRDLength(rr, mDNStrue);
2706 rr->rdatahash = target ? DomainNameHashValue(target) : RDataHashValue(rr);
2707 }
2708
2709 mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
2710 {
2711 mDNSu16 total = 0;
2712
2713 if (ptr < (mDNSu8*)msg || ptr >= end)
2714 { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2715
2716 while (1) // Read sequence of labels
2717 {
2718 const mDNSu8 len = *ptr++; // Read length of this label
2719 if (len == 0) return(ptr); // If length is zero, that means this name is complete
2720 switch (len & 0xC0)
2721 {
2722 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2723 { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2724 if (total + 1 + len >= MAX_DOMAIN_NAME) // Remember: expect at least one more byte for the root label
2725 { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2726 ptr += len;
2727 total += 1 + len;
2728 break;
2729
2730 case 0x40: debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
2731 case 0x80: debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
2732 case 0xC0: return(ptr+1);
2733 }
2734 }
2735 }
2736
2737 // Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
2738 mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
2739 domainname *const name)
2740 {
2741 const mDNSu8 *nextbyte = mDNSNULL; // Record where we got to before we started following pointers
2742 mDNSu8 *np = name->c; // Name pointer
2743 const mDNSu8 *const limit = np + MAX_DOMAIN_NAME; // Limit so we don't overrun buffer
2744
2745 if (ptr < (mDNSu8*)msg || ptr >= end)
2746 { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2747
2748 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2749
2750 while (1) // Read sequence of labels
2751 {
2752 int i;
2753 mDNSu16 offset;
2754 const mDNSu8 len = *ptr++; // Read length of this label
2755 if (len == 0) break; // If length is zero, that means this name is complete
2756 switch (len & 0xC0)
2757 {
2758
2759 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2760 { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2761 if (np + 1 + len >= limit) // Remember: expect at least one more byte for the root label
2762 { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2763 *np++ = len;
2764 for (i=0; i<len; i++) *np++ = *ptr++;
2765 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2766 break;
2767
2768 case 0x40: debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
2769 return(mDNSNULL);
2770
2771 case 0x80: debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
2772
2773 case 0xC0: if (ptr >= end)
2774 { debugf("getDomainName: Malformed compression label (overruns packet end)"); return(mDNSNULL); }
2775 offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
2776 if (!nextbyte) nextbyte = ptr; // Record where we got to before we started following pointers
2777 ptr = (mDNSu8 *)msg + offset;
2778 if (ptr < (mDNSu8*)msg || ptr >= end)
2779 { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
2780 if (*ptr & 0xC0)
2781 { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
2782 break;
2783 }
2784 }
2785
2786 if (nextbyte) return(nextbyte);
2787 else return(ptr);
2788 }
2789
2790 mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2791 {
2792 mDNSu16 pktrdlength;
2793
2794 ptr = skipDomainName(msg, ptr, end);
2795 if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
2796
2797 if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2798 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
2799 ptr += 10;
2800 if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2801
2802 return(ptr + pktrdlength);
2803 }
2804
2805 // Sanity check whether the NSEC/NSEC3 bitmap is good
2806 mDNSlocal mDNSu8 *SanityCheckBitMap(const mDNSu8 *bmap, const mDNSu8 *end, int len)
2807 {
2808 int win, wlen;
2809
2810 while (bmap < end)
2811 {
2812 if (len < 3)
2813 {
2814 LogInfo("SanityCheckBitMap: invalid length %d", len);
2815 return mDNSNULL;
2816 }
2817
2818 win = *bmap++;
2819 wlen = *bmap++;
2820 len -= 2;
2821 if (len < wlen || wlen < 1 || wlen > 32)
2822 {
2823 LogInfo("SanityCheckBitMap: invalid window length %d", wlen);
2824 return mDNSNULL;
2825 }
2826 if (win < 0 || win >= 256)
2827 {
2828 LogInfo("SanityCheckBitMap: invalid window %d", win);
2829 return mDNSNULL;
2830 }
2831
2832 bmap += wlen;
2833 len -= wlen;
2834 }
2835 return (mDNSu8 *)bmap;
2836 }
2837
2838 // This function is called with "msg" when we receive a DNS message and needs to parse a single resource record
2839 // pointed to by "ptr". Some resource records like SOA, SRV are converted to host order and also expanded
2840 // (domainnames are expanded to 255 bytes) when stored in memory.
2841 //
2842 // This function can also be called with "NULL" msg to parse a single resource record pointed to by ptr.
2843 // The caller can do this only if the names in the resource records are not compressed and validity of the
2844 // resource record has already been done before. DNSSEC currently uses it this way.
2845 mDNSexport mDNSBool SetRData(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *end,
2846 LargeCacheRecord *const largecr, mDNSu16 rdlength)
2847 {
2848 CacheRecord *const rr = &largecr->r;
2849 RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
2850
2851 switch (rr->resrec.rrtype)
2852 {
2853 case kDNSType_A:
2854 if (rdlength != sizeof(mDNSv4Addr))
2855 goto fail;
2856 rdb->ipv4.b[0] = ptr[0];
2857 rdb->ipv4.b[1] = ptr[1];
2858 rdb->ipv4.b[2] = ptr[2];
2859 rdb->ipv4.b[3] = ptr[3];
2860 break;
2861
2862 case kDNSType_NS:
2863 case kDNSType_MD:
2864 case kDNSType_MF:
2865 case kDNSType_CNAME:
2866 case kDNSType_MB:
2867 case kDNSType_MG:
2868 case kDNSType_MR:
2869 case kDNSType_PTR:
2870 case kDNSType_NSAP_PTR:
2871 case kDNSType_DNAME:
2872 if (msg)
2873 {
2874 ptr = getDomainName(msg, ptr, end, &rdb->name);
2875 }
2876 else
2877 {
2878 AssignDomainName(&rdb->name, (domainname *)ptr);
2879 ptr += DomainNameLength(&rdb->name);
2880 }
2881 if (ptr != end)
2882 {
2883 debugf("SetRData: Malformed CNAME/PTR RDATA name");
2884 goto fail;
2885 }
2886 break;
2887
2888 case kDNSType_SOA:
2889 if (msg)
2890 {
2891 ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
2892 }
2893 else
2894 {
2895 AssignDomainName(&rdb->soa.mname, (domainname *)ptr);
2896 ptr += DomainNameLength(&rdb->soa.mname);
2897 }
2898 if (!ptr)
2899 {
2900 debugf("SetRData: Malformed SOA RDATA mname");
2901 goto fail;
2902 }
2903 if (msg)
2904 {
2905 ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
2906 }
2907 else
2908 {
2909 AssignDomainName(&rdb->soa.rname, (domainname *)ptr);
2910 ptr += DomainNameLength(&rdb->soa.rname);
2911 }
2912 if (!ptr)
2913 {
2914 debugf("SetRData: Malformed SOA RDATA rname");
2915 goto fail;
2916 }
2917 if (ptr + 0x14 != end)
2918 {
2919 debugf("SetRData: Malformed SOA RDATA");
2920 goto fail;
2921 }
2922 rdb->soa.serial = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
2923 rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
2924 rdb->soa.retry = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
2925 rdb->soa.expire = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
2926 rdb->soa.min = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
2927 break;
2928
2929 case kDNSType_NULL:
2930 case kDNSType_HINFO:
2931 case kDNSType_TXT:
2932 case kDNSType_X25:
2933 case kDNSType_ISDN:
2934 case kDNSType_LOC:
2935 case kDNSType_DHCID:
2936 rr->resrec.rdlength = rdlength;
2937 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
2938 break;
2939
2940 case kDNSType_MX:
2941 case kDNSType_AFSDB:
2942 case kDNSType_RT:
2943 case kDNSType_KX:
2944 // Preference + domainname
2945 if (rdlength < 3)
2946 goto fail;
2947 rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2948 ptr += 2;
2949 if (msg)
2950 {
2951 ptr = getDomainName(msg, ptr, end, &rdb->mx.exchange);
2952 }
2953 else
2954 {
2955 AssignDomainName(&rdb->mx.exchange, (domainname *)ptr);
2956 ptr += DomainNameLength(&rdb->mx.exchange);
2957 }
2958 if (ptr != end)
2959 {
2960 debugf("SetRData: Malformed MX name");
2961 goto fail;
2962 }
2963 break;
2964
2965 case kDNSType_MINFO:
2966 case kDNSType_RP:
2967 // Domainname + domainname
2968 if (msg)
2969 {
2970 ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox);
2971 }
2972 else
2973 {
2974 AssignDomainName(&rdb->rp.mbox, (domainname *)ptr);
2975 ptr += DomainNameLength(&rdb->rp.mbox);
2976 }
2977 if (!ptr)
2978 {
2979 debugf("SetRData: Malformed RP mbox");
2980 goto fail;
2981 }
2982 if (msg)
2983 {
2984 ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
2985 }
2986 else
2987 {
2988 AssignDomainName(&rdb->rp.txt, (domainname *)ptr);
2989 ptr += DomainNameLength(&rdb->rp.txt);
2990 }
2991 if (ptr != end)
2992 {
2993 debugf("SetRData: Malformed RP txt");
2994 goto fail;
2995 }
2996 break;
2997
2998 case kDNSType_PX:
2999 // Preference + domainname + domainname
3000 if (rdlength < 4)
3001 goto fail;
3002 rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3003 ptr += 2;
3004 if (msg)
3005 {
3006 ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
3007 }
3008 else
3009 {
3010 AssignDomainName(&rdb->px.map822, (domainname *)ptr);
3011 ptr += DomainNameLength(&rdb->px.map822);
3012 }
3013 if (!ptr)
3014 {
3015 debugf("SetRData: Malformed PX map822");
3016 goto fail;
3017 }
3018 if (msg)
3019 {
3020 ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
3021 }
3022 else
3023 {
3024 AssignDomainName(&rdb->px.mapx400, (domainname *)ptr);
3025 ptr += DomainNameLength(&rdb->px.mapx400);
3026 }
3027 if (ptr != end)
3028 {
3029 debugf("SetRData: Malformed PX mapx400");
3030 goto fail;
3031 }
3032 break;
3033
3034 case kDNSType_AAAA:
3035 if (rdlength != sizeof(mDNSv6Addr))
3036 goto fail;
3037 mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
3038 break;
3039
3040 case kDNSType_SRV:
3041 // Priority + weight + port + domainname
3042 if (rdlength < 7)
3043 goto fail;
3044 rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3045 rdb->srv.weight = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3046 rdb->srv.port.b[0] = ptr[4];
3047 rdb->srv.port.b[1] = ptr[5];
3048 ptr += 6;
3049 if (msg)
3050 {
3051 ptr = getDomainName(msg, ptr, end, &rdb->srv.target);
3052 }
3053 else
3054 {
3055 AssignDomainName(&rdb->srv.target, (domainname *)ptr);
3056 ptr += DomainNameLength(&rdb->srv.target);
3057 }
3058 if (ptr != end)
3059 {
3060 debugf("SetRData: Malformed SRV RDATA name");
3061 goto fail;
3062 }
3063 break;
3064
3065 case kDNSType_NAPTR:
3066 {
3067 int savelen, len;
3068 domainname name;
3069 const mDNSu8 *orig = ptr;
3070
3071 // Make sure the data is parseable and within the limits. DNSSEC code looks at
3072 // the domain name in the end for a valid domainname.
3073 //
3074 // Fixed length: Order, preference (4 bytes)
3075 // Variable length: flags, service, regexp, domainname
3076
3077 if (rdlength < 8)
3078 goto fail;
3079 // Order, preference.
3080 ptr += 4;
3081 // Parse flags, Service and Regexp
3082 // length in the first byte does not include the length byte itself
3083 len = *ptr + 1;
3084 ptr += len;
3085 if (ptr >= end)
3086 {
3087 LogInfo("SetRData: Malformed NAPTR flags");
3088 goto fail;
3089 }
3090
3091 // Service
3092 len = *ptr + 1;
3093 ptr += len;
3094 if (ptr >= end)
3095 {
3096 LogInfo("SetRData: Malformed NAPTR service");
3097 goto fail;
3098 }
3099
3100 // Regexp
3101 len = *ptr + 1;
3102 ptr += len;
3103 if (ptr >= end)
3104 {
3105 LogInfo("SetRData: Malformed NAPTR regexp");
3106 goto fail;
3107 }
3108
3109 savelen = ptr - orig;
3110
3111 // RFC 2915 states that name compression is not allowed for this field. But RFC 3597
3112 // states that for NAPTR we should decompress. We make sure that we store the full
3113 // name rather than the compressed name
3114 if (msg)
3115 {
3116 ptr = getDomainName(msg, ptr, end, &name);
3117 }
3118 else
3119 {
3120 AssignDomainName(&name, (domainname *)ptr);
3121 ptr += DomainNameLength(&name);
3122 }
3123 if (ptr != end)
3124 {
3125 LogInfo("SetRData: Malformed NAPTR RDATA name");
3126 goto fail;
3127 }
3128
3129 rr->resrec.rdlength = savelen + DomainNameLength(&name);
3130 // The uncompressed size should not exceed the limits
3131 if (rr->resrec.rdlength > MaximumRDSize)
3132 {
3133 LogInfo("SetRData: Malformed NAPTR rdlength %d, rr->resrec.rdlength %d, "
3134 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3135 goto fail;
3136 }
3137 mDNSPlatformMemCopy(rdb->data, orig, savelen);
3138 AssignDomainName((domainname *)(rdb->data + savelen), &name);
3139 break;
3140 }
3141 case kDNSType_OPT: {
3142 mDNSu8 *dataend = rr->resrec.rdata->u.data;
3143 rdataOPT *opt = rr->resrec.rdata->u.opt;
3144 rr->resrec.rdlength = 0;
3145 while (ptr < end && (mDNSu8 *)(opt+1) < &dataend[MaximumRDSize])
3146 {
3147 const rdataOPT *const currentopt = opt;
3148 if (ptr + 4 > end) { LogInfo("SetRData: OPT RDATA ptr + 4 > end"); goto fail; }
3149 opt->opt = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3150 opt->optlen = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3151 ptr += 4;
3152 if (ptr + opt->optlen > end) { LogInfo("SetRData: ptr + opt->optlen > end"); goto fail; }
3153 switch (opt->opt)
3154 {
3155 case kDNSOpt_LLQ:
3156 if (opt->optlen == DNSOpt_LLQData_Space - 4)
3157 {
3158 opt->u.llq.vers = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3159 opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3160 opt->u.llq.err = (mDNSu16)((mDNSu16)ptr[4] << 8 | ptr[5]);
3161 mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
3162 opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
3163 if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
3164 opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
3165 opt++;
3166 }
3167 break;
3168 case kDNSOpt_Lease:
3169 if (opt->optlen == DNSOpt_LeaseData_Space - 4)
3170 {
3171 opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
3172 if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
3173 opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
3174 opt++;
3175 }
3176 break;
3177 case kDNSOpt_Owner:
3178 if (ValidOwnerLength(opt->optlen))
3179 {
3180 opt->u.owner.vers = ptr[0];
3181 opt->u.owner.seq = ptr[1];
3182 mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6); // 6-byte MAC address
3183 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6); // 6-byte MAC address
3184 opt->u.owner.password = zeroEthAddr;
3185 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
3186 {
3187 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6); // 6-byte MAC address
3188 // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
3189 // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
3190 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
3191 mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
3192 }
3193 opt++;
3194 }
3195 break;
3196 case kDNSOpt_Trace:
3197 if (opt->optlen == DNSOpt_TraceData_Space - 4)
3198 {
3199 opt->u.tracer.platf = ptr[0];
3200 opt->u.tracer.mDNSv = (mDNSu32) ((mDNSu32)ptr[1] << 24 | (mDNSu32)ptr[2] << 16 | (mDNSu32)ptr[3] << 8 | ptr[4]);
3201 opt++;
3202 }
3203 else
3204 {
3205 opt->u.tracer.platf = 0xFF;
3206 opt->u.tracer.mDNSv = 0xFFFFFFFF;
3207 opt++;
3208 }
3209 break;
3210 }
3211 ptr += currentopt->optlen;
3212 }
3213 rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
3214 if (ptr != end) { LogInfo("SetRData: Malformed OptRdata"); goto fail; }
3215 break;
3216 }
3217
3218 case kDNSType_NSEC: {
3219 domainname name;
3220 int len = rdlength;
3221 int bmaplen, dlen;
3222 const mDNSu8 *orig = ptr;
3223 const mDNSu8 *bmap;
3224
3225 if (msg)
3226 {
3227 ptr = getDomainName(msg, ptr, end, &name);
3228 }
3229 else
3230 {
3231 AssignDomainName(&name, (domainname *)ptr);
3232 ptr += DomainNameLength(&name);
3233 }
3234 if (!ptr)
3235 {
3236 LogInfo("SetRData: Malformed NSEC nextname");
3237 goto fail;
3238 }
3239
3240 dlen = DomainNameLength(&name);
3241
3242 // Multicast NSECs use name compression for this field unlike the unicast case which
3243 // does not use compression. And multicast case always succeeds in compression. So,
3244 // the rdlength includes only the compressed space in that case. So, can't
3245 // use the DomainNameLength of name to reduce the length here.
3246 len -= (ptr - orig);
3247 bmaplen = len; // Save the length of the bitmap
3248 bmap = ptr;
3249 ptr = SanityCheckBitMap(bmap, end, len);
3250 if (!ptr)
3251 goto fail;
3252 if (ptr != end)
3253 {
3254 LogInfo("SetRData: Malformed NSEC length not right");
3255 goto fail;
3256 }
3257
3258 // Initialize the right length here. When we call SetNewRData below which in turn calls
3259 // GetRDLength and for NSEC case, it assumes that rdlength is intitialized
3260 rr->resrec.rdlength = DomainNameLength(&name) + bmaplen;
3261
3262 // Do we have space after the name expansion ?
3263 if (rr->resrec.rdlength > MaximumRDSize)
3264 {
3265 LogInfo("SetRData: Malformed NSEC rdlength %d, rr->resrec.rdlength %d, "
3266 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3267 goto fail;
3268 }
3269 AssignDomainName((domainname *)rdb->data, &name);
3270 mDNSPlatformMemCopy(rdb->data + dlen, bmap, bmaplen);
3271 break;
3272 }
3273 case kDNSType_NSEC3:
3274 {
3275 rdataNSEC3 *nsec3 = (rdataNSEC3 *)ptr;
3276 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
3277 int hashLength, bitmaplen;
3278
3279 if (rdlength < NSEC3_FIXED_SIZE + 1)
3280 {
3281 LogInfo("SetRData: NSEC3 too small length %d", rdlength);
3282 goto fail;
3283 }
3284 if (nsec3->alg != SHA1_DIGEST_TYPE)
3285 {
3286 LogInfo("SetRData: nsec3 alg %d not supported", nsec3->alg);
3287 goto fail;
3288 }
3289 if (swap16(nsec3->iterations) > NSEC3_MAX_ITERATIONS)
3290 {
3291 LogInfo("SetRData: nsec3 iteration count %d too big", swap16(nsec3->iterations));
3292 goto fail;
3293 }
3294 p += nsec3->saltLength;
3295 // There should at least be one byte beyond saltLength
3296 if (p >= end)
3297 {
3298 LogInfo("SetRData: nsec3 too small, at saltlength %d, p %p, end %p", nsec3->saltLength, p, end);
3299 goto fail;
3300 }
3301 // p is pointing at hashLength
3302 hashLength = (int)*p++;
3303 if (!hashLength)
3304 {
3305 LogInfo("SetRData: hashLength zero");
3306 goto fail;
3307 }
3308 p += hashLength;
3309 if (p > end)
3310 {
3311 LogInfo("SetRData: nsec3 too small, at hashLength %d, p %p, end %p", hashLength, p, end);
3312 goto fail;
3313 }
3314
3315 bitmaplen = rdlength - (int)(p - ptr);
3316 p = SanityCheckBitMap(p, end, bitmaplen);
3317 if (!p)
3318 goto fail;
3319 rr->resrec.rdlength = rdlength;
3320 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3321 break;
3322 }
3323 case kDNSType_TKEY:
3324 case kDNSType_TSIG:
3325 {
3326 domainname name;
3327 int dlen, rlen;
3328
3329 // The name should not be compressed. But we take the conservative approach
3330 // and uncompress the name before we store it.
3331 if (msg)
3332 {
3333 ptr = getDomainName(msg, ptr, end, &name);
3334 }
3335 else
3336 {
3337 AssignDomainName(&name, (domainname *)ptr);
3338 ptr += DomainNameLength(&name);
3339 }
3340 if (!ptr || ptr >= end)
3341 {
3342 LogInfo("SetRData: Malformed name for TSIG/TKEY type %d", rr->resrec.rrtype);
3343 goto fail;
3344 }
3345 dlen = DomainNameLength(&name);
3346 rlen = end - ptr;
3347 rr->resrec.rdlength = dlen + rlen;
3348 if (rr->resrec.rdlength > MaximumRDSize)
3349 {
3350 LogInfo("SetRData: Malformed TSIG/TKEY rdlength %d, rr->resrec.rdlength %d, "
3351 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3352 goto fail;
3353 }
3354 AssignDomainName((domainname *)rdb->data, &name);
3355 mDNSPlatformMemCopy(rdb->data + dlen, ptr, rlen);
3356 break;
3357 }
3358 case kDNSType_RRSIG:
3359 {
3360 const mDNSu8 *sig = ptr + RRSIG_FIXED_SIZE;
3361 const mDNSu8 *orig = sig;
3362 domainname name;
3363 if (rdlength < RRSIG_FIXED_SIZE + 1)
3364 {
3365 LogInfo("SetRData: RRSIG too small length %d", rdlength);
3366 goto fail;
3367 }
3368 if (msg)
3369 {
3370 sig = getDomainName(msg, sig, end, &name);
3371 }
3372 else
3373 {
3374 AssignDomainName(&name, (domainname *)sig);
3375 sig += DomainNameLength(&name);
3376 }
3377 if (!sig)
3378 {
3379 LogInfo("SetRData: Malformed RRSIG record");
3380 goto fail;
3381 }
3382
3383 if ((sig - orig) != DomainNameLength(&name))
3384 {
3385 LogInfo("SetRData: Malformed RRSIG record, signer name compression");
3386 goto fail;
3387 }
3388 // Just ensure that we have at least one byte of the signature
3389 if (sig + 1 >= end)
3390 {
3391 LogInfo("SetRData: Not enough bytes for signature type %d", rr->resrec.rrtype);
3392 goto fail;
3393 }
3394 rr->resrec.rdlength = rdlength;
3395 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3396 break;
3397 }
3398 case kDNSType_DNSKEY:
3399 {
3400 if (rdlength < DNSKEY_FIXED_SIZE + 1)
3401 {
3402 LogInfo("SetRData: DNSKEY too small length %d", rdlength);
3403 goto fail;
3404 }
3405 rr->resrec.rdlength = rdlength;
3406 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3407 break;
3408 }
3409 case kDNSType_DS:
3410 {
3411 if (rdlength < DS_FIXED_SIZE + 1)
3412 {
3413 LogInfo("SetRData: DS too small length %d", rdlength);
3414 goto fail;
3415 }
3416 rr->resrec.rdlength = rdlength;
3417 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3418 break;
3419 }
3420 default:
3421 debugf("SetRData: Warning! Reading resource type %d (%s) as opaque data",
3422 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
3423 // Note: Just because we don't understand the record type, that doesn't
3424 // mean we fail. The DNS protocol specifies rdlength, so we can
3425 // safely skip over unknown records and ignore them.
3426 // We also grab a binary copy of the rdata anyway, since the caller
3427 // might know how to interpret it even if we don't.
3428 rr->resrec.rdlength = rdlength;
3429 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3430 break;
3431 }
3432 return mDNStrue;
3433 fail:
3434 return mDNSfalse;
3435 }
3436
3437 mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
3438 const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
3439 {
3440 CacheRecord *const rr = &largecr->r;
3441 mDNSu16 pktrdlength;
3442
3443 if (largecr == &m->rec && m->rec.r.resrec.RecordType)
3444 LogFatalError("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
3445
3446 rr->next = mDNSNULL;
3447 rr->resrec.name = &largecr->namestorage;
3448
3449 rr->NextInKAList = mDNSNULL;
3450 rr->TimeRcvd = m ? m->timenow : 0;
3451 rr->DelayDelivery = 0;
3452 rr->NextRequiredQuery = m ? m->timenow : 0; // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
3453 rr->CRActiveQuestion = mDNSNULL;
3454 rr->UnansweredQueries = 0;
3455 rr->LastUnansweredTime= 0;
3456 rr->NextInCFList = mDNSNULL;
3457
3458 rr->resrec.InterfaceID = InterfaceID;
3459 rr->resrec.rDNSServer = mDNSNULL;
3460
3461 ptr = getDomainName(msg, ptr, end, &largecr->namestorage); // Will bail out correctly if ptr is NULL
3462 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
3463 rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
3464
3465 if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
3466
3467 rr->resrec.rrtype = (mDNSu16) ((mDNSu16)ptr[0] << 8 | ptr[1]);
3468 rr->resrec.rrclass = (mDNSu16)(((mDNSu16)ptr[2] << 8 | ptr[3]) & kDNSClass_Mask);
3469 rr->resrec.rroriginalttl = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
3470 if (rr->resrec.rroriginalttl > mDNSMaximumTTLSeconds && (mDNSs32)rr->resrec.rroriginalttl != -1)
3471 rr->resrec.rroriginalttl = mDNSMaximumTTLSeconds;
3472 // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
3473 // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
3474 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
3475
3476 // If mDNS record has cache-flush bit set, we mark it unique
3477 // For uDNS records, all are implicitly deemed unique (a single DNS server is always authoritative for the entire RRSet)
3478 if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || !InterfaceID)
3479 RecordType |= kDNSRecordTypePacketUniqueMask;
3480 ptr += 10;
3481 if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
3482 end = ptr + pktrdlength; // Adjust end to indicate the end of the rdata for this resource record
3483
3484 rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
3485 rr->resrec.rdata->MaxRDLength = MaximumRDSize;
3486
3487 if (pktrdlength > MaximumRDSize)
3488 {
3489 LogInfo("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
3490 DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
3491 goto fail;
3492 }
3493
3494 if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
3495
3496 // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
3497 // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
3498 // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
3499 // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
3500 // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
3501 if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0) // Used in update packets to mean "Delete An RRset" (RFC 2136)
3502 rr->resrec.rdlength = 0;
3503 else if (!SetRData(msg, ptr, end, largecr, pktrdlength))
3504 goto fail;
3505
3506 SetNewRData(&rr->resrec, mDNSNULL, 0); // Sets rdlength, rdestimate, rdatahash for us
3507
3508 // Success! Now fill in RecordType to show this record contains valid data
3509 rr->resrec.RecordType = RecordType;
3510 return(end);
3511
3512 fail:
3513 // If we were unable to parse the rdata in this record, we indicate that by
3514 // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
3515 rr->resrec.RecordType = kDNSRecordTypePacketNegative;
3516 rr->resrec.rdlength = 0;
3517 rr->resrec.rdestimate = 0;
3518 rr->resrec.rdatahash = 0;
3519 return(end);
3520 }
3521
3522 mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
3523 {
3524 ptr = skipDomainName(msg, ptr, end);
3525 if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
3526 if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3527 return(ptr+4);
3528 }
3529
3530 mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
3531 DNSQuestion *question)
3532 {
3533 mDNSPlatformMemZero(question, sizeof(*question));
3534 question->InterfaceID = InterfaceID;
3535 if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
3536 ptr = getDomainName(msg, ptr, end, &question->qname);
3537 if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
3538 if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3539
3540 question->qnamehash = DomainNameHashValue(&question->qname);
3541 question->qtype = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); // Get type
3542 question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); // and class
3543 return(ptr+4);
3544 }
3545
3546 mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
3547 {
3548 int i;
3549 const mDNSu8 *ptr = msg->data;
3550 for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
3551 return(ptr);
3552 }
3553
3554 mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
3555 {
3556 int i;
3557 const mDNSu8 *ptr = LocateAnswers(msg, end);
3558 for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
3559 return(ptr);
3560 }
3561
3562 mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
3563 {
3564 int i;
3565 const mDNSu8 *ptr = LocateAuthorities(msg, end);
3566 for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
3567 return (ptr);
3568 }
3569
3570 mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
3571 {
3572 int i;
3573 const mDNSu8 *ptr = LocateAdditionals(msg, end);
3574
3575 // Locate the OPT record.
3576 // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
3577 // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
3578 // but not necessarily the *last* entry in the Additional Section.
3579 for (i = 0; ptr && i < msg->h.numAdditionals; i++)
3580 {
3581 if (ptr + DNSOpt_Header_Space + minsize <= end && // Make sure we have 11+minsize bytes of data
3582 ptr[0] == 0 && // Name must be root label
3583 ptr[1] == (kDNSType_OPT >> 8 ) && // rrtype OPT
3584 ptr[2] == (kDNSType_OPT & 0xFF) &&
3585 ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
3586 return(ptr);
3587 else
3588 ptr = skipResourceRecord(msg, ptr, end);
3589 }
3590 return(mDNSNULL);
3591 }
3592
3593 // On success, GetLLQOptData returns pointer to storage within shared "m->rec";
3594 // it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
3595 // Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
3596 // The code that currently calls this assumes there's only one, instead of iterating through the set
3597 mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
3598 {
3599 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
3600 if (ptr)
3601 {
3602 ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3603 if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
3604 }
3605 return(mDNSNULL);
3606 }
3607
3608 // Get the lease life of records in a dynamic update
3609 mDNSexport mDNSBool GetPktLease(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end, mDNSu32 *const lease)
3610 {
3611 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
3612 if (ptr)
3613 {
3614 ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3615 if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative && m->rec.r.resrec.rrtype == kDNSType_OPT)
3616 {
3617 const rdataOPT *o;
3618 const rdataOPT *const e = (const rdataOPT *)&m->rec.r.resrec.rdata->u.data[m->rec.r.resrec.rdlength];
3619 for (o = &m->rec.r.resrec.rdata->u.opt[0]; o < e; o++)
3620 if (o->opt == kDNSOpt_Lease)
3621 {
3622 *lease = o->u.updatelease;
3623 m->rec.r.resrec.RecordType = 0; // Clear RecordType to show we're not still using it
3624 return mDNStrue;
3625 }
3626 }
3627 m->rec.r.resrec.RecordType = 0; // Clear RecordType to show we're not still using it
3628 }
3629 return mDNSfalse;
3630 }
3631
3632 #define DNS_OP_Name(X) ( \
3633 (X) == kDNSFlag0_OP_StdQuery ? "" : \
3634 (X) == kDNSFlag0_OP_Iquery ? "Iquery " : \
3635 (X) == kDNSFlag0_OP_Status ? "Status " : \
3636 (X) == kDNSFlag0_OP_Unused3 ? "Unused3 " : \
3637 (X) == kDNSFlag0_OP_Notify ? "Notify " : \
3638 (X) == kDNSFlag0_OP_Update ? "Update " : \
3639 (X) == kDNSFlag0_OP_Subscribe? "Subscribe": \
3640 (X) == kDNSFlag0_OP_UnSubscribe? "UnSubscribe" : "?? " )
3641
3642 #define DNS_RC_Name(X) ( \
3643 (X) == kDNSFlag1_RC_NoErr ? "NoErr" : \
3644 (X) == kDNSFlag1_RC_FormErr ? "FormErr" : \
3645 (X) == kDNSFlag1_RC_ServFail ? "ServFail" : \
3646 (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" : \
3647 (X) == kDNSFlag1_RC_NotImpl ? "NotImpl" : \
3648 (X) == kDNSFlag1_RC_Refused ? "Refused" : \
3649 (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" : \
3650 (X) == kDNSFlag1_RC_YXRRSet ? "YXRRSet" : \
3651 (X) == kDNSFlag1_RC_NXRRSet ? "NXRRSet" : \
3652 (X) == kDNSFlag1_RC_NotAuth ? "NotAuth" : \
3653 (X) == kDNSFlag1_RC_NotZone ? "NotZone" : "??" )
3654
3655 mDNSlocal void mDNS_snprintf_add(char **ptr, const char *lim, const char *fmt, ...)
3656 {
3657 va_list args;
3658 mDNSu32 buflen, n;
3659 char *const dst = *ptr;
3660
3661 buflen = (mDNSu32)(lim - dst);
3662 if (buflen > 0)
3663 {
3664 va_start(args, fmt);
3665 n = mDNS_vsnprintf(dst, buflen, fmt, args);
3666 va_end(args);
3667 *ptr = dst + n;
3668 }
3669 }
3670
3671 #define DNSTypeString(X) (((X) == kDNSType_A) ? "A" : DNSTypeName(X))
3672
3673 #define ReadField16(PTR) ((mDNSu16)((((mDNSu16)((mDNSu8 *)(PTR))[0]) << 8) | ((mDNSu16)((mDNSu8 *)(PTR))[1])))
3674 #define ReadField32(PTR) \
3675 ((mDNSu32)( \
3676 (((mDNSu32)((mDNSu8 *)(PTR))[0]) << 24) | \
3677 (((mDNSu32)((mDNSu8 *)(PTR))[1]) << 16) | \
3678 (((mDNSu32)((mDNSu8 *)(PTR))[2]) << 8) | \
3679 ((mDNSu32)((mDNSu8 *)(PTR))[3])))
3680
3681 mDNSlocal void DNSMessageDump(const DNSMessage *const msg, const mDNSu8 *const end, char *buffer, mDNSu32 buflen)
3682 {
3683 domainname *name;
3684 const mDNSu8 *ptr;
3685 domainname nameStorage[2];
3686 char *dst = buffer;
3687 const char *const lim = &buffer[buflen];
3688 mDNSu32 i;
3689 const mDNSu32 rrcount = msg->h.numAnswers + msg->h.numAuthorities + msg->h.numAdditionals;
3690
3691 mDNS_snprintf_add(&dst, lim, "DNS %s%s (%lu) (flags %02X%02X) RCODE: %s (%d)%s%s%s%s%s%s ID: %u:",
3692 DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
3693 (msg->h.flags.b[0] & kDNSFlag0_QR_Response) ? "Response" : "Query",
3694 (unsigned long)(end - (const mDNSu8 *)msg),
3695 msg->h.flags.b[0], msg->h.flags.b[1],
3696 DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
3697 msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
3698 (msg->h.flags.b[0] & kDNSFlag0_AA) ? " AA" : "",
3699 (msg->h.flags.b[0] & kDNSFlag0_TC) ? " TC" : "",
3700 (msg->h.flags.b[0] & kDNSFlag0_RD) ? " RD" : "",
3701 (msg->h.flags.b[1] & kDNSFlag1_RA) ? " RA" : "",
3702 (msg->h.flags.b[1] & kDNSFlag1_AD) ? " AD" : "",
3703 (msg->h.flags.b[1] & kDNSFlag1_CD) ? " CD" : "",
3704 mDNSVal16(msg->h.id));
3705
3706 name = mDNSNULL;
3707 ptr = msg->data;
3708 for (i = 0; i < msg->h.numQuestions; i++)
3709 {
3710 mDNSu16 qtype, qclass;
3711
3712 name = &nameStorage[0];
3713 ptr = getDomainName(msg, ptr, end, name);
3714 if (!ptr) goto exit;
3715
3716 if ((end - ptr) < 4) goto exit;
3717 qtype = ReadField16(&ptr[0]);
3718 qclass = ReadField16(&ptr[2]);
3719 ptr += 4;
3720
3721 mDNS_snprintf_add(&dst, lim, " %##s %s", name->c, DNSTypeString(qtype));
3722 if (qclass != kDNSClass_IN) mDNS_snprintf_add(&dst, lim, "/%u", qclass);
3723 mDNS_snprintf_add(&dst, lim, "?");
3724 }
3725
3726 mDNS_snprintf_add(&dst, lim, " %u/%u/%u", msg->h.numAnswers, msg->h.numAuthorities, msg->h.numAdditionals);
3727 for (i = 0; i < rrcount; i++)
3728 {
3729 mDNSu16 rrtype, rrclass, rdlength;
3730 mDNSu32 ttl;
3731 int handled;
3732 const mDNSu8 *rdata;
3733 const domainname *const previousName = name;
3734
3735 name = &nameStorage[(name == &nameStorage[0]) ? 1 : 0];
3736 ptr = getDomainName(msg, ptr, end, name);
3737 if (!ptr) goto exit;
3738
3739 if ((end - ptr) < 10) goto exit;
3740 rrtype = ReadField16(&ptr[0]);
3741 rrclass = ReadField16(&ptr[2]);
3742 ttl = ReadField32(&ptr[4]);
3743 rdlength = ReadField16(&ptr[8]);
3744 ptr += 10;
3745
3746 if ((end - ptr) < rdlength) goto exit;
3747 rdata = ptr;
3748
3749 if (i > 0) mDNS_snprintf_add(&dst, lim, ",");
3750 if (!previousName || !SameDomainName(name, previousName)) mDNS_snprintf_add(&dst, lim, " %##s", name);
3751
3752 mDNS_snprintf_add(&dst, lim, " %s", DNSTypeString(rrtype));
3753 if (rrclass != kDNSClass_IN) mDNS_snprintf_add(&dst, lim, "/%u", rrclass);
3754 mDNS_snprintf_add(&dst, lim, " ");
3755
3756 handled = mDNSfalse;
3757 switch (rrtype)
3758 {
3759 case kDNSType_A:
3760 if (rdlength == 4)
3761 {
3762 mDNS_snprintf_add(&dst, lim, "%.4a", rdata);
3763 handled = mDNStrue;
3764 }
3765 break;
3766
3767 case kDNSType_AAAA:
3768 if (rdlength == 16)
3769 {
3770 mDNS_snprintf_add(&dst, lim, "%.16a", rdata);
3771 handled = mDNStrue;
3772 }
3773 break;
3774
3775 case kDNSType_CNAME:
3776 ptr = getDomainName(msg, rdata, end, name);
3777 if (!ptr) goto exit;
3778
3779 mDNS_snprintf_add(&dst, lim, "%##s", name);
3780 handled = mDNStrue;
3781 break;
3782
3783 case kDNSType_SOA:
3784 {
3785 mDNSu32 serial, refresh, retry, expire, minimum;
3786 domainname *const mname = &nameStorage[0];
3787 domainname *const rname = &nameStorage[1];
3788 name = mDNSNULL;
3789
3790 ptr = getDomainName(msg, rdata, end, mname);
3791 if (!ptr) goto exit;
3792
3793 ptr = getDomainName(msg, ptr, end, rname);
3794 if (!ptr) goto exit;
3795
3796 if ((end - ptr) < 20) goto exit;
3797 serial = ReadField32(&ptr[0]);
3798 refresh = ReadField32(&ptr[4]);
3799 retry = ReadField32(&ptr[8]);
3800 expire = ReadField32(&ptr[12]);
3801 minimum = ReadField32(&ptr[16]);
3802
3803 mDNS_snprintf_add(&dst, lim, "%##s %##s %lu %lu %lu %lu %lu", mname, rname, (unsigned long)serial,
3804 (unsigned long)refresh, (unsigned long)retry, (unsigned long)expire, (unsigned long)minimum);
3805
3806 handled = mDNStrue;
3807 break;
3808 }
3809
3810 default:
3811 break;
3812 }
3813 if (!handled) mDNS_snprintf_add(&dst, lim, "RDATA[%u]: %.*H", rdlength, rdlength, rdata);
3814 mDNS_snprintf_add(&dst, lim, " (%lu)", (unsigned long)ttl);
3815 ptr = rdata + rdlength;
3816 }
3817
3818 exit:
3819 return;
3820 }
3821
3822 // Note: DumpPacket expects the packet header fields in host byte order, not network byte order
3823 mDNSexport void DumpPacket(mStatus status, mDNSBool sent, char *transport,
3824 const mDNSAddr *srcaddr, mDNSIPPort srcport,
3825 const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
3826 {
3827 char buffer[512];
3828 char *dst = buffer;
3829 const char *const lim = &buffer[512];
3830
3831 buffer[0] = '\0';
3832 if (!status) mDNS_snprintf_add(&dst, lim, sent ? "Sent" : "Received");
3833 else mDNS_snprintf_add(&dst, lim, "ERROR %d %sing", status, sent ? "Send" : "Receiv");
3834
3835 mDNS_snprintf_add(&dst, lim, " %s DNS Message %u bytes from ", transport, (unsigned long)(end - (const mDNSu8 *)msg));
3836
3837 if (sent) mDNS_snprintf_add(&dst, lim, "port %d", mDNSVal16(srcport));
3838 else mDNS_snprintf_add(&dst, lim, "%#a:%d", srcaddr, mDNSVal16(srcport));
3839
3840 if (dstaddr || !mDNSIPPortIsZero(dstport)) mDNS_snprintf_add(&dst, lim, " to %#a:%d", dstaddr, mDNSVal16(dstport));
3841
3842 LogInfo("%s", buffer);
3843
3844 buffer[0] = '\0';
3845 DNSMessageDump(msg, end, buffer, (mDNSu32)sizeof(buffer));
3846 LogInfo("%s", buffer);
3847 }
3848
3849 // ***************************************************************************
3850 #if COMPILER_LIKES_PRAGMA_MARK
3851 #pragma mark -
3852 #pragma mark - Packet Sending Functions
3853 #endif
3854
3855 #ifdef UNIT_TEST
3856 // Run the unit test of mDNSSendDNSMessage
3857 UNITTEST_SENDDNSMESSAGE
3858 #else
3859 // Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
3860 struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
3861 // Stub definition of UDPSocket_struct so we can access port field. (Rest of UDPSocket_struct is platform-dependent.)
3862 struct UDPSocket_struct { mDNSIPPort port; /* ... */ };
3863
3864 // Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
3865 // is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
3866 mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
3867 mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst,
3868 mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo,
3869 mDNSBool useBackgroundTrafficClass)
3870 {
3871 mStatus status = mStatus_NoError;
3872 const mDNSu16 numAdditionals = msg->h.numAdditionals;
3873 mDNSu8 *newend;
3874 mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
3875
3876 #if APPLE_OSX_mDNSResponder
3877 // maintain outbound packet statistics
3878 if (mDNSOpaque16IsZero(msg->h.id))
3879 m->MulticastPacketsSent++;
3880 else
3881 m->UnicastPacketsSent++;
3882 #endif // APPLE_OSX_mDNSResponder
3883
3884 // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
3885 if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
3886 {
3887 LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
3888 return mStatus_BadParamErr;
3889 }
3890
3891 newend = putHINFO(m, msg, end, authInfo, limit);
3892 if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
3893 else end = newend;
3894
3895 // Put all the integer values in IETF byte-order (MSB first, LSB second)
3896 SwapDNSHeaderBytes(msg);
3897
3898 if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0); // DNSDigest_SignMessage operates on message in network byte order
3899 if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
3900 else
3901 {
3902 // Send the packet on the wire
3903 if (!sock)
3904 status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport, useBackgroundTrafficClass);
3905 else
3906 {
3907 mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
3908 mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
3909 char *buf;
3910 long nsent;
3911
3912 // Try to send them in one packet if we can allocate enough memory
3913 buf = mDNSPlatformMemAllocate(msglen + 2);
3914 if (buf)
3915 {
3916 buf[0] = lenbuf[0];
3917 buf[1] = lenbuf[1];
3918 mDNSPlatformMemCopy(buf+2, msg, msglen);
3919 nsent = mDNSPlatformWriteTCP(sock, buf, msglen+2);
3920 if (nsent != (msglen + 2))
3921 {
3922 LogMsg("mDNSSendDNSMessage: write message failed %d/%d", nsent, msglen);
3923 status = mStatus_ConnFailed;
3924 }
3925 mDNSPlatformMemFree(buf);
3926 }
3927 else
3928 {
3929 nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2);
3930 if (nsent != 2)
3931 {
3932 LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2);
3933 status = mStatus_ConnFailed;
3934 }
3935 else
3936 {
3937 nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
3938 if (nsent != msglen)
3939 {
3940 LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen);
3941 status = mStatus_ConnFailed;
3942 }
3943 }
3944 }
3945 }
3946 }
3947
3948 // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
3949 SwapDNSHeaderBytes(msg);
3950
3951 // Dump the packet with the HINFO and TSIG
3952 if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
3953 DumpPacket(status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
3954
3955 // put the number of additionals back the way it was
3956 msg->h.numAdditionals = numAdditionals;
3957
3958 return(status);
3959 }
3960 #endif // UNIT_TEST
3961
3962 // ***************************************************************************
3963 #if COMPILER_LIKES_PRAGMA_MARK
3964 #pragma mark -
3965 #pragma mark - RR List Management & Task Management
3966 #endif
3967
3968 mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
3969 {
3970 // MUST grab the platform lock FIRST!
3971 mDNSPlatformLock(m);
3972
3973 // Normally, mDNS_reentrancy is zero and so is mDNS_busy
3974 // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
3975 // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
3976 // If mDNS_busy != mDNS_reentrancy that's a bad sign
3977 if (m->mDNS_busy != m->mDNS_reentrancy)
3978 LogFatalError("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
3979
3980 // If this is an initial entry into the mDNSCore code, set m->timenow
3981 // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
3982 if (m->mDNS_busy == 0)
3983 {
3984 if (m->timenow)
3985 LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
3986 m->timenow = mDNS_TimeNow_NoLock(m);
3987 if (m->timenow == 0) m->timenow = 1;
3988 }
3989 else if (m->timenow == 0)
3990 {
3991 LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
3992 m->timenow = mDNS_TimeNow_NoLock(m);
3993 if (m->timenow == 0) m->timenow = 1;
3994 }
3995
3996 if (m->timenow_last - m->timenow > 0)
3997 {
3998 m->timenow_adjust += m->timenow_last - m->timenow;
3999 LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
4000 m->timenow = m->timenow_last;
4001 }
4002 m->timenow_last = m->timenow;
4003
4004 // Increment mDNS_busy so we'll recognise re-entrant calls
4005 m->mDNS_busy++;
4006 }
4007
4008 mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
4009 {
4010 AuthRecord *rr;
4011 for (rr = m->NewLocalRecords; rr; rr = rr->next)
4012 if (LocalRecordReady(rr)) return rr;
4013 return mDNSNULL;
4014 }
4015
4016 mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
4017 {
4018 mDNSs32 e = m->timenow + FutureTime;
4019 if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
4020 if (m->NewQuestions)
4021 {
4022 if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
4023 else return(m->timenow);
4024 }
4025 if (m->NewLocalOnlyQuestions) return(m->timenow);
4026 if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
4027 if (m->NewLocalOnlyRecords) return(m->timenow);
4028 if (m->SPSProxyListChanged) return(m->timenow);
4029 if (m->LocalRemoveEvents) return(m->timenow);
4030
4031 #ifndef UNICAST_DISABLED
4032 if (e - m->NextuDNSEvent > 0) e = m->NextuDNSEvent;
4033 if (e - m->NextScheduledNATOp > 0) e = m->NextScheduledNATOp;
4034 if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
4035 #endif
4036
4037 if (e - m->NextCacheCheck > 0) e = m->NextCacheCheck;
4038 if (e - m->NextScheduledSPS > 0) e = m->NextScheduledSPS;
4039 if (e - m->NextScheduledKA > 0) e = m->NextScheduledKA;
4040
4041 #if BONJOUR_ON_DEMAND
4042 if (m->NextBonjourDisableTime && (e - m->NextBonjourDisableTime > 0)) e = m->NextBonjourDisableTime;
4043 #endif // BONJOUR_ON_DEMAND
4044
4045 // NextScheduledSPRetry only valid when DelaySleep not set
4046 if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
4047 if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
4048
4049 if (m->SuppressSending)
4050 {
4051 if (e - m->SuppressSending > 0) e = m->SuppressSending;
4052 }
4053 else
4054 {
4055 if (e - m->NextScheduledQuery > 0) e = m->NextScheduledQuery;
4056 if (e - m->NextScheduledProbe > 0) e = m->NextScheduledProbe;
4057 if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
4058 }
4059 if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
4060
4061 if (m->NextBLEServiceTime && (e - m->NextBLEServiceTime > 0)) e = m->NextBLEServiceTime;
4062
4063 return(e);
4064 }
4065
4066 #define LogTSE TSE++,LogMsg
4067
4068 mDNSexport void ShowTaskSchedulingError(mDNS *const m)
4069 {
4070 int TSE = 0;
4071 AuthRecord *rr;
4072 mDNS_Lock(m);
4073
4074 LogMsg("Task Scheduling Error: *** Continuously busy for more than a second");
4075
4076 // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
4077
4078 if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
4079 LogTSE("Task Scheduling Error: NewQuestion %##s (%s)",
4080 m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
4081
4082 if (m->NewLocalOnlyQuestions)
4083 LogTSE("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
4084 m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
4085
4086 if (m->NewLocalRecords)
4087 {
4088 rr = AnyLocalRecordReady(m);
4089 if (rr) LogTSE("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
4090 }
4091
4092 if (m->NewLocalOnlyRecords) LogTSE("Task Scheduling Error: NewLocalOnlyRecords");
4093
4094 if (m->SPSProxyListChanged) LogTSE("Task Scheduling Error: SPSProxyListChanged");
4095
4096 if (m->LocalRemoveEvents) LogTSE("Task Scheduling Error: LocalRemoveEvents");
4097
4098 #ifndef UNICAST_DISABLED
4099 if (m->timenow - m->NextuDNSEvent >= 0)
4100 LogTSE("Task Scheduling Error: m->NextuDNSEvent %d", m->timenow - m->NextuDNSEvent);
4101 if (m->timenow - m->NextScheduledNATOp >= 0)
4102 LogTSE("Task Scheduling Error: m->NextScheduledNATOp %d", m->timenow - m->NextScheduledNATOp);
4103 if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
4104 LogTSE("Task Scheduling Error: m->NextSRVUpdate %d", m->timenow - m->NextSRVUpdate);
4105 #endif
4106
4107 if (m->timenow - m->NextCacheCheck >= 0)
4108 LogTSE("Task Scheduling Error: m->NextCacheCheck %d", m->timenow - m->NextCacheCheck);
4109 if (m->timenow - m->NextScheduledSPS >= 0)
4110 LogTSE("Task Scheduling Error: m->NextScheduledSPS %d", m->timenow - m->NextScheduledSPS);
4111 if (m->timenow - m->NextScheduledKA >= 0)
4112 LogTSE("Task Scheduling Error: m->NextScheduledKA %d", m->timenow - m->NextScheduledKA);
4113 if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
4114 LogTSE("Task Scheduling Error: m->NextScheduledSPRetry %d", m->timenow - m->NextScheduledSPRetry);
4115 if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
4116 LogTSE("Task Scheduling Error: m->DelaySleep %d", m->timenow - m->DelaySleep);
4117
4118 if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
4119 LogTSE("Task Scheduling Error: m->SuppressSending %d", m->timenow - m->SuppressSending);
4120 if (m->timenow - m->NextScheduledQuery >= 0)
4121 LogTSE("Task Scheduling Error: m->NextScheduledQuery %d", m->timenow - m->NextScheduledQuery);
4122 if (m->timenow - m->NextScheduledProbe >= 0)
4123 LogTSE("Task Scheduling Error: m->NextScheduledProbe %d", m->timenow - m->NextScheduledProbe);
4124 if (m->timenow - m->NextScheduledResponse >= 0)
4125 LogTSE("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
4126 if (m->timenow - m->NextScheduledStopTime >= 0)
4127 LogTSE("Task Scheduling Error: m->NextScheduledStopTime %d", m->timenow - m->NextScheduledStopTime);
4128
4129 if (m->timenow - m->NextScheduledEvent >= 0)
4130 LogTSE("Task Scheduling Error: m->NextScheduledEvent %d", m->timenow - m->NextScheduledEvent);
4131
4132 if (m->NetworkChanged && m->timenow - m->NetworkChanged >= 0)
4133 LogTSE("Task Scheduling Error: NetworkChanged %d", m->timenow - m->NetworkChanged);
4134
4135 if (!TSE) LogMsg("Task Scheduling Error: *** No likely causes identified");
4136 else LogMsg("Task Scheduling Error: *** %d potential cause%s identified (significant only if the same cause consistently appears)", TSE, TSE > 1 ? "s" : "");
4137
4138 mDNS_Unlock(m);
4139 }
4140
4141 mDNSexport void mDNS_Unlock_(mDNS *const m, const char *const functionname)
4142 {
4143 // Decrement mDNS_busy
4144 m->mDNS_busy--;
4145
4146 // Check for locking failures
4147 if (m->mDNS_busy != m->mDNS_reentrancy)
4148 LogFatalError("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
4149
4150 // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
4151 if (m->mDNS_busy == 0)
4152 {
4153 m->NextScheduledEvent = GetNextScheduledEvent(m);
4154 if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
4155 m->timenow = 0;
4156 }
4157
4158 // MUST release the platform lock LAST!
4159 mDNSPlatformUnlock(m);
4160 }
4161
4162 // ***************************************************************************
4163 #if COMPILER_LIKES_PRAGMA_MARK
4164 #pragma mark -
4165 #pragma mark - Specialized mDNS version of vsnprintf
4166 #endif
4167
4168 static const struct mDNSprintf_format
4169 {
4170 unsigned leftJustify : 1;
4171 unsigned forceSign : 1;
4172 unsigned zeroPad : 1;
4173 unsigned havePrecision : 1;
4174 unsigned hSize : 1;
4175 unsigned lSize : 1;
4176 char altForm;
4177 char sign; // +, - or space
4178 unsigned int fieldWidth;
4179 unsigned int precision;
4180 } mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
4181
4182 #define kHexDigitsLowercase "0123456789abcdef"
4183 #define kHexDigitsUppercase "0123456789ABCDEF";
4184
4185 mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
4186 {
4187 mDNSu32 nwritten = 0;
4188 int c;
4189 if (buflen == 0) return(0);
4190 buflen--; // Pre-reserve one space in the buffer for the terminating null
4191 if (buflen == 0) goto exit;
4192
4193 for (c = *fmt; c != 0; c = *++fmt)
4194 {
4195 unsigned long n;
4196 int hexdump = mDNSfalse;
4197 if (c != '%')
4198 {
4199 *sbuffer++ = (char)c;
4200 if (++nwritten >= buflen) goto exit;
4201 }
4202 else
4203 {
4204 unsigned int i=0, j;
4205 // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
4206 // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
4207 // The size needs to be enough for a 256-byte domain name plus some error text.
4208 #define mDNS_VACB_Size 300
4209 char mDNS_VACB[mDNS_VACB_Size];
4210 #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
4211 #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
4212 char *s = mDNS_VACB_Lim, *digits;
4213 struct mDNSprintf_format F = mDNSprintf_format_default;
4214
4215 while (1) // decode flags
4216 {
4217 c = *++fmt;
4218 if (c == '-') F.leftJustify = 1;
4219 else if (c == '+') F.forceSign = 1;
4220 else if (c == ' ') F.sign = ' ';
4221 else if (c == '#') F.altForm++;
4222 else if (c == '0') F.zeroPad = 1;
4223 else break;
4224 }
4225
4226 if (c == '*') // decode field width
4227 {
4228 int f = va_arg(arg, int);
4229 if (f < 0) { f = -f; F.leftJustify = 1; }
4230 F.fieldWidth = (unsigned int)f;
4231 c = *++fmt;
4232 }
4233 else
4234 {
4235 for (; c >= '0' && c <= '9'; c = *++fmt)
4236 F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
4237 }
4238
4239 if (c == '.') // decode precision
4240 {
4241 if ((c = *++fmt) == '*')
4242 { F.precision = va_arg(arg, unsigned int); c = *++fmt; }
4243 else for (; c >= '0' && c <= '9'; c = *++fmt)
4244 F.precision = (10 * F.precision) + (c - '0');
4245 F.havePrecision = 1;
4246 }
4247
4248 if (F.leftJustify) F.zeroPad = 0;
4249
4250 conv:
4251 switch (c) // perform appropriate conversion
4252 {
4253 case 'h': F.hSize = 1; c = *++fmt; goto conv;
4254 case 'l': // fall through
4255 case 'L': F.lSize = 1; c = *++fmt; goto conv;
4256 case 'd':
4257 case 'i': if (F.lSize) n = (unsigned long)va_arg(arg, long);
4258 else n = (unsigned long)va_arg(arg, int);
4259 if (F.hSize) n = (short) n;
4260 if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
4261 else if (F.forceSign) F.sign = '+';
4262 goto decimal;
4263 case 'u': if (F.lSize) n = va_arg(arg, unsigned long);
4264 else n = va_arg(arg, unsigned int);
4265 if (F.hSize) n = (unsigned short) n;
4266 F.sign = 0;
4267 goto decimal;
4268 decimal: if (!F.havePrecision)
4269 {
4270 if (F.zeroPad)
4271 {
4272 F.precision = F.fieldWidth;
4273 if (F.sign) --F.precision;
4274 }
4275 if (F.precision < 1) F.precision = 1;
4276 }
4277 if (F.precision > mDNS_VACB_Size - 1)
4278 F.precision = mDNS_VACB_Size - 1;
4279 for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
4280 for (; i < F.precision; i++) *--s = '0';
4281 if (F.sign) { *--s = F.sign; i++; }
4282 break;
4283
4284 case 'o': if (F.lSize) n = va_arg(arg, unsigned long);
4285 else n = va_arg(arg, unsigned int);
4286 if (F.hSize) n = (unsigned short) n;
4287 if (!F.havePrecision)
4288 {
4289 if (F.zeroPad) F.precision = F.fieldWidth;
4290 if (F.precision < 1) F.precision = 1;
4291 }
4292 if (F.precision > mDNS_VACB_Size - 1)
4293 F.precision = mDNS_VACB_Size - 1;
4294 for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
4295 if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
4296 for (; i < F.precision; i++) *--s = '0';
4297 break;
4298
4299 case 'a': {
4300 unsigned char *a = va_arg(arg, unsigned char *);
4301 if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4302 else
4303 {
4304 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
4305 if (F.altForm)
4306 {
4307 mDNSAddr *ip = (mDNSAddr*)a;
4308 switch (ip->type)
4309 {
4310 case mDNSAddrType_IPv4: F.precision = 4; a = (unsigned char *)&ip->ip.v4; break;
4311 case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
4312 default: F.precision = 0; break;
4313 }
4314 }
4315 if (F.altForm && !F.precision)
4316 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "«ZERO ADDRESS»");
4317 else switch (F.precision)
4318 {
4319 case 4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
4320 a[0], a[1], a[2], a[3]); break;
4321 case 6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
4322 a[0], a[1], a[2], a[3], a[4], a[5]); break;
4323 case 16: {
4324 // Print IPv6 addresses according to RFC 5952, A Recommendation for IPv6 Address Text
4325 // Representation. See <https://tools.ietf.org/html/rfc5952>.
4326
4327 int idx, runLen = 0, runStart = 0, maxRunLen = 0, maxRunStart = 0, maxRunEnd;
4328
4329 // Find the leftmost longest run of consecutive zero hextets.
4330 for (idx = 0; idx < 8; ++idx)
4331 {
4332 const unsigned int hextet = (a[idx * 2] << 8) | a[(idx * 2) + 1];
4333 if (hextet == 0)
4334 {
4335 if (runLen++ == 0) runStart = idx;
4336 if (runLen > maxRunLen)
4337 {
4338 maxRunStart = runStart;
4339 maxRunLen = runLen;
4340 }
4341 }
4342 else
4343 {
4344 // If the number of remaining hextets is less than or equal to the length of the longest
4345 // run so far, then we've found the leftmost longest run.
4346 if ((8 - (idx + 1)) <= maxRunLen) break;
4347 runLen = 0;
4348 }
4349 }
4350
4351 // Compress the leftmost longest run of two or more consecutive zero hextets as "::".
4352 // For each reminaing hextet, suppress zeros leading up to the least-significant nibble, which
4353 // is always written, even if it's zero. Because of this requirement, it's easier to write the
4354 // IPv6 address in reverse. Also, write a colon separator before each hextet except for the
4355 // first one.
4356 s = mDNS_VACB_Lim;
4357 maxRunEnd = (maxRunLen >= 2) ? (maxRunStart + maxRunLen - 1) : -1;
4358 for (idx = 7; idx >= 0; --idx)
4359 {
4360 if (idx == maxRunEnd)
4361 {
4362 if (idx == 7) *--s = ':';
4363 idx = maxRunStart;
4364 *--s = ':';
4365 }
4366 else
4367 {
4368 unsigned int hextet = (a[idx * 2] << 8) | a[(idx * 2) + 1];
4369 do {
4370 *--s = kHexDigitsLowercase[hextet % 16];
4371 hextet /= 16;
4372 } while (hextet);
4373 if (idx > 0) *--s = ':';
4374 }
4375 }
4376 i = (unsigned int)(mDNS_VACB_Lim - s);
4377 }
4378 break;
4379
4380 default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
4381 " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
4382 }
4383 }
4384 }
4385 break;
4386
4387 case 'p': F.havePrecision = F.lSize = 1;
4388 F.precision = sizeof(void*) * 2; // 8 characters on 32-bit; 16 characters on 64-bit
4389 case 'X': digits = kHexDigitsUppercase;
4390 goto hexadecimal;
4391 case 'x': digits = kHexDigitsLowercase;
4392 hexadecimal: if (F.lSize) n = va_arg(arg, unsigned long);
4393 else n = va_arg(arg, unsigned int);
4394 if (F.hSize) n = (unsigned short) n;
4395 if (!F.havePrecision)
4396 {
4397 if (F.zeroPad)
4398 {
4399 F.precision = F.fieldWidth;
4400 if (F.altForm) F.precision -= 2;
4401 }
4402 if (F.precision < 1) F.precision = 1;
4403 }
4404 if (F.precision > mDNS_VACB_Size - 1)
4405 F.precision = mDNS_VACB_Size - 1;
4406 for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
4407 for (; i < F.precision; i++) *--s = '0';
4408 if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
4409 break;
4410
4411 case 'c': *--s = (char)va_arg(arg, int); i = 1; break;
4412
4413 case 's': s = va_arg(arg, char *);
4414 if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4415 else switch (F.altForm)
4416 {
4417 case 0: i=0;
4418 if (!F.havePrecision) // C string
4419 while (s[i]) i++;
4420 else
4421 {
4422 while ((i < F.precision) && s[i]) i++;
4423 // Make sure we don't truncate in the middle of a UTF-8 character
4424 // If last character we got was any kind of UTF-8 multi-byte character,
4425 // then see if we have to back up.
4426 // This is not as easy as the similar checks below, because
4427 // here we can't assume it's safe to examine the *next* byte, so we
4428 // have to confine ourselves to working only backwards in the string.
4429 j = i; // Record where we got to
4430 // Now, back up until we find first non-continuation-char
4431 while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
4432 // Now s[i-1] is the first non-continuation-char
4433 // and (j-i) is the number of continuation-chars we found
4434 if (i>0 && (s[i-1] & 0xC0) == 0xC0) // If we found a start-char
4435 {
4436 i--; // Tentatively eliminate this start-char as well
4437 // Now (j-i) is the number of characters we're considering eliminating.
4438 // To be legal UTF-8, the start-char must contain (j-i) one-bits,
4439 // followed by a zero bit. If we shift it right by (7-(j-i)) bits
4440 // (with sign extension) then the result has to be 0xFE.
4441 // If this is right, then we reinstate the tentatively eliminated bytes.
4442 if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
4443 }
4444 }
4445 break;
4446 case 1: i = (unsigned char) *s++; break; // Pascal string
4447 case 2: { // DNS label-sequence name
4448 unsigned char *a = (unsigned char *)s;
4449 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
4450 if (*a == 0) *s++ = '.'; // Special case for root DNS name
4451 while (*a)
4452 {
4453 char buf[63*4+1];
4454 if (*a > 63)
4455 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
4456 if (s + *a >= &mDNS_VACB[254])
4457 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
4458 // Need to use ConvertDomainLabelToCString to do proper escaping here,
4459 // so it's clear what's a literal dot and what's a label separator
4460 ConvertDomainLabelToCString((domainlabel*)a, buf);
4461 s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
4462 a += 1 + *a;
4463 }
4464 i = (mDNSu32)(s - mDNS_VACB);
4465 s = mDNS_VACB; // Reset s back to the start of the buffer
4466 break;
4467 }
4468 }
4469 // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
4470 if (F.havePrecision && i > F.precision)
4471 { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4472 break;
4473
4474 case 'H': {
4475 s = va_arg(arg, char *);
4476 hexdump = mDNStrue;
4477 }
4478 break;
4479
4480 case 'n': s = va_arg(arg, char *);
4481 if (F.hSize) *(short *) s = (short)nwritten;
4482 else if (F.lSize) *(long *) s = (long)nwritten;
4483 else *(int *) s = (int)nwritten;
4484 continue;
4485
4486 default: s = mDNS_VACB;
4487 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
4488
4489 case '%': *sbuffer++ = (char)c;
4490 if (++nwritten >= buflen) goto exit;
4491 break;
4492 }
4493
4494 if (i < F.fieldWidth && !F.leftJustify) // Pad on the left
4495 do {
4496 *sbuffer++ = ' ';
4497 if (++nwritten >= buflen) goto exit;
4498 } while (i < --F.fieldWidth);
4499
4500 if (hexdump)
4501 {
4502 char *dst = sbuffer;
4503 const char *const lim = &sbuffer[buflen - nwritten];
4504 if (F.havePrecision)
4505 {
4506 for (i = 0; (i < F.precision) && (dst < lim); i++)
4507 {
4508 const unsigned int b = (unsigned int) *s++;
4509 if (i > 0) *dst++ = ' ';
4510 if (dst < lim) *dst++ = kHexDigitsLowercase[(b >> 4) & 0xF];
4511 if (dst < lim) *dst++ = kHexDigitsLowercase[ b & 0xF];
4512 }
4513 }
4514 i = (unsigned int)(dst - sbuffer);
4515 sbuffer = dst;
4516 }
4517 else
4518 {
4519 // Make sure we don't truncate in the middle of a UTF-8 character.
4520 // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
4521 // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
4522 // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
4523 // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
4524 if (i > buflen - nwritten)
4525 { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4526 for (j=0; j<i; j++) *sbuffer++ = *s++; // Write the converted result
4527 }
4528 nwritten += i;
4529 if (nwritten >= buflen) goto exit;
4530
4531 for (; i < F.fieldWidth; i++) // Pad on the right
4532 {
4533 *sbuffer++ = ' ';
4534 if (++nwritten >= buflen) goto exit;
4535 }
4536 }
4537 }
4538 exit:
4539 *sbuffer++ = 0;
4540 return(nwritten);
4541 }
4542
4543 mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
4544 {
4545 mDNSu32 length;
4546
4547 va_list ptr;
4548 va_start(ptr,fmt);
4549 length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
4550 va_end(ptr);
4551
4552 return(length);
4553 }