]> git.saurik.com Git - apple/mdnsresponder.git/blob - mDNSCore/DNSCommon.c
mDNSResponder-522.90.2.tar.gz
[apple/mdnsresponder.git] / mDNSCore / DNSCommon.c
1 /* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2013 Apple Computer, Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 // Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
19 #define mDNS_InstantiateInlines 1
20 #include "DNSCommon.h"
21 #include "CryptoAlg.h"
22 #include "anonymous.h"
23
24 // Disable certain benign warnings with Microsoft compilers
25 #if (defined(_MSC_VER))
26 // Disable "conditional expression is constant" warning for debug macros.
27 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
28 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
29 #pragma warning(disable:4127)
30 // Disable "array is too small to include a terminating null character" warning
31 // -- domain labels have an initial length byte, not a terminating null character
32 #pragma warning(disable:4295)
33 #endif
34
35 // ***************************************************************************
36 #if COMPILER_LIKES_PRAGMA_MARK
37 #pragma mark - Program Constants
38 #endif
39
40 mDNSexport const mDNSInterfaceID mDNSInterface_Any = 0;
41 mDNSexport const mDNSInterfaceID mDNSInterfaceMark = (mDNSInterfaceID)-1;
42 mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
43 mDNSexport const mDNSInterfaceID mDNSInterface_Unicast = (mDNSInterfaceID)-3;
44 mDNSexport const mDNSInterfaceID mDNSInterface_P2P = (mDNSInterfaceID)-4;
45 mDNSexport const mDNSInterfaceID uDNSInterfaceMark = (mDNSInterfaceID)-5;
46
47 // Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
48 // Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
49 // port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
50 // LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
51 // Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
52 // with Microsoft's LLMNR client code.
53
54 #define DiscardPortAsNumber 9
55 #define SSHPortAsNumber 22
56 #define UnicastDNSPortAsNumber 53
57 #define SSDPPortAsNumber 1900
58 #define IPSECPortAsNumber 4500
59 #define NSIPCPortAsNumber 5030 // Port used for dnsextd to talk to local nameserver bound to loopback
60 #define NATPMPAnnouncementPortAsNumber 5350
61 #define NATPMPPortAsNumber 5351
62 #define DNSEXTPortAsNumber 5352 // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
63 #define MulticastDNSPortAsNumber 5353
64 #define LoopbackIPCPortAsNumber 5354
65 //#define MulticastDNSPortAsNumber 5355 // LLMNR
66 #define PrivateDNSPortAsNumber 5533
67
68 mDNSexport const mDNSIPPort DiscardPort = { { DiscardPortAsNumber >> 8, DiscardPortAsNumber & 0xFF } };
69 mDNSexport const mDNSIPPort SSHPort = { { SSHPortAsNumber >> 8, SSHPortAsNumber & 0xFF } };
70 mDNSexport const mDNSIPPort UnicastDNSPort = { { UnicastDNSPortAsNumber >> 8, UnicastDNSPortAsNumber & 0xFF } };
71 mDNSexport const mDNSIPPort SSDPPort = { { SSDPPortAsNumber >> 8, SSDPPortAsNumber & 0xFF } };
72 mDNSexport const mDNSIPPort IPSECPort = { { IPSECPortAsNumber >> 8, IPSECPortAsNumber & 0xFF } };
73 mDNSexport const mDNSIPPort NSIPCPort = { { NSIPCPortAsNumber >> 8, NSIPCPortAsNumber & 0xFF } };
74 mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
75 mDNSexport const mDNSIPPort NATPMPPort = { { NATPMPPortAsNumber >> 8, NATPMPPortAsNumber & 0xFF } };
76 mDNSexport const mDNSIPPort DNSEXTPort = { { DNSEXTPortAsNumber >> 8, DNSEXTPortAsNumber & 0xFF } };
77 mDNSexport const mDNSIPPort MulticastDNSPort = { { MulticastDNSPortAsNumber >> 8, MulticastDNSPortAsNumber & 0xFF } };
78 mDNSexport const mDNSIPPort LoopbackIPCPort = { { LoopbackIPCPortAsNumber >> 8, LoopbackIPCPortAsNumber & 0xFF } };
79 mDNSexport const mDNSIPPort PrivateDNSPort = { { PrivateDNSPortAsNumber >> 8, PrivateDNSPortAsNumber & 0xFF } };
80
81 mDNSexport const OwnerOptData zeroOwner = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
82
83 mDNSexport const mDNSIPPort zeroIPPort = { { 0 } };
84 mDNSexport const mDNSv4Addr zerov4Addr = { { 0 } };
85 mDNSexport const mDNSv6Addr zerov6Addr = { { 0 } };
86 mDNSexport const mDNSEthAddr zeroEthAddr = { { 0 } };
87 mDNSexport const mDNSv4Addr onesIPv4Addr = { { 255, 255, 255, 255 } };
88 mDNSexport const mDNSv6Addr onesIPv6Addr = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
89 mDNSexport const mDNSEthAddr onesEthAddr = { { 255, 255, 255, 255, 255, 255 } };
90 mDNSexport const mDNSAddr zeroAddr = { mDNSAddrType_None, {{{ 0 }}} };
91
92 mDNSexport const mDNSv4Addr AllDNSAdminGroup = { { 239, 255, 255, 251 } };
93 mDNSexport const mDNSv4Addr AllHosts_v4 = { { 224, 0, 0, 1 } }; // For NAT-PMP & PCP Annoucements
94 mDNSexport const mDNSv6Addr AllHosts_v6 = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
95 mDNSexport const mDNSv6Addr NDP_prefix = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } }; // FF02:0:0:0:0:1:FF00::/104
96 mDNSexport const mDNSEthAddr AllHosts_v6_Eth = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
97 mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 251 } } } };
98 //mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 252 } } } }; // LLMNR
99 mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
100 //mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
101
102 mDNSexport const mDNSOpaque16 zeroID = { { 0, 0 } };
103 mDNSexport const mDNSOpaque16 onesID = { { 255, 255 } };
104 mDNSexport const mDNSOpaque16 QueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery, 0 } };
105 mDNSexport const mDNSOpaque16 uQueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
106 mDNSexport const mDNSOpaque16 DNSSecQFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, kDNSFlag1_CD } };
107 mDNSexport const mDNSOpaque16 ResponseFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
108 mDNSexport const mDNSOpaque16 UpdateReqFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_Update, 0 } };
109 mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update, 0 } };
110
111 mDNSexport const mDNSOpaque64 zeroOpaque64 = { { 0 } };
112
113 // ***************************************************************************
114 #if COMPILER_LIKES_PRAGMA_MARK
115 #pragma mark -
116 #pragma mark - General Utility Functions
117 #endif
118
119 // return true for RFC1918 private addresses
120 mDNSexport mDNSBool mDNSv4AddrIsRFC1918(const mDNSv4Addr * const addr)
121 {
122 return ((addr->b[0] == 10) || // 10/8 prefix
123 (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) || // 172.16/12
124 (addr->b[0] == 192 && addr->b[1] == 168)); // 192.168/16
125 }
126
127 mDNSexport void mDNSAddrMapIPv4toIPv6(mDNSv4Addr* in, mDNSv6Addr* out)
128 {
129 out->l[0] = 0;
130 out->l[1] = 0;
131 out->w[4] = 0;
132 out->w[5] = 0xffff;
133 out->b[12] = in->b[0];
134 out->b[13] = in->b[1];
135 out->b[14] = in->b[2];
136 out->b[15] = in->b[3];
137 }
138
139 mDNSexport mDNSBool mDNSAddrIPv4FromMappedIPv6(mDNSv6Addr *in, mDNSv4Addr* out)
140 {
141 if (in->l[0] != 0 || in->l[1] != 0 || in->w[4] != 0 || in->w[5] != 0xffff)
142 return mDNSfalse;
143
144 out->NotAnInteger = in->l[3];
145 return mDNStrue;
146 }
147
148 mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
149 {
150 while (intf && !intf->InterfaceActive) intf = intf->next;
151 return(intf);
152 }
153
154 mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
155 {
156 const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
157 if (next) return(next->InterfaceID);else return(mDNSNULL);
158 }
159
160 mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
161 {
162 mDNSu32 slot, used = 0;
163 CacheGroup *cg;
164 const CacheRecord *rr;
165 FORALL_CACHERECORDS(slot, cg, rr)
166 {
167 if (rr->resrec.InterfaceID == id)
168 used++;
169 }
170 return(used);
171 }
172
173 mDNSexport char *DNSTypeName(mDNSu16 rrtype)
174 {
175 switch (rrtype)
176 {
177 case kDNSType_A: return("Addr");
178 case kDNSType_NS: return("NS");
179 case kDNSType_CNAME: return("CNAME");
180 case kDNSType_SOA: return("SOA");
181 case kDNSType_NULL: return("NULL");
182 case kDNSType_PTR: return("PTR");
183 case kDNSType_HINFO: return("HINFO");
184 case kDNSType_TXT: return("TXT");
185 case kDNSType_AAAA: return("AAAA");
186 case kDNSType_SRV: return("SRV");
187 case kDNSType_OPT: return("OPT");
188 case kDNSType_NSEC: return("NSEC");
189 case kDNSType_NSEC3: return("NSEC3");
190 case kDNSType_NSEC3PARAM: return("NSEC3PARAM");
191 case kDNSType_TSIG: return("TSIG");
192 case kDNSType_RRSIG: return("RRSIG");
193 case kDNSType_DNSKEY: return("DNSKEY");
194 case kDNSType_DS: return("DS");
195 case kDNSQType_ANY: return("ANY");
196 default: {
197 static char buffer[16];
198 mDNS_snprintf(buffer, sizeof(buffer), "TYPE%d", rrtype);
199 return(buffer);
200 }
201 }
202 }
203
204 mDNSlocal char *DNSSECAlgName(mDNSu8 alg)
205 {
206 switch (alg)
207 {
208 case CRYPTO_RSA_SHA1: return "RSA_SHA1";
209 case CRYPTO_DSA_NSEC3_SHA1: return "DSA_NSEC3_SHA1";
210 case CRYPTO_RSA_NSEC3_SHA1: return "RSA_NSEC3_SHA1";
211 case CRYPTO_RSA_SHA256: return "RSA_SHA256";
212 case CRYPTO_RSA_SHA512: return "RSA_SHA512";
213 default: {
214 static char algbuffer[16];
215 mDNS_snprintf(algbuffer, sizeof(algbuffer), "ALG%d", alg);
216 return(algbuffer);
217 }
218 }
219 }
220
221 mDNSlocal char *DNSSECDigestName(mDNSu8 digest)
222 {
223 switch (digest)
224 {
225 case SHA1_DIGEST_TYPE: return "SHA1";
226 case SHA256_DIGEST_TYPE: return "SHA256";
227 default:
228 {
229 static char digbuffer[16];
230 mDNS_snprintf(digbuffer, sizeof(digbuffer), "DIG%d", digest);
231 return(digbuffer);
232 }
233 }
234 }
235
236 mDNSexport mDNSu32 swap32(mDNSu32 x)
237 {
238 mDNSu8 *ptr = (mDNSu8 *)&x;
239 return (mDNSu32)((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
240 }
241
242 mDNSexport mDNSu16 swap16(mDNSu16 x)
243 {
244 mDNSu8 *ptr = (mDNSu8 *)&x;
245 return (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
246 }
247
248 // RFC 4034 Appendix B: Get the keyid of a DNS KEY. It is not transmitted
249 // explicitly on the wire.
250 //
251 // Note: This just helps narrow down the list of keys to look at. It is possible
252 // for two DNS keys to have the same ID i.e., key ID is not a unqiue tag. We ignore
253 // MD5 keys.
254 //
255 // 1st argument - the RDATA part of the DNSKEY RR
256 // 2nd argument - the RDLENGTH
257 //
258 mDNSlocal mDNSu32 keytag(mDNSu8 *key, mDNSu32 keysize)
259 {
260 unsigned long ac;
261 unsigned int i;
262
263 for (ac = 0, i = 0; i < keysize; ++i)
264 ac += (i & 1) ? key[i] : key[i] << 8;
265 ac += (ac >> 16) & 0xFFFF;
266 return ac & 0xFFFF;
267 }
268
269 mDNSexport int baseEncode(char *buffer, int blen, const mDNSu8 *data, int len, int encAlg)
270 {
271 AlgContext *ctx;
272 mDNSu8 *outputBuffer;
273 int length;
274
275 ctx = AlgCreate(ENC_ALG, encAlg);
276 if (!ctx)
277 {
278 LogMsg("baseEncode: AlgCreate failed\n");
279 return 0;
280 }
281 AlgAdd(ctx, data, len);
282 outputBuffer = AlgEncode(ctx);
283 length = 0;
284 if (outputBuffer)
285 {
286 // Note: don't include any spaces in the format string below. This
287 // is also used by NSEC3 code for proving non-existence where it
288 // needs the base32 encoding without any spaces etc.
289 length = mDNS_snprintf(buffer, blen, "%s", outputBuffer);
290 }
291 AlgDestroy(ctx);
292 return length;
293 }
294
295 mDNSlocal void PrintTypeBitmap(const mDNSu8 *bmap, int bitmaplen, char *const buffer, mDNSu32 length)
296 {
297 int win, wlen, type;
298
299 while (bitmaplen > 0)
300 {
301 int i;
302
303 if (bitmaplen < 3)
304 {
305 LogMsg("PrintTypeBitmap: malformed bitmap, bitmaplen %d short", bitmaplen);
306 break;
307 }
308
309 win = *bmap++;
310 wlen = *bmap++;
311 bitmaplen -= 2;
312 if (bitmaplen < wlen || wlen < 1 || wlen > 32)
313 {
314 LogInfo("PrintTypeBitmap: malformed nsec, bitmaplen %d wlen %d", bitmaplen, wlen);
315 break;
316 }
317 if (win < 0 || win >= 256)
318 {
319 LogInfo("PrintTypeBitmap: malformed nsec, bad window win %d", win);
320 break;
321 }
322 type = win * 256;
323 for (i = 0; i < wlen * 8; i++)
324 {
325 if (bmap[i>>3] & (128 >> (i&7)))
326 length += mDNS_snprintf(buffer+length, (MaxMsg - 1) - length, "%s ", DNSTypeName(type + i));
327 }
328 bmap += wlen;
329 bitmaplen -= wlen;
330 }
331 }
332
333 // Parse the fields beyond the base header. NSEC3 should have been validated.
334 mDNSexport void NSEC3Parse(const ResourceRecord *const rr, mDNSu8 **salt, int *hashLength, mDNSu8 **nxtName, int *bitmaplen, mDNSu8 **bitmap)
335 {
336 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
337 rdataNSEC3 *nsec3 = (rdataNSEC3 *)rdb->data;
338 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
339 int hlen;
340
341 if (salt)
342 {
343 if (nsec3->saltLength)
344 *salt = p;
345 else
346 *salt = mDNSNULL;
347 }
348 p += nsec3->saltLength;
349 // p is pointing at hashLength
350 hlen = (int)*p;
351 if (hashLength)
352 *hashLength = hlen;
353 p++;
354 if (nxtName)
355 *nxtName = p;
356 p += hlen;
357 if (bitmaplen)
358 *bitmaplen = rr->rdlength - (int)(p - rdb->data);
359 if (bitmap)
360 *bitmap = p;
361 }
362
363 // Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
364 // the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
365 // long as this routine is only used for debugging messages, it probably isn't a big problem.
366 mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
367 {
368 const RDataBody2 *const rd = (RDataBody2 *)rd1;
369 #define RemSpc (MaxMsg-1-length)
370 char *ptr = buffer;
371 mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
372 if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
373 if (!rr->rdlength) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
374
375 switch (rr->rrtype)
376 {
377 case kDNSType_A: mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4); break;
378
379 case kDNSType_NS: // Same as PTR
380 case kDNSType_CNAME: // Same as PTR
381 case kDNSType_PTR: mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c); break;
382
383 case kDNSType_SOA: mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
384 rd->soa.mname.c, rd->soa.rname.c,
385 rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
386 break;
387
388 case kDNSType_HINFO: // Display this the same as TXT (show all constituent strings)
389 case kDNSType_TXT: {
390 const mDNSu8 *t = rd->txt.c;
391 while (t < rd->txt.c + rr->rdlength)
392 {
393 length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "¦" : "", t);
394 t += 1 + t[0];
395 }
396 } break;
397
398 case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6); break;
399 case kDNSType_SRV: mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
400 rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
401
402 case kDNSType_OPT: {
403 const rdataOPT *opt;
404 const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
405 length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
406 for (opt = &rd->opt[0]; opt < end; opt++)
407 {
408 switch(opt->opt)
409 {
410 case kDNSOpt_LLQ:
411 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.llq.vers);
412 length += mDNS_snprintf(buffer+length, RemSpc, " Op %d", opt->u.llq.llqOp);
413 length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
414 length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
415 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.llq.llqlease);
416 break;
417 case kDNSOpt_Lease:
418 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.updatelease);
419 break;
420 case kDNSOpt_Owner:
421 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.owner.vers);
422 length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq); // Display as unsigned
423 length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a", opt->u.owner.HMAC.b);
424 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
425 {
426 length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
427 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
428 length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
429 }
430 break;
431 case kDNSOpt_Trace:
432 length += mDNS_snprintf(buffer+length, RemSpc, " Platform %d", opt->u.tracer.platf);
433 length += mDNS_snprintf(buffer+length, RemSpc, " mDNSVers %d", opt->u.tracer.mDNSv);
434 break;
435 default:
436 length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d", opt->opt);
437 break;
438 }
439 }
440 }
441 break;
442
443 case kDNSType_NSEC: {
444 domainname *next = (domainname *)rd->data;
445 int len, bitmaplen;
446 mDNSu8 *bmap;
447 len = DomainNameLength(next);
448 bitmaplen = rr->rdlength - len;
449 bmap = (mDNSu8 *)((mDNSu8 *)next + len);
450
451 if (UNICAST_NSEC(rr))
452 length += mDNS_snprintf(buffer+length, RemSpc, "%##s ", next->c);
453 PrintTypeBitmap(bmap, bitmaplen, buffer, length);
454
455 }
456 break;
457 case kDNSType_NSEC3: {
458 rdataNSEC3 *nsec3 = (rdataNSEC3 *)rd->data;
459 const mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
460 int hashLength, bitmaplen, i;
461
462 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s %d %d ",
463 DNSSECDigestName(nsec3->alg), nsec3->flags, swap16(nsec3->iterations));
464
465 if (!nsec3->saltLength)
466 {
467 length += mDNS_snprintf(buffer+length, RemSpc, "-");
468 }
469 else
470 {
471 for (i = 0; i < nsec3->saltLength; i++)
472 {
473 length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
474 }
475 }
476
477 // put a space at the end
478 length += mDNS_snprintf(buffer+length, RemSpc, " ");
479
480 p += nsec3->saltLength;
481 // p is pointing at hashLength
482 hashLength = (int)*p++;
483
484 length += baseEncode(buffer + length, RemSpc, p, hashLength, ENC_BASE32);
485
486 // put a space at the end
487 length += mDNS_snprintf(buffer+length, RemSpc, " ");
488
489 p += hashLength;
490 bitmaplen = rr->rdlength - (int)(p - rd->data);
491 PrintTypeBitmap(p, bitmaplen, buffer, length);
492 }
493 break;
494 case kDNSType_RRSIG: {
495 rdataRRSig *rrsig = (rdataRRSig *)rd->data;
496 mDNSu8 expTimeBuf[64];
497 mDNSu8 inceptTimeBuf[64];
498 unsigned long inceptClock;
499 unsigned long expClock;
500 int len;
501
502 expClock = (unsigned long)swap32(rrsig->sigExpireTime);
503 mDNSPlatformFormatTime(expClock, expTimeBuf, sizeof(expTimeBuf));
504
505 inceptClock = (unsigned long)swap32(rrsig->sigInceptTime);
506 mDNSPlatformFormatTime(inceptClock, inceptTimeBuf, sizeof(inceptTimeBuf));
507
508 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s %s %d %d %s %s %d %##s ",
509 DNSTypeName(swap16(rrsig->typeCovered)), DNSSECAlgName(rrsig->alg), rrsig->labels, swap32(rrsig->origTTL),
510 expTimeBuf, inceptTimeBuf, swap16(rrsig->keyTag), ((domainname *)(&rrsig->signerName))->c);
511
512 len = DomainNameLength((domainname *)&rrsig->signerName);
513 length += baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + len + RRSIG_FIXED_SIZE),
514 rr->rdlength - (len + RRSIG_FIXED_SIZE), ENC_BASE64);
515 }
516 break;
517 case kDNSType_DNSKEY: {
518 rdataDNSKey *rrkey = (rdataDNSKey *)rd->data;
519 length += mDNS_snprintf(buffer+length, RemSpc, "\t%d %d %s %u ", swap16(rrkey->flags), rrkey->proto,
520 DNSSECAlgName(rrkey->alg), (unsigned int)keytag((mDNSu8 *)rrkey, rr->rdlength));
521 length += baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + DNSKEY_FIXED_SIZE),
522 rr->rdlength - DNSKEY_FIXED_SIZE, ENC_BASE64);
523 }
524 break;
525 case kDNSType_DS: {
526 mDNSu8 *p;
527 int i;
528 rdataDS *rrds = (rdataDS *)rd->data;
529
530 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s\t%d\t%s ", DNSSECAlgName(rrds->alg), swap16(rrds->keyTag),
531 DNSSECDigestName(rrds->digestType));
532
533 p = (mDNSu8 *)(rd->data + DS_FIXED_SIZE);
534 for (i = 0; i < (rr->rdlength - DS_FIXED_SIZE); i++)
535 {
536 length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
537 }
538 }
539 break;
540
541 default: mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %s", rr->rdlength, rd->data);
542 // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
543 for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
544 break;
545 }
546 return(buffer);
547 }
548
549 // See comments in mDNSEmbeddedAPI.h
550 #if _PLATFORM_HAS_STRONG_PRNG_
551 #define mDNSRandomNumber mDNSPlatformRandomNumber
552 #else
553 mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
554 {
555 return seed * 21 + 1;
556 }
557
558 mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
559 {
560 return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
561 }
562
563 mDNSlocal mDNSu32 mDNSRandomNumber()
564 {
565 static mDNSBool seeded = mDNSfalse;
566 static mDNSu32 seed = 0;
567 if (!seeded)
568 {
569 seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
570 seeded = mDNStrue;
571 }
572 return (seed = mDNSRandomFromSeed(seed));
573 }
574 #endif // ! _PLATFORM_HAS_STRONG_PRNG_
575
576 mDNSexport mDNSu32 mDNSRandom(mDNSu32 max) // Returns pseudo-random result from zero to max inclusive
577 {
578 mDNSu32 ret = 0;
579 mDNSu32 mask = 1;
580
581 while (mask < max) mask = (mask << 1) | 1;
582
583 do ret = mDNSRandomNumber() & mask;
584 while (ret > max);
585
586 return ret;
587 }
588
589 mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
590 {
591 if (ip1->type == ip2->type)
592 {
593 switch (ip1->type)
594 {
595 case mDNSAddrType_None: return(mDNStrue); // Empty addresses have no data and are therefore always equal
596 case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
597 case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
598 }
599 }
600 return(mDNSfalse);
601 }
602
603 mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
604 {
605 switch(ip->type)
606 {
607 case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
608 case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
609 default: return(mDNSfalse);
610 }
611 }
612
613 // ***************************************************************************
614 #if COMPILER_LIKES_PRAGMA_MARK
615 #pragma mark -
616 #pragma mark - Domain Name Utility Functions
617 #endif
618
619 mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
620 {
621 int i;
622 const int len = *a++;
623
624 if (len > MAX_DOMAIN_LABEL)
625 { debugf("Malformed label (too long)"); return(mDNSfalse); }
626
627 if (len != *b++) return(mDNSfalse);
628 for (i=0; i<len; i++)
629 {
630 mDNSu8 ac = *a++;
631 mDNSu8 bc = *b++;
632 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
633 if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
634 if (ac != bc) return(mDNSfalse);
635 }
636 return(mDNStrue);
637 }
638
639 mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
640 {
641 const mDNSu8 * a = d1->c;
642 const mDNSu8 * b = d2->c;
643 const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME; // Maximum that's valid
644
645 while (*a || *b)
646 {
647 if (a + 1 + *a >= max)
648 { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
649 if (!SameDomainLabel(a, b)) return(mDNSfalse);
650 a += 1 + *a;
651 b += 1 + *b;
652 }
653
654 return(mDNStrue);
655 }
656
657 mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
658 {
659 mDNSu16 l1 = DomainNameLength(d1);
660 mDNSu16 l2 = DomainNameLength(d2);
661 return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
662 }
663
664 mDNSexport mDNSBool IsLocalDomain(const domainname *d)
665 {
666 // Domains that are defined to be resolved via link-local multicast are:
667 // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
668 static const domainname *nL = (const domainname*)"\x5" "local";
669 static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169" "\x7" "in-addr" "\x4" "arpa";
670 static const domainname *n8 = (const domainname*)"\x1" "8" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
671 static const domainname *n9 = (const domainname*)"\x1" "9" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
672 static const domainname *nA = (const domainname*)"\x1" "a" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
673 static const domainname *nB = (const domainname*)"\x1" "b" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
674
675 const domainname *d1, *d2, *d3, *d4, *d5; // Top-level domain, second-level domain, etc.
676 d1 = d2 = d3 = d4 = d5 = mDNSNULL;
677 while (d->c[0])
678 {
679 d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
680 d = (const domainname*)(d->c + 1 + d->c[0]);
681 }
682
683 if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
684 if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
685 if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
686 if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
687 if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
688 if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
689 return(mDNSfalse);
690 }
691
692 mDNSexport const mDNSu8 *LastLabel(const domainname *d)
693 {
694 const mDNSu8 *p = d->c;
695 while (d->c[0])
696 {
697 p = d->c;
698 d = (const domainname*)(d->c + 1 + d->c[0]);
699 }
700 return(p);
701 }
702
703 // Returns length of a domain name INCLUDING the byte for the final null label
704 // e.g. for the root label "." it returns one
705 // For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
706 // Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
707 // If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
708 mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
709 {
710 const mDNSu8 *src = name->c;
711 while (src < limit && *src <= MAX_DOMAIN_LABEL)
712 {
713 if (*src == 0) return((mDNSu16)(src - name->c + 1));
714 src += 1 + *src;
715 }
716 return(MAX_DOMAIN_NAME+1);
717 }
718
719 // CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
720 // for the final null label, e.g. for the root label "." it returns one.
721 // E.g. for the FQDN "foo.com." it returns 9
722 // (length, three data bytes, length, three more data bytes, final zero).
723 // In the case where a parent domain name is provided, and the given name is a child
724 // of that parent, CompressedDomainNameLength returns the length of the prefix portion
725 // of the child name, plus TWO bytes for the compression pointer.
726 // E.g. for the name "foo.com." with parent "com.", it returns 6
727 // (length, three data bytes, two-byte compression pointer).
728 mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
729 {
730 const mDNSu8 *src = name->c;
731 if (parent && parent->c[0] == 0) parent = mDNSNULL;
732 while (*src)
733 {
734 if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
735 if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
736 src += 1 + *src;
737 if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
738 }
739 return((mDNSu16)(src - name->c + 1));
740 }
741
742 // CountLabels() returns number of labels in name, excluding final root label
743 // (e.g. for "apple.com." CountLabels returns 2.)
744 mDNSexport int CountLabels(const domainname *d)
745 {
746 int count = 0;
747 const mDNSu8 *ptr;
748 for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
749 return count;
750 }
751
752 // SkipLeadingLabels skips over the first 'skip' labels in the domainname,
753 // returning a pointer to the suffix with 'skip' labels removed.
754 mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
755 {
756 while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
757 return(d);
758 }
759
760 // AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
761 // The C string contains the label as-is, with no escaping, etc.
762 // Any dots in the name are literal dots, not label separators
763 // If successful, AppendLiteralLabelString returns a pointer to the next unused byte
764 // in the domainname bufer (i.e. the next byte after the terminating zero).
765 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
766 // AppendLiteralLabelString returns mDNSNULL.
767 mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
768 {
769 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
770 const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
771 const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
772 const mDNSu8 *const lim = (lim1 < lim2) ? lim1 : lim2;
773 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
774
775 while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++; // Copy the data
776 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
777 *ptr++ = 0; // Put the null root label on the end
778 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
779 else return(ptr); // Success: return new value of ptr
780 }
781
782 // AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
783 // The C string is in conventional DNS syntax:
784 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
785 // If successful, AppendDNSNameString returns a pointer to the next unused byte
786 // in the domainname bufer (i.e. the next byte after the terminating zero).
787 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
788 // AppendDNSNameString returns mDNSNULL.
789 mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
790 {
791 const char *cstr = cstring;
792 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
793 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
794 while (*cstr && ptr < lim) // While more characters, and space to put them...
795 {
796 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
797 if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
798 while (*cstr && *cstr != '.' && ptr < lim) // While we have characters in the label...
799 {
800 mDNSu8 c = (mDNSu8)*cstr++; // Read the character
801 if (c == '\\') // If escape character, check next character
802 {
803 c = (mDNSu8)*cstr++; // Assume we'll just take the next character
804 if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
805 { // If three decimal digits,
806 int v0 = cstr[-1] - '0'; // then interpret as three-digit decimal
807 int v1 = cstr[ 0] - '0';
808 int v2 = cstr[ 1] - '0';
809 int val = v0 * 100 + v1 * 10 + v2;
810 if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it
811 }
812 }
813 *ptr++ = c; // Write the character
814 }
815 if (*cstr) cstr++; // Skip over the trailing dot (if present)
816 if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL) // If illegal label, abort
817 return(mDNSNULL);
818 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
819 }
820
821 *ptr++ = 0; // Put the null root label on the end
822 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
823 else return(ptr); // Success: return new value of ptr
824 }
825
826 // AppendDomainLabel appends a single label to a name.
827 // If successful, AppendDomainLabel returns a pointer to the next unused byte
828 // in the domainname bufer (i.e. the next byte after the terminating zero).
829 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
830 // AppendDomainLabel returns mDNSNULL.
831 mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
832 {
833 int i;
834 mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
835
836 // Check label is legal
837 if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
838
839 // Check that ptr + length byte + data bytes + final zero does not exceed our limit
840 if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
841
842 for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i]; // Copy the label data
843 *ptr++ = 0; // Put the null root label on the end
844 return(ptr);
845 }
846
847 mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
848 {
849 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
850 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
851 const mDNSu8 * src = append->c;
852 while (src[0])
853 {
854 int i;
855 if (ptr + 1 + src[0] > lim) return(mDNSNULL);
856 for (i=0; i<=src[0]; i++) *ptr++ = src[i];
857 *ptr = 0; // Put the null root label on the end
858 src += i;
859 }
860 return(ptr);
861 }
862
863 // MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
864 // If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
865 // If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
866 // MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
867 // In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
868 // In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
869 mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
870 {
871 mDNSu8 * ptr = label->c + 1; // Where we're putting it
872 const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL; // The maximum we can put
873 while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++; // Copy the label
874 label->c[0] = (mDNSu8)(ptr - label->c - 1); // Set the length byte
875 return(*cstr == 0); // Return mDNStrue if we successfully consumed all input
876 }
877
878 // MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
879 // The C string is in conventional DNS syntax:
880 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
881 // If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
882 // in the domainname bufer (i.e. the next byte after the terminating zero).
883 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
884 // MakeDomainNameFromDNSNameString returns mDNSNULL.
885 mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
886 {
887 name->c[0] = 0; // Make an empty domain name
888 return(AppendDNSNameString(name, cstr)); // And then add this string to it
889 }
890
891 mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
892 {
893 const mDNSu8 * src = label->c; // Domain label we're reading
894 const mDNSu8 len = *src++; // Read length of this (non-null) label
895 const mDNSu8 *const end = src + len; // Work out where the label ends
896 if (len > MAX_DOMAIN_LABEL) return(mDNSNULL); // If illegal label, abort
897 while (src < end) // While we have characters in the label
898 {
899 mDNSu8 c = *src++;
900 if (esc)
901 {
902 if (c == '.' || c == esc) // If character is a dot or the escape character
903 *ptr++ = esc; // Output escape character
904 else if (c <= ' ') // If non-printing ascii,
905 { // Output decimal escape sequence
906 *ptr++ = esc;
907 *ptr++ = (char) ('0' + (c / 100) );
908 *ptr++ = (char) ('0' + (c / 10) % 10);
909 c = (mDNSu8)('0' + (c ) % 10);
910 }
911 }
912 *ptr++ = (char)c; // Copy the character
913 }
914 *ptr = 0; // Null-terminate the string
915 return(ptr); // and return
916 }
917
918 // Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
919 mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
920 {
921 const mDNSu8 *src = name->c; // Domain name we're reading
922 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
923
924 if (*src == 0) *ptr++ = '.'; // Special case: For root, just write a dot
925
926 while (*src) // While more characters in the domain name
927 {
928 if (src + 1 + *src >= max) return(mDNSNULL);
929 ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
930 if (!ptr) return(mDNSNULL);
931 src += 1 + *src;
932 *ptr++ = '.'; // Write the dot after the label
933 }
934
935 *ptr++ = 0; // Null-terminate the string
936 return(ptr); // and return
937 }
938
939 // RFC 1034 rules:
940 // Host names must start with a letter, end with a letter or digit,
941 // and have as interior characters only letters, digits, and hyphen.
942 // This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
943
944 mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
945 {
946 const mDNSu8 * src = &UTF8Name[1];
947 const mDNSu8 *const end = &UTF8Name[1] + UTF8Name[0];
948 mDNSu8 * ptr = &hostlabel->c[1];
949 const mDNSu8 *const lim = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
950 while (src < end)
951 {
952 // Delete apostrophes from source name
953 if (src[0] == '\'') { src++; continue; } // Standard straight single quote
954 if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
955 { src += 3; continue; } // Unicode curly apostrophe
956 if (ptr < lim)
957 {
958 if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
959 else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
960 }
961 src++;
962 }
963 while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks
964 hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
965 }
966
967 #define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \
968 ((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \
969 ((X)[4] | 0x20) == 'p')
970
971 mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
972 const domainlabel *name, const domainname *type, const domainname *const domain)
973 {
974 int i, len;
975 mDNSu8 *dst = fqdn->c;
976 const mDNSu8 *src;
977 const char *errormsg;
978 #if APPLE_OSX_mDNSResponder
979 mDNSBool loggedUnderscore = mDNSfalse;
980 static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
981 #endif
982
983 // In the case where there is no name (and ONLY in that case),
984 // a single-label subtype is allowed as the first label of a three-part "type"
985 if (!name && type)
986 {
987 const mDNSu8 *s0 = type->c;
988 if (s0[0] && s0[0] < 0x40) // If legal first label (at least one character, and no more than 63)
989 {
990 const mDNSu8 * s1 = s0 + 1 + s0[0];
991 if (s1[0] && s1[0] < 0x40) // and legal second label (at least one character, and no more than 63)
992 {
993 const mDNSu8 *s2 = s1 + 1 + s1[0];
994 if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0) // and we have three and only three labels
995 {
996 static const mDNSu8 SubTypeLabel[5] = mDNSSubTypeLabel;
997 src = s0; // Copy the first label
998 len = *src;
999 for (i=0; i <= len; i++) *dst++ = *src++;
1000 for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
1001 type = (const domainname *)s1;
1002
1003 // Special support to enable the DNSServiceBrowse call made by Bonjour Browser
1004 // For these queries, we retract the "._sub" we just added between the subtype and the main type
1005 // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
1006 if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
1007 dst -= sizeof(SubTypeLabel);
1008 }
1009 }
1010 }
1011 }
1012
1013 if (name && name->c[0])
1014 {
1015 src = name->c; // Put the service name into the domain name
1016 len = *src;
1017 if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
1018 for (i=0; i<=len; i++) *dst++ = *src++;
1019 }
1020 else
1021 name = (domainlabel*)""; // Set this up to be non-null, to avoid errors if we have to call LogMsg() below
1022
1023 src = type->c; // Put the service type into the domain name
1024 len = *src;
1025 if (len < 2 || len > 16)
1026 {
1027 LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
1028 "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
1029 #if APPLE_OSX_mDNSResponder
1030 ConvertDomainNameToCString(type, typeBuf);
1031 mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, "");
1032 #endif
1033 }
1034 if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
1035 if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
1036 for (i=2; i<=len; i++)
1037 {
1038 // Letters and digits are allowed anywhere
1039 if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
1040 // Hyphens are only allowed as interior characters
1041 // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
1042 // with the same rule as hyphens
1043 if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
1044 {
1045 #if APPLE_OSX_mDNSResponder
1046 if (src[i] == '_' && loggedUnderscore == mDNSfalse)
1047 {
1048 ConvertDomainNameToCString(type, typeBuf);
1049 mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, "");
1050 loggedUnderscore = mDNStrue;
1051 }
1052 #endif
1053 continue;
1054 }
1055 errormsg = "Application protocol name must contain only letters, digits, and hyphens";
1056 #if APPLE_OSX_mDNSResponder
1057 {
1058 ConvertDomainNameToCString(type, typeBuf);
1059 mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, "");
1060 }
1061 #endif
1062 goto fail;
1063 }
1064 for (i=0; i<=len; i++) *dst++ = *src++;
1065
1066 len = *src;
1067 if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
1068 for (i=0; i<=len; i++) *dst++ = *src++;
1069
1070 if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
1071
1072 *dst = 0;
1073 if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
1074 if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
1075 { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
1076 dst = AppendDomainName(fqdn, domain);
1077 if (!dst) { errormsg = "Service domain too long"; goto fail; }
1078 return(dst);
1079
1080 fail:
1081 LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
1082 return(mDNSNULL);
1083 }
1084
1085 // A service name has the form: instance.application-protocol.transport-protocol.domain
1086 // DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
1087 // set or length limits for the protocol names, and the final domain is allowed to be empty.
1088 // However, if the given FQDN doesn't contain at least three labels,
1089 // DeconstructServiceName will reject it and return mDNSfalse.
1090 mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
1091 domainlabel *const name, domainname *const type, domainname *const domain)
1092 {
1093 int i, len;
1094 const mDNSu8 *src = fqdn->c;
1095 const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
1096 mDNSu8 *dst;
1097
1098 dst = name->c; // Extract the service name
1099 len = *src;
1100 if (!len) { debugf("DeconstructServiceName: FQDN empty!"); return(mDNSfalse); }
1101 if (len >= 0x40) { debugf("DeconstructServiceName: Instance name too long"); return(mDNSfalse); }
1102 for (i=0; i<=len; i++) *dst++ = *src++;
1103
1104 dst = type->c; // Extract the service type
1105 len = *src;
1106 if (!len) { debugf("DeconstructServiceName: FQDN contains only one label!"); return(mDNSfalse); }
1107 if (len >= 0x40) { debugf("DeconstructServiceName: Application protocol name too long"); return(mDNSfalse); }
1108 if (src[1] != '_') { debugf("DeconstructServiceName: No _ at start of application protocol"); return(mDNSfalse); }
1109 for (i=0; i<=len; i++) *dst++ = *src++;
1110
1111 len = *src;
1112 if (!len) { debugf("DeconstructServiceName: FQDN contains only two labels!"); return(mDNSfalse); }
1113 if (!ValidTransportProtocol(src))
1114 { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
1115 for (i=0; i<=len; i++) *dst++ = *src++;
1116 *dst++ = 0; // Put terminator on the end of service type
1117
1118 dst = domain->c; // Extract the service domain
1119 while (*src)
1120 {
1121 len = *src;
1122 if (len >= 0x40)
1123 { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
1124 if (src + 1 + len + 1 >= max)
1125 { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
1126 for (i=0; i<=len; i++) *dst++ = *src++;
1127 }
1128 *dst++ = 0; // Put the null root label on the end
1129
1130 return(mDNStrue);
1131 }
1132
1133 mDNSexport mStatus DNSNameToLowerCase(domainname *d, domainname *result)
1134 {
1135 const mDNSu8 *a = d->c;
1136 mDNSu8 *b = result->c;
1137 const mDNSu8 *const max = d->c + MAX_DOMAIN_NAME;
1138 int i, len;
1139
1140 while (*a)
1141 {
1142 if (a + 1 + *a >= max)
1143 {
1144 LogMsg("DNSNameToLowerCase: ERROR!! Malformed Domain name");
1145 return mStatus_BadParamErr;
1146 }
1147 len = *a++;
1148 *b++ = len;
1149 for (i = 0; i < len; i++)
1150 {
1151 mDNSu8 ac = *a++;
1152 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
1153 *b++ = ac;
1154 }
1155 }
1156 *b = 0;
1157
1158 return mStatus_NoError;
1159 }
1160
1161 mDNSexport const mDNSu8 *NSEC3HashName(const domainname *name, rdataNSEC3 *nsec3, const mDNSu8 *AnonData, int AnonDataLen,
1162 const mDNSu8 hash[NSEC3_MAX_HASH_LEN], int *dlen)
1163 {
1164 AlgContext *ctx;
1165 int i;
1166 domainname lname;
1167 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
1168 const mDNSu8 *digest;
1169 int digestlen;
1170 mDNSBool first = mDNStrue;
1171
1172 if (DNSNameToLowerCase((domainname *)name, &lname) != mStatus_NoError)
1173 {
1174 LogMsg("NSEC3HashName: ERROR!! DNSNameToLowerCase failed");
1175 return mDNSNULL;
1176 }
1177
1178 digest = lname.c;
1179 digestlen = DomainNameLength(&lname);
1180
1181 // Note that it is "i <=". The first iteration is for digesting the name and salt.
1182 // The iteration count does not include that.
1183 for (i = 0; i <= swap16(nsec3->iterations); i++)
1184 {
1185 ctx = AlgCreate(DIGEST_ALG, nsec3->alg);
1186 if (!ctx)
1187 {
1188 LogMsg("NSEC3HashName: ERROR!! Cannot allocate context");
1189 return mDNSNULL;
1190 }
1191
1192 AlgAdd(ctx, digest, digestlen);
1193 if (nsec3->saltLength)
1194 AlgAdd(ctx, p, nsec3->saltLength);
1195 if (AnonDataLen)
1196 AlgAdd(ctx, AnonData, AnonDataLen);
1197 if (first)
1198 {
1199 first = mDNSfalse;
1200 digest = hash;
1201 digestlen = AlgLength(ctx);
1202 }
1203 AlgFinal(ctx, (void *)digest, digestlen);
1204 AlgDestroy(ctx);
1205 }
1206 *dlen = digestlen;
1207 return digest;
1208 }
1209
1210 // Notes on UTF-8:
1211 // 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
1212 // 10xxxxxx is a continuation byte of a multi-byte character
1213 // 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x 80 - 0x 800-1)
1214 // 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x 800 - 0x 10000-1)
1215 // 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x 10000 - 0x 200000-1)
1216 // 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
1217 // 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
1218 //
1219 // UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
1220 // Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
1221 // about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
1222 // The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
1223 // and the second is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
1224
1225 mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
1226 {
1227 if (length > max)
1228 {
1229 mDNSu8 c1 = string[max]; // First byte after cut point
1230 mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0; // Second byte after cut point
1231 length = max; // Trim length down
1232 while (length > 0)
1233 {
1234 // Check if the byte right after the chop point is a UTF-8 continuation byte,
1235 // or if the character right after the chop point is the second of a UTF-16 surrogate pair.
1236 // If so, then we continue to chop more bytes until we get to a legal chop point.
1237 mDNSBool continuation = ((c1 & 0xC0) == 0x80);
1238 mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
1239 if (!continuation && !secondsurrogate) break;
1240 c2 = c1;
1241 c1 = string[--length];
1242 }
1243 // Having truncated characters off the end of our string, also cut off any residual white space
1244 while (length > 0 && string[length-1] <= ' ') length--;
1245 }
1246 return(length);
1247 }
1248
1249 // Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
1250 // name ends in "-nnn", where n is some decimal number.
1251 mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
1252 {
1253 mDNSu16 l = name->c[0];
1254
1255 if (RichText)
1256 {
1257 if (l < 4) return mDNSfalse; // Need at least " (2)"
1258 if (name->c[l--] != ')') return mDNSfalse; // Last char must be ')'
1259 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Preceeded by a digit
1260 l--;
1261 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
1262 return (name->c[l] == '(' && name->c[l - 1] == ' ');
1263 }
1264 else
1265 {
1266 if (l < 2) return mDNSfalse; // Need at least "-2"
1267 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Last char must be a digit
1268 l--;
1269 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
1270 return (name->c[l] == '-');
1271 }
1272 }
1273
1274 // removes an auto-generated suffix (appended on a name collision) from a label. caller is
1275 // responsible for ensuring that the label does indeed contain a suffix. returns the number
1276 // from the suffix that was removed.
1277 mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
1278 {
1279 mDNSu32 val = 0, multiplier = 1;
1280
1281 // Chop closing parentheses from RichText suffix
1282 if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
1283
1284 // Get any existing numerical suffix off the name
1285 while (mDNSIsDigit(name->c[name->c[0]]))
1286 { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
1287
1288 // Chop opening parentheses or dash from suffix
1289 if (RichText)
1290 {
1291 if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
1292 }
1293 else
1294 {
1295 if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
1296 }
1297
1298 return(val);
1299 }
1300
1301 // appends a numerical suffix to a label, with the number following a whitespace and enclosed
1302 // in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
1303 mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
1304 {
1305 mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2")
1306 if (RichText) chars = 4; // Shortest possible RichText suffix is 4 characters (" (2)")
1307
1308 // Truncate trailing spaces from RichText names
1309 if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
1310
1311 while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
1312
1313 name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
1314
1315 if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
1316 else { name->c[++name->c[0]] = '-'; }
1317
1318 while (divisor)
1319 {
1320 name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
1321 val %= divisor;
1322 divisor /= 10;
1323 }
1324
1325 if (RichText) name->c[++name->c[0]] = ')';
1326 }
1327
1328 mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
1329 {
1330 mDNSu32 val = 0;
1331
1332 if (LabelContainsSuffix(name, RichText))
1333 val = RemoveLabelSuffix(name, RichText);
1334
1335 // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
1336 // If existing suffix in the range 2-9, increment it.
1337 // If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
1338 // so add a random increment to improve the chances of finding an available name next time.
1339 if (val == 0) val = 2;
1340 else if (val < 10) val++;
1341 else val += 1 + mDNSRandom(99);
1342
1343 AppendLabelSuffix(name, val, RichText);
1344 }
1345
1346 // ***************************************************************************
1347 #if COMPILER_LIKES_PRAGMA_MARK
1348 #pragma mark -
1349 #pragma mark - Resource Record Utility Functions
1350 #endif
1351
1352 // Set up a AuthRecord with sensible default values.
1353 // These defaults may be overwritten with new values before mDNS_Register is called
1354 mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
1355 mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
1356 {
1357 //
1358 // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
1359 // Most of the applications normally create with LocalOnly InterfaceID and we store them as
1360 // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
1361 // LocalOnly resource records can also be created with valid InterfaceID which happens today
1362 // when we create LocalOnly records for /etc/hosts.
1363
1364 if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
1365 {
1366 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
1367 return;
1368 }
1369 else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
1370 {
1371 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
1372 return;
1373 }
1374 else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
1375 {
1376 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
1377 return;
1378 }
1379
1380 // Don't try to store a TTL bigger than we can represent in platform time units
1381 if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
1382 ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
1383 else if (ttl == 0) // And Zero TTL is illegal
1384 ttl = DefaultTTLforRRType(rrtype);
1385
1386 // Field Group 1: The actual information pertaining to this resource record
1387 rr->resrec.RecordType = RecordType;
1388 rr->resrec.InterfaceID = InterfaceID;
1389 rr->resrec.name = &rr->namestorage;
1390 rr->resrec.rrtype = rrtype;
1391 rr->resrec.rrclass = kDNSClass_IN;
1392 rr->resrec.rroriginalttl = ttl;
1393 rr->resrec.rDNSServer = mDNSNULL;
1394 rr->resrec.AnonInfo = mDNSNULL;
1395 // rr->resrec.rdlength = MUST set by client and/or in mDNS_Register_internal
1396 // rr->resrec.rdestimate = set in mDNS_Register_internal
1397 // rr->resrec.rdata = MUST be set by client
1398
1399 if (RDataStorage)
1400 rr->resrec.rdata = RDataStorage;
1401 else
1402 {
1403 rr->resrec.rdata = &rr->rdatastorage;
1404 rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
1405 }
1406
1407 // Field Group 2: Persistent metadata for Authoritative Records
1408 rr->Additional1 = mDNSNULL;
1409 rr->Additional2 = mDNSNULL;
1410 rr->DependentOn = mDNSNULL;
1411 rr->RRSet = mDNSNULL;
1412 rr->RecordCallback = Callback;
1413 rr->RecordContext = Context;
1414
1415 rr->AutoTarget = Target_Manual;
1416 rr->AllowRemoteQuery = mDNSfalse;
1417 rr->ForceMCast = mDNSfalse;
1418
1419 rr->WakeUp = zeroOwner;
1420 rr->AddressProxy = zeroAddr;
1421 rr->TimeRcvd = 0;
1422 rr->TimeExpire = 0;
1423 rr->ARType = artype;
1424 rr->AuthFlags = 0;
1425
1426 // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
1427 // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
1428
1429 // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
1430 // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
1431 // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
1432 rr->state = regState_Zero;
1433 rr->uselease = 0;
1434 rr->expire = 0;
1435 rr->Private = 0;
1436 rr->updateid = zeroID;
1437 rr->zone = rr->resrec.name;
1438 rr->nta = mDNSNULL;
1439 rr->tcp = mDNSNULL;
1440 rr->OrigRData = 0;
1441 rr->OrigRDLen = 0;
1442 rr->InFlightRData = 0;
1443 rr->InFlightRDLen = 0;
1444 rr->QueuedRData = 0;
1445 rr->QueuedRDLen = 0;
1446 mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
1447 rr->SRVChanged = mDNSfalse;
1448 rr->mState = mergeState_Zero;
1449
1450 rr->namestorage.c[0] = 0; // MUST be set by client before calling mDNS_Register()
1451 }
1452
1453 mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
1454 const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
1455 {
1456 q->InterfaceID = InterfaceID;
1457 q->flags = 0;
1458 q->Target = zeroAddr;
1459 AssignDomainName(&q->qname, name);
1460 q->qtype = qtype;
1461 q->qclass = kDNSClass_IN;
1462 q->LongLived = (qtype == kDNSType_PTR);
1463 q->ExpectUnique = (qtype != kDNSType_PTR);
1464 q->ForceMCast = mDNSfalse;
1465 q->ReturnIntermed = mDNSfalse;
1466 q->SuppressUnusable = mDNSfalse;
1467 q->SearchListIndex = 0;
1468 q->AppendSearchDomains = 0;
1469 q->RetryWithSearchDomains = mDNSfalse;
1470 q->TimeoutQuestion = 0;
1471 q->WakeOnResolve = 0;
1472 q->UseBackgroundTrafficClass = mDNSfalse;
1473 q->ValidationRequired = 0;
1474 q->ValidatingResponse = 0;
1475 q->ProxyQuestion = 0;
1476 q->qnameOrig = mDNSNULL;
1477 q->AnonInfo = mDNSNULL;
1478 q->pid = mDNSPlatformGetPID();
1479 q->DisallowPID = mDNSfalse;
1480 q->ServiceID = -1;
1481 q->QuestionCallback = callback;
1482 q->QuestionContext = context;
1483 }
1484
1485 mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
1486 {
1487 int len = rr->rdlength;
1488 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1489 const mDNSu8 *ptr = rdb->data;
1490 mDNSu32 sum = 0;
1491
1492 switch(rr->rrtype)
1493 {
1494 case kDNSType_NS:
1495 case kDNSType_MD:
1496 case kDNSType_MF:
1497 case kDNSType_CNAME:
1498 case kDNSType_MB:
1499 case kDNSType_MG:
1500 case kDNSType_MR:
1501 case kDNSType_PTR:
1502 case kDNSType_NSAP_PTR:
1503 case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
1504
1505 case kDNSType_SOA: return rdb->soa.serial +
1506 rdb->soa.refresh +
1507 rdb->soa.retry +
1508 rdb->soa.expire +
1509 rdb->soa.min +
1510 DomainNameHashValue(&rdb->soa.mname) +
1511 DomainNameHashValue(&rdb->soa.rname);
1512
1513 case kDNSType_MX:
1514 case kDNSType_AFSDB:
1515 case kDNSType_RT:
1516 case kDNSType_KX: return DomainNameHashValue(&rdb->mx.exchange);
1517
1518 case kDNSType_MINFO:
1519 case kDNSType_RP: return DomainNameHashValue(&rdb->rp.mbox) + DomainNameHashValue(&rdb->rp.txt);
1520
1521 case kDNSType_PX: return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
1522
1523 case kDNSType_SRV: return DomainNameHashValue(&rdb->srv.target);
1524
1525 case kDNSType_OPT: return 0; // OPT is a pseudo-RR container structure; makes no sense to compare
1526
1527 case kDNSType_NSEC: {
1528 int dlen;
1529 dlen = DomainNameLength((domainname *)rdb->data);
1530 sum = DomainNameHashValue((domainname *)rdb->data);
1531 ptr += dlen;
1532 len -= dlen;
1533 /* FALLTHROUGH */
1534 }
1535
1536 default:
1537 {
1538 int i;
1539 for (i=0; i+1 < len; i+=2)
1540 {
1541 sum += (((mDNSu32)(ptr[i])) << 8) | ptr[i+1];
1542 sum = (sum<<3) | (sum>>29);
1543 }
1544 if (i < len)
1545 {
1546 sum += ((mDNSu32)(ptr[i])) << 8;
1547 }
1548 return(sum);
1549 }
1550 }
1551 }
1552
1553 // r1 has to be a full ResourceRecord including rrtype and rdlength
1554 // r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
1555 mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
1556 {
1557 const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
1558 const RDataBody2 *const b2 = (RDataBody2 *)r2;
1559 switch(r1->rrtype)
1560 {
1561 case kDNSType_NS:
1562 case kDNSType_MD:
1563 case kDNSType_MF:
1564 case kDNSType_CNAME:
1565 case kDNSType_MB:
1566 case kDNSType_MG:
1567 case kDNSType_MR:
1568 case kDNSType_PTR:
1569 case kDNSType_NSAP_PTR:
1570 case kDNSType_DNAME: return(SameDomainName(&b1->name, &b2->name));
1571
1572 case kDNSType_SOA: return (mDNSBool)( b1->soa.serial == b2->soa.serial &&
1573 b1->soa.refresh == b2->soa.refresh &&
1574 b1->soa.retry == b2->soa.retry &&
1575 b1->soa.expire == b2->soa.expire &&
1576 b1->soa.min == b2->soa.min &&
1577 samename(&b1->soa.mname, &b2->soa.mname) &&
1578 samename(&b1->soa.rname, &b2->soa.rname));
1579
1580 case kDNSType_MX:
1581 case kDNSType_AFSDB:
1582 case kDNSType_RT:
1583 case kDNSType_KX: return (mDNSBool)( b1->mx.preference == b2->mx.preference &&
1584 samename(&b1->mx.exchange, &b2->mx.exchange));
1585
1586 case kDNSType_MINFO:
1587 case kDNSType_RP: return (mDNSBool)( samename(&b1->rp.mbox, &b2->rp.mbox) &&
1588 samename(&b1->rp.txt, &b2->rp.txt));
1589
1590 case kDNSType_PX: return (mDNSBool)( b1->px.preference == b2->px.preference &&
1591 samename(&b1->px.map822, &b2->px.map822) &&
1592 samename(&b1->px.mapx400, &b2->px.mapx400));
1593
1594 case kDNSType_SRV: return (mDNSBool)( b1->srv.priority == b2->srv.priority &&
1595 b1->srv.weight == b2->srv.weight &&
1596 mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
1597 samename(&b1->srv.target, &b2->srv.target));
1598
1599 case kDNSType_OPT: return mDNSfalse; // OPT is a pseudo-RR container structure; makes no sense to compare
1600 case kDNSType_NSEC: {
1601 // If the "nxt" name changes in case, we want to delete the old
1602 // and store just the new one. If the caller passes in SameDomainCS for "samename",
1603 // we would return "false" when the only change between the two rdata is the case
1604 // change in "nxt".
1605 //
1606 // Note: rdlength of both the RData are same (ensured by the caller) and hence we can
1607 // use just r1->rdlength below
1608
1609 int dlen1 = DomainNameLength((domainname *)b1->data);
1610 int dlen2 = DomainNameLength((domainname *)b2->data);
1611 return (mDNSBool)(dlen1 == dlen2 &&
1612 samename((domainname *)b1->data, (domainname *)b2->data) &&
1613 mDNSPlatformMemSame(b1->data + dlen1, b2->data + dlen2, r1->rdlength - dlen1));
1614 }
1615
1616 default: return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
1617 }
1618 }
1619
1620 mDNSexport mDNSBool BitmapTypeCheck(mDNSu8 *bmap, int bitmaplen, mDNSu16 type)
1621 {
1622 int win, wlen;
1623 int wintype;
1624
1625 // The window that this type belongs to. NSEC has 256 windows that
1626 // comprises of 256 types.
1627 wintype = type >> 8;
1628
1629 while (bitmaplen > 0)
1630 {
1631 if (bitmaplen < 3)
1632 {
1633 LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d short", bitmaplen);
1634 return mDNSfalse;
1635 }
1636
1637 win = *bmap++;
1638 wlen = *bmap++;
1639 bitmaplen -= 2;
1640 if (bitmaplen < wlen || wlen < 1 || wlen > 32)
1641 {
1642 LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d wlen %d, win %d", bitmaplen, wlen, win);
1643 return mDNSfalse;
1644 }
1645 if (win < 0 || win >= 256)
1646 {
1647 LogInfo("BitmapTypeCheck: malformed nsec, wlen %d", wlen);
1648 return mDNSfalse;
1649 }
1650 if (win == wintype)
1651 {
1652 // First byte in the window serves 0 to 7, the next one serves 8 to 15 and so on.
1653 // Calculate the right byte offset first.
1654 int boff = (type & 0xff ) >> 3;
1655 if (wlen <= boff)
1656 return mDNSfalse;
1657 // The last three bits values 0 to 7 corresponds to bit positions
1658 // within the byte.
1659 return (bmap[boff] & (0x80 >> (type & 7)));
1660 }
1661 else
1662 {
1663 // If the windows are ordered, then we could check to see
1664 // if wintype > win and then return early.
1665 bmap += wlen;
1666 bitmaplen -= wlen;
1667 }
1668 }
1669 return mDNSfalse;
1670 }
1671
1672 // Don't call this function if the resource record is not NSEC. It will return false
1673 // which means that the type does not exist.
1674 mDNSexport mDNSBool RRAssertsExistence(const ResourceRecord *const rr, mDNSu16 type)
1675 {
1676 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1677 mDNSu8 *nsec = (mDNSu8 *)rdb->data;
1678 int len, bitmaplen;
1679 mDNSu8 *bmap;
1680
1681 if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1682
1683 len = DomainNameLength((domainname *)nsec);
1684
1685 bitmaplen = rr->rdlength - len;
1686 bmap = nsec + len;
1687 return (BitmapTypeCheck(bmap, bitmaplen, type));
1688 }
1689
1690 // Don't call this function if the resource record is not NSEC. It will return false
1691 // which means that the type exists.
1692 mDNSexport mDNSBool RRAssertsNonexistence(const ResourceRecord *const rr, mDNSu16 type)
1693 {
1694 if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1695
1696 return !RRAssertsExistence(rr, type);
1697 }
1698
1699 // Checks whether the RRSIG or NSEC record answers the question "q".
1700 mDNSlocal mDNSBool DNSSECRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q, mDNSBool *checkType)
1701 {
1702 *checkType = mDNStrue;
1703
1704 // This function is called for all questions and as long as the type matches,
1705 // return true. For the types (RRSIG and NSEC) that are specifically checked in
1706 // this function, returning true still holds good.
1707 if (q->qtype == rr->rrtype)
1708 return mDNStrue;
1709
1710 // For DS and DNSKEY questions, the types should match i.e., don't answer using CNAME
1711 // records as it answers any question type.
1712 //
1713 // - DS record comes from the parent zone where CNAME record cannot coexist and hence
1714 // cannot possibly answer it.
1715 //
1716 // - For DNSKEY, one could potentially follow CNAME but there could be a DNSKEY at
1717 // the "qname" itself. To keep it simple, we don't follow CNAME.
1718
1719 if ((q->qtype == kDNSType_DS || q->qtype == kDNSType_DNSKEY) && (q->qtype != rr->rrtype))
1720 {
1721 debugf("DNSSECRecordAnswersQuestion: %d type resource record matched question %##s (%s), ignoring", rr->rrtype,
1722 q->qname.c, DNSTypeName(q->qtype));
1723 return mDNSfalse;
1724 }
1725
1726 // If we are validating a response using DNSSEC, we might already have the records
1727 // for the "q->qtype" in the cache but we issued a query with DO bit set
1728 // to get the RRSIGs e.g., if you have two questions one of which does not require
1729 // DNSSEC validation. When the RRSIG is added to the cache, we need to deliver
1730 // the response to the question. The RRSIG type won't match the q->qtype and hence
1731 // we need to bypass the check in that case.
1732 if (rr->rrtype == kDNSType_RRSIG && q->ValidatingResponse)
1733 {
1734 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1735 rdataRRSig *rrsig = (rdataRRSig *)rdb->data;
1736 mDNSu16 typeCovered = swap16(rrsig->typeCovered);
1737 debugf("DNSSECRecordAnswersQuestion: Matching RRSIG typeCovered %s", DNSTypeName(typeCovered));
1738 if (typeCovered != kDNSType_CNAME && typeCovered != q->qtype)
1739 {
1740 debugf("DNSSECRecordAnswersQuestion: RRSIG did not match question %##s (%s)", q->qname.c,
1741 DNSTypeName(q->qtype));
1742 return mDNSfalse;
1743 }
1744 LogInfo("DNSSECRecordAnswersQuestion: RRSIG matched question %##s (%s)", q->qname.c,
1745 DNSTypeName(q->qtype));
1746 *checkType = mDNSfalse;
1747 return mDNStrue;
1748 }
1749 // If the NSEC record asserts the non-existence of a name looked up by the question, we would
1750 // typically answer that e.g., the bitmap asserts that q->qtype does not exist. If we have
1751 // to prove the non-existence as required by ValidatingResponse and ValidationRequired question,
1752 // then we should not answer that as it may not be the right one always. We may need more than
1753 // one NSEC to prove the non-existence.
1754 if (rr->rrtype == kDNSType_NSEC && DNSSECQuestion(q))
1755 {
1756 debugf("DNSSECRecordAnswersQuestion: Question %##s (%s) matched record %##s (NSEC)", q->qname.c,
1757 DNSTypeName(q->qtype), rr->name->c);
1758 return mDNSfalse;
1759 }
1760 return mDNStrue;
1761 }
1762
1763 // ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
1764 // SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
1765 // SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
1766 // because it has to check all the way to the end of the names to be sure.
1767 // In cases where we know in advance that the names match it's especially advantageous to skip the
1768 // SameDomainName() call because that's precisely the time when it's most expensive and least useful.
1769
1770 mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1771 {
1772 mDNSBool checkType = mDNStrue;
1773
1774 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1775 // are handled in LocalOnlyRecordAnswersQuestion
1776 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1777 {
1778 LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1779 return mDNSfalse;
1780 }
1781 if (QuerySuppressed(q))
1782 return mDNSfalse;
1783
1784 if (rr->InterfaceID &&
1785 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1786 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1787
1788 // Resource record received via unicast, the resolver group ID should match ?
1789 if (!rr->InterfaceID)
1790 {
1791 mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1792 mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1793 if (idr != idq) return(mDNSfalse);
1794 if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1795 }
1796
1797 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1798 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1799
1800 // CNAME answers question of any type and a negative cache record should not prevent us from querying other
1801 // valid types at the same name.
1802 if (rr->rrtype == kDNSType_CNAME && rr->RecordType == kDNSRecordTypePacketNegative && rr->rrtype != q->qtype)
1803 return mDNSfalse;
1804
1805 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1806 if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1807 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1808
1809 #if APPLE_OSX_mDNSResponder
1810 if (!mDNSPlatformValidRecordForQuestion(rr, q))
1811 return mDNSfalse;
1812 #endif // APPLE_OSX_mDNSResponder
1813
1814 if (!AnonInfoAnswersQuestion(rr, q))
1815 return mDNSfalse;
1816
1817 return(mDNStrue);
1818 }
1819
1820 mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1821 {
1822 if (!SameNameRecordAnswersQuestion(rr, q))
1823 return mDNSfalse;
1824
1825 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1826 }
1827
1828 // We have a separate function to handle LocalOnly AuthRecords because they can be created with
1829 // a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
1830 // multicast resource records (which has a valid InterfaceID) which can't be used to answer
1831 // unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
1832 // a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
1833 // LocalOnly records are truly identified by ARType in the AuthRecord. As P2P and LocalOnly record
1834 // are kept in the same hash table, we use the same function to make it easy for the callers when
1835 // they walk the hash table to answer LocalOnly/P2P questions
1836 //
1837 mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
1838 {
1839 ResourceRecord *rr = &ar->resrec;
1840
1841 // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
1842 // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
1843 if (RRAny(ar))
1844 {
1845 LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
1846 return mDNSfalse;
1847 }
1848
1849 // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
1850 // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
1851 // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
1852 // the InterfaceID in the resource record.
1853 //
1854 // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
1855
1856 if (rr->InterfaceID &&
1857 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
1858 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1859
1860 // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
1861 // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
1862 // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
1863 //
1864 // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
1865 //
1866 // 2) Question: Any, LocalOnly Record: scoped. This question should be answered with the record because
1867 // traditionally applications never specify scope e.g., getaddrinfo, but need to be able
1868 // to get to /etc/hosts entries.
1869 //
1870 // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
1871 // If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
1872 // non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
1873 // cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
1874 //
1875 // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
1876 // answered with any resource record where as if it has a valid InterfaceID, the scope should match.
1877 //
1878 // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
1879 // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
1880 // against the question.
1881 //
1882 // For P2P, InterfaceIDs of the question and the record should match.
1883
1884 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1885 // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
1886 // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
1887 // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
1888 // with names that don't end in local and have mDNSInterface_LocalOnly set.
1889 //
1890 // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
1891 // a question to match its names, it also has to end in .local and that question can't be a unicast question (See
1892 // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
1893 // and also makes it future proof.
1894
1895 if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1896
1897 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1898 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1899 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1900
1901 if (!AnonInfoAnswersQuestion(rr, q))
1902 return mDNSfalse;
1903
1904 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1905 }
1906
1907 mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1908 {
1909 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1910 // are handled in LocalOnlyRecordAnswersQuestion
1911 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1912 {
1913 LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1914 return mDNSfalse;
1915 }
1916 if (rr->InterfaceID &&
1917 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1918 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1919
1920 // Resource record received via unicast, the resolver group ID should match ?
1921 // Note that Auth Records are normally setup with NULL InterfaceID and
1922 // both the DNSServers are assumed to be NULL in that case
1923 if (!rr->InterfaceID)
1924 {
1925 mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1926 mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1927 if (idr != idq) return(mDNSfalse);
1928 }
1929
1930 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1931 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1932
1933 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1934
1935 if (!AnonInfoAnswersQuestion(rr, q))
1936 return mDNSfalse;
1937
1938 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1939 }
1940
1941 // This is called with both unicast resource record and multicast resource record. The question that
1942 // received the unicast response could be the regular unicast response from a DNS server or a response
1943 // to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
1944 // question and the resource record because the resource record is not completely initialized in
1945 // mDNSCoreReceiveResponse when this function is called.
1946 mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
1947 {
1948 mDNSBool checkType = mDNStrue;
1949
1950 if (QuerySuppressed(q))
1951 return mDNSfalse;
1952
1953 // For resource records created using multicast, the InterfaceIDs have to match
1954 if (rr->InterfaceID &&
1955 q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1956
1957 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1958 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1959
1960 if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1961
1962 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1963 if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1964
1965 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1966
1967 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1968 }
1969
1970 mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
1971 {
1972 const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
1973 const domainname *const name = estimate ? rr->name : mDNSNULL;
1974 if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength); // Used in update packets to mean "Delete An RRset" (RFC 2136)
1975 else switch (rr->rrtype)
1976 {
1977 case kDNSType_A: return(sizeof(rd->ipv4));
1978
1979 case kDNSType_NS:
1980 case kDNSType_CNAME:
1981 case kDNSType_PTR:
1982 case kDNSType_DNAME: return(CompressedDomainNameLength(&rd->name, name));
1983
1984 case kDNSType_SOA: return (mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
1985 CompressedDomainNameLength(&rd->soa.rname, name) +
1986 5 * sizeof(mDNSOpaque32));
1987
1988 case kDNSType_NULL:
1989 case kDNSType_TSIG:
1990 case kDNSType_TXT:
1991 case kDNSType_X25:
1992 case kDNSType_ISDN:
1993 case kDNSType_LOC:
1994 case kDNSType_DHCID: return(rr->rdlength); // Not self-describing, so have to just trust rdlength
1995
1996 case kDNSType_HINFO: return (mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
1997
1998 case kDNSType_MX:
1999 case kDNSType_AFSDB:
2000 case kDNSType_RT:
2001 case kDNSType_KX: return (mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
2002
2003 case kDNSType_RP: return (mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
2004 CompressedDomainNameLength(&rd->rp.txt, name));
2005
2006 case kDNSType_PX: return (mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
2007 CompressedDomainNameLength(&rd->px.mapx400, name));
2008
2009 case kDNSType_AAAA: return(sizeof(rd->ipv6));
2010
2011 case kDNSType_SRV: return (mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
2012
2013 case kDNSType_OPT: return(rr->rdlength);
2014
2015 case kDNSType_NSEC: {
2016 domainname *next = (domainname *)rd->data;
2017 int dlen = DomainNameLength(next);
2018 //
2019 if (UNICAST_NSEC(rr))
2020 return (mDNSu16)(CompressedDomainNameLength(next, name) + rr->rdlength - dlen);
2021 else
2022 return (mDNSu16)((estimate ? 2 : dlen) + rr->rdlength - dlen);
2023 }
2024
2025 default: debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
2026 return(rr->rdlength);
2027 }
2028 }
2029
2030 // When a local client registers (or updates) a record, we use this routine to do some simple validation checks
2031 // to help reduce the risk of bogus malformed data on the network
2032 mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
2033 {
2034 mDNSu16 len;
2035
2036 switch(rrtype)
2037 {
2038 case kDNSType_A: return(rdlength == sizeof(mDNSv4Addr));
2039
2040 case kDNSType_NS: // Same as PTR
2041 case kDNSType_MD: // Same as PTR
2042 case kDNSType_MF: // Same as PTR
2043 case kDNSType_CNAME: // Same as PTR
2044 //case kDNSType_SOA not checked
2045 case kDNSType_MB: // Same as PTR
2046 case kDNSType_MG: // Same as PTR
2047 case kDNSType_MR: // Same as PTR
2048 //case kDNSType_NULL not checked (no specified format, so always valid)
2049 //case kDNSType_WKS not checked
2050 case kDNSType_PTR: len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
2051 return(len <= MAX_DOMAIN_NAME && rdlength == len);
2052
2053 case kDNSType_HINFO: // Same as TXT (roughly)
2054 case kDNSType_MINFO: // Same as TXT (roughly)
2055 case kDNSType_TXT: if (!rdlength) return(mDNSfalse); // TXT record has to be at least one byte (RFC 1035)
2056 {
2057 const mDNSu8 *ptr = rd->u.txt.c;
2058 const mDNSu8 *end = rd->u.txt.c + rdlength;
2059 while (ptr < end) ptr += 1 + ptr[0];
2060 return (ptr == end);
2061 }
2062
2063 case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr));
2064
2065 case kDNSType_MX: // Must be at least two-byte preference, plus domainname
2066 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2067 len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
2068 return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
2069
2070 case kDNSType_SRV: // Must be at least priority+weight+port, plus domainname
2071 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2072 len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
2073 return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
2074
2075 //case kDNSType_NSEC not checked
2076
2077 default: return(mDNStrue); // Allow all other types without checking
2078 }
2079 }
2080
2081 // ***************************************************************************
2082 #if COMPILER_LIKES_PRAGMA_MARK
2083 #pragma mark -
2084 #pragma mark - DNS Message Creation Functions
2085 #endif
2086
2087 mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
2088 {
2089 h->id = id;
2090 h->flags = flags;
2091 h->numQuestions = 0;
2092 h->numAnswers = 0;
2093 h->numAuthorities = 0;
2094 h->numAdditionals = 0;
2095 }
2096
2097 mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
2098 {
2099 const mDNSu8 *result = end - *domname - 1;
2100
2101 if (*domname == 0) return(mDNSNULL); // There's no point trying to match just the root label
2102
2103 // This loop examines each possible starting position in packet, starting end of the packet and working backwards
2104 while (result >= base)
2105 {
2106 // If the length byte and first character of the label match, then check further to see
2107 // if this location in the packet will yield a useful name compression pointer.
2108 if (result[0] == domname[0] && result[1] == domname[1])
2109 {
2110 const mDNSu8 *name = domname;
2111 const mDNSu8 *targ = result;
2112 while (targ + *name < end)
2113 {
2114 // First see if this label matches
2115 int i;
2116 const mDNSu8 *pointertarget;
2117 for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
2118 if (i <= *name) break; // If label did not match, bail out
2119 targ += 1 + *name; // Else, did match, so advance target pointer
2120 name += 1 + *name; // and proceed to check next label
2121 if (*name == 0 && *targ == 0) return(result); // If no more labels, we found a match!
2122 if (*name == 0) break; // If no more labels to match, we failed, so bail out
2123
2124 // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
2125 if (targ[0] < 0x40) continue; // If length value, continue to check next label
2126 if (targ[0] < 0xC0) break; // If 40-BF, not valid
2127 if (targ+1 >= end) break; // Second byte not present!
2128 pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
2129 if (targ < pointertarget) break; // Pointertarget must point *backwards* in the packet
2130 if (pointertarget[0] >= 0x40) break; // Pointertarget must point to a valid length byte
2131 targ = pointertarget;
2132 }
2133 }
2134 result--; // We failed to match at this search position, so back up the tentative result pointer and try again
2135 }
2136 return(mDNSNULL);
2137 }
2138
2139 // Put a string of dot-separated labels as length-prefixed labels
2140 // domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
2141 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
2142 // end points to the end of the message so far
2143 // ptr points to where we want to put the name
2144 // limit points to one byte past the end of the buffer that we must not overrun
2145 // domainname is the name to put
2146 mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
2147 mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
2148 {
2149 const mDNSu8 *const base = (const mDNSu8 *)msg;
2150 const mDNSu8 * np = name->c;
2151 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
2152 const mDNSu8 * pointer = mDNSNULL;
2153 const mDNSu8 *const searchlimit = ptr;
2154
2155 if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
2156
2157 if (!*np) // If just writing one-byte root label, make sure we have space for that
2158 {
2159 if (ptr >= limit) return(mDNSNULL);
2160 }
2161 else // else, loop through writing labels and/or a compression offset
2162 {
2163 do {
2164 if (*np > MAX_DOMAIN_LABEL)
2165 { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
2166
2167 // This check correctly allows for the final trailing root label:
2168 // e.g.
2169 // Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
2170 // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
2171 // We know that max will be at name->c[256]
2172 // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
2173 // six bytes, then exit the loop, write the final terminating root label, and the domain
2174 // name we've written is exactly 256 bytes long, exactly at the correct legal limit.
2175 // If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
2176 if (np + 1 + *np >= max)
2177 { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
2178
2179 if (base) pointer = FindCompressionPointer(base, searchlimit, np);
2180 if (pointer) // Use a compression pointer if we can
2181 {
2182 const mDNSu16 offset = (mDNSu16)(pointer - base);
2183 if (ptr+2 > limit) return(mDNSNULL); // If we don't have two bytes of space left, give up
2184 *ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
2185 *ptr++ = (mDNSu8)( offset & 0xFF);
2186 return(ptr);
2187 }
2188 else // Else copy one label and try again
2189 {
2190 int i;
2191 mDNSu8 len = *np++;
2192 // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
2193 if (ptr + 1 + len >= limit) return(mDNSNULL);
2194 *ptr++ = len;
2195 for (i=0; i<len; i++) *ptr++ = *np++;
2196 }
2197 } while (*np); // While we've got characters remaining in the name, continue
2198 }
2199
2200 *ptr++ = 0; // Put the final root label
2201 return(ptr);
2202 }
2203
2204 mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
2205 {
2206 ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
2207 ptr[1] = (mDNSu8)((val ) & 0xFF);
2208 return ptr + sizeof(mDNSOpaque16);
2209 }
2210
2211 mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
2212 {
2213 ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
2214 ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
2215 ptr[2] = (mDNSu8)((val >> 8) & 0xFF);
2216 ptr[3] = (mDNSu8)((val ) & 0xFF);
2217 return ptr + sizeof(mDNSu32);
2218 }
2219
2220 // Copy the RDATA information. The actual in memory storage for the data might be bigger than what the rdlength
2221 // says. Hence, the only way to copy out the data from a resource record is to use putRData.
2222 // msg points to the message we're building (pass mDNSNULL for "msg" if we don't want to use compression pointers)
2223 mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
2224 {
2225 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
2226 switch (rr->rrtype)
2227 {
2228 case kDNSType_A: if (rr->rdlength != 4)
2229 { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
2230 if (ptr + 4 > limit) return(mDNSNULL);
2231 *ptr++ = rdb->ipv4.b[0];
2232 *ptr++ = rdb->ipv4.b[1];
2233 *ptr++ = rdb->ipv4.b[2];
2234 *ptr++ = rdb->ipv4.b[3];
2235 return(ptr);
2236
2237 case kDNSType_NS:
2238 case kDNSType_CNAME:
2239 case kDNSType_PTR:
2240 case kDNSType_DNAME: return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
2241
2242 case kDNSType_SOA: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
2243 if (!ptr) return(mDNSNULL);
2244 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
2245 if (!ptr || ptr + 20 > limit) return(mDNSNULL);
2246 ptr = putVal32(ptr, rdb->soa.serial);
2247 ptr = putVal32(ptr, rdb->soa.refresh);
2248 ptr = putVal32(ptr, rdb->soa.retry);
2249 ptr = putVal32(ptr, rdb->soa.expire);
2250 ptr = putVal32(ptr, rdb->soa.min);
2251 return(ptr);
2252
2253 case kDNSType_NULL:
2254 case kDNSType_HINFO:
2255 case kDNSType_TSIG:
2256 case kDNSType_TXT:
2257 case kDNSType_X25:
2258 case kDNSType_ISDN:
2259 case kDNSType_LOC:
2260 case kDNSType_DHCID: if (ptr + rr->rdlength > limit) return(mDNSNULL);
2261 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2262 return(ptr + rr->rdlength);
2263
2264 case kDNSType_MX:
2265 case kDNSType_AFSDB:
2266 case kDNSType_RT:
2267 case kDNSType_KX: if (ptr + 3 > limit) return(mDNSNULL);
2268 ptr = putVal16(ptr, rdb->mx.preference);
2269 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
2270
2271 case kDNSType_RP: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
2272 if (!ptr) return(mDNSNULL);
2273 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
2274 return(ptr);
2275
2276 case kDNSType_PX: if (ptr + 5 > limit) return(mDNSNULL);
2277 ptr = putVal16(ptr, rdb->px.preference);
2278 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
2279 if (!ptr) return(mDNSNULL);
2280 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
2281 return(ptr);
2282
2283 case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6))
2284 { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
2285 if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
2286 mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
2287 return(ptr + sizeof(rdb->ipv6));
2288
2289 case kDNSType_SRV: if (ptr + 7 > limit) return(mDNSNULL);
2290 *ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
2291 *ptr++ = (mDNSu8)(rdb->srv.priority & 0xFF);
2292 *ptr++ = (mDNSu8)(rdb->srv.weight >> 8);
2293 *ptr++ = (mDNSu8)(rdb->srv.weight & 0xFF);
2294 *ptr++ = rdb->srv.port.b[0];
2295 *ptr++ = rdb->srv.port.b[1];
2296 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
2297
2298 case kDNSType_OPT: {
2299 int len = 0;
2300 const rdataOPT *opt;
2301 const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
2302 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2303 len += DNSOpt_Data_Space(opt);
2304 if (ptr + len > limit)
2305 {
2306 LogMsg("ERROR: putOptRData - out of space");
2307 return mDNSNULL;
2308 }
2309 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2310 {
2311 const int space = DNSOpt_Data_Space(opt);
2312 ptr = putVal16(ptr, opt->opt);
2313 ptr = putVal16(ptr, (mDNSu16)space - 4);
2314 switch (opt->opt)
2315 {
2316 case kDNSOpt_LLQ:
2317 ptr = putVal16(ptr, opt->u.llq.vers);
2318 ptr = putVal16(ptr, opt->u.llq.llqOp);
2319 ptr = putVal16(ptr, opt->u.llq.err);
2320 mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8); // 8-byte id
2321 ptr += 8;
2322 ptr = putVal32(ptr, opt->u.llq.llqlease);
2323 break;
2324 case kDNSOpt_Lease:
2325 ptr = putVal32(ptr, opt->u.updatelease);
2326 break;
2327 case kDNSOpt_Owner:
2328 *ptr++ = opt->u.owner.vers;
2329 *ptr++ = opt->u.owner.seq;
2330 mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6); // 6-byte Host identifier
2331 ptr += 6;
2332 if (space >= DNSOpt_OwnerData_ID_Wake_Space)
2333 {
2334 mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6); // 6-byte interface MAC
2335 ptr += 6;
2336 if (space > DNSOpt_OwnerData_ID_Wake_Space)
2337 {
2338 mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
2339 ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
2340 }
2341 }
2342 break;
2343 case kDNSOpt_Trace:
2344 *ptr++ = opt->u.tracer.platf;
2345 ptr = putVal32(ptr, opt->u.tracer.mDNSv);
2346 break;
2347 }
2348 }
2349 return ptr;
2350 }
2351
2352 case kDNSType_NSEC: {
2353 // For NSEC records, rdlength represents the exact number of bytes
2354 // of in memory storage.
2355 int len = rr->rdlength;
2356 mDNSu8 *nsec = (mDNSu8 *)rdb->data;
2357 domainname *name = (domainname *)nsec;
2358 int dlen;
2359
2360 dlen = DomainNameLength(name);
2361 len -= dlen;
2362 nsec += dlen;
2363 // This function is called when we are sending a NSEC record as part of mDNS,
2364 // or to copy the data to any other buffer needed which could be a mDNS or uDNS
2365 // NSEC record. The only time compression is used that when we are sending it
2366 // in mDNS (indicated by non-NULL "msg") and hence we handle mDNS case
2367 // separately.
2368 if (!UNICAST_NSEC(rr))
2369 {
2370 mDNSu8 *save = ptr;
2371 int i, j, wlen;
2372 wlen = *(nsec + 1);
2373 nsec += 2; // Skip the window number and len
2374 len -= 2;
2375
2376 // For our simplified use of NSEC synthetic records:
2377 //
2378 // nextname is always the record's own name,
2379 // the block number is always 0,
2380 // the count byte is a value in the range 1-32,
2381 // followed by the 1-32 data bytes
2382 //
2383 // Note: When we send the NSEC record in mDNS, the window size is set to 32.
2384 // We need to find out what the last non-NULL byte is. If we are copying out
2385 // from an RDATA, we have the right length. As we need to handle both the case,
2386 // we loop to find the right value instead of blindly using len to copy.
2387
2388 for (i=wlen; i>0; i--) if (nsec[i-1]) break;
2389
2390 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2391 if (!ptr) { LogInfo("putRData: Can't put name, Length %d, record %##s", limit - save, rr->name->c); return(mDNSNULL); }
2392 if (i) // Only put a block if at least one type exists for this name
2393 {
2394 if (ptr + 2 + i > limit) { LogInfo("putRData: Can't put window, Length %d, i %d, record %##s", limit - ptr, i, rr->name->c); return(mDNSNULL); }
2395 *ptr++ = 0;
2396 *ptr++ = (mDNSu8)i;
2397 for (j=0; j<i; j++) *ptr++ = nsec[j];
2398 }
2399 return ptr;
2400 }
2401 else
2402 {
2403 int win, wlen;
2404
2405 // Sanity check whether the bitmap is good
2406 while (len)
2407 {
2408 if (len < 3)
2409 { LogMsg("putRData: invalid length %d", len); return mDNSNULL; }
2410
2411 win = *nsec++;
2412 wlen = *nsec++;
2413 len -= 2;
2414 if (len < wlen || wlen < 1 || wlen > 32)
2415 { LogMsg("putRData: invalid window length %d", wlen); return mDNSNULL; }
2416 if (win < 0 || win >= 256)
2417 { LogMsg("putRData: invalid window %d", win); return mDNSNULL; }
2418
2419 nsec += wlen;
2420 len -= wlen;
2421 }
2422 if (ptr + rr->rdlength > limit) { LogMsg("putRData: NSEC rdlength beyond limit %##s (%s), ptr %p, rdlength %d, limit %p", rr->name->c, DNSTypeName(rr->rrtype), ptr, rr->rdlength, limit); return(mDNSNULL);}
2423
2424 // No compression allowed for "nxt", just copy the data.
2425 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2426 return(ptr + rr->rdlength);
2427 }
2428 }
2429
2430 default: debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
2431 if (ptr + rr->rdlength > limit) return(mDNSNULL);
2432 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2433 return(ptr + rr->rdlength);
2434 }
2435 }
2436
2437 #define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
2438
2439 mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
2440 {
2441 mDNSu8 *endofrdata;
2442 mDNSu16 actualLength;
2443 // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
2444 const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
2445
2446 if (rr->RecordType == kDNSRecordTypeUnregistered)
2447 {
2448 LogMsg("PutResourceRecordTTLWithLimit ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2449 return(ptr);
2450 }
2451
2452 if (!ptr)
2453 {
2454 LogMsg("PutResourceRecordTTLWithLimit ptr is null %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2455 return(mDNSNULL);
2456 }
2457
2458 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2459 // If we're out-of-space, return mDNSNULL
2460 if (!ptr || ptr + 10 >= limit)
2461 {
2462 LogInfo("PutResourceRecordTTLWithLimit: can't put name, out of space %##s (%s), ptr %p, limit %p", rr->name->c,
2463 DNSTypeName(rr->rrtype), ptr, limit);
2464 return(mDNSNULL);
2465 }
2466 ptr[0] = (mDNSu8)(rr->rrtype >> 8);
2467 ptr[1] = (mDNSu8)(rr->rrtype & 0xFF);
2468 ptr[2] = (mDNSu8)(rr->rrclass >> 8);
2469 ptr[3] = (mDNSu8)(rr->rrclass & 0xFF);
2470 ptr[4] = (mDNSu8)((ttl >> 24) & 0xFF);
2471 ptr[5] = (mDNSu8)((ttl >> 16) & 0xFF);
2472 ptr[6] = (mDNSu8)((ttl >> 8) & 0xFF);
2473 ptr[7] = (mDNSu8)( ttl & 0xFF);
2474 // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
2475
2476 endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
2477 if (!endofrdata)
2478 {
2479 LogInfo("PutResourceRecordTTLWithLimit: Ran out of space in PutResourceRecord for %##s (%s), ptr %p, limit %p", rr->name->c,
2480 DNSTypeName(rr->rrtype), ptr+10, limit);
2481 return(mDNSNULL);
2482 }
2483
2484 // Go back and fill in the actual number of data bytes we wrote
2485 // (actualLength can be less than rdlength when domain name compression is used)
2486 actualLength = (mDNSu16)(endofrdata - ptr - 10);
2487 ptr[8] = (mDNSu8)(actualLength >> 8);
2488 ptr[9] = (mDNSu8)(actualLength & 0xFF);
2489
2490 if (count) (*count)++;
2491 else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2492 return(endofrdata);
2493 }
2494
2495 mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
2496 {
2497 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
2498 if (!ptr || ptr + 10 > limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
2499 ptr[0] = (mDNSu8)(rr->resrec.rrtype >> 8); // Put type
2500 ptr[1] = (mDNSu8)(rr->resrec.rrtype & 0xFF);
2501 ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8); // Put class
2502 ptr[3] = (mDNSu8)(rr->resrec.rrclass & 0xFF);
2503 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // TTL is zero
2504 ptr[8] = ptr[9] = 0; // RDATA length is zero
2505 (*count)++;
2506 return(ptr + 10);
2507 }
2508
2509 mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
2510 {
2511 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2512 if (!ptr || ptr+4 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
2513 ptr[0] = (mDNSu8)(rrtype >> 8);
2514 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2515 ptr[2] = (mDNSu8)(rrclass >> 8);
2516 ptr[3] = (mDNSu8)(rrclass & 0xFF);
2517 msg->h.numQuestions++;
2518 return(ptr+4);
2519 }
2520
2521 // for dynamic updates
2522 mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
2523 {
2524 ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
2525 if (!ptr || ptr + 4 > limit) return mDNSNULL; // If we're out-of-space, return NULL
2526 *ptr++ = (mDNSu8)(kDNSType_SOA >> 8);
2527 *ptr++ = (mDNSu8)(kDNSType_SOA & 0xFF);
2528 *ptr++ = zoneClass.b[0];
2529 *ptr++ = zoneClass.b[1];
2530 msg->h.mDNS_numZones++;
2531 return ptr;
2532 }
2533
2534 // for dynamic updates
2535 mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
2536 {
2537 AuthRecord prereq;
2538 mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
2539 AssignDomainName(&prereq.namestorage, name);
2540 prereq.resrec.rrtype = kDNSQType_ANY;
2541 prereq.resrec.rrclass = kDNSClass_NONE;
2542 return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
2543 }
2544
2545 // for dynamic updates
2546 mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
2547 {
2548 // deletion: specify record w/ TTL 0, class NONE
2549 const mDNSu16 origclass = rr->rrclass;
2550 rr->rrclass = kDNSClass_NONE;
2551 ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
2552 rr->rrclass = origclass;
2553 return ptr;
2554 }
2555
2556 // for dynamic updates
2557 mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
2558 {
2559 // deletion: specify record w/ TTL 0, class NONE
2560 const mDNSu16 origclass = rr->rrclass;
2561 rr->rrclass = kDNSClass_NONE;
2562 ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
2563 rr->rrclass = origclass;
2564 return ptr;
2565 }
2566
2567 mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
2568 {
2569 mDNSu16 class = kDNSQClass_ANY;
2570
2571 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2572 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2573 ptr[0] = (mDNSu8)(rrtype >> 8);
2574 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2575 ptr[2] = (mDNSu8)(class >> 8);
2576 ptr[3] = (mDNSu8)(class & 0xFF);
2577 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2578 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2579
2580 msg->h.mDNS_numUpdates++;
2581 return ptr + 10;
2582 }
2583
2584 // for dynamic updates
2585 mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
2586 {
2587 const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
2588 mDNSu16 class = kDNSQClass_ANY;
2589 mDNSu16 rrtype = kDNSQType_ANY;
2590
2591 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2592 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2593 ptr[0] = (mDNSu8)(rrtype >> 8);
2594 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2595 ptr[2] = (mDNSu8)(class >> 8);
2596 ptr[3] = (mDNSu8)(class & 0xFF);
2597 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2598 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2599
2600 msg->h.mDNS_numUpdates++;
2601 return ptr + 10;
2602 }
2603
2604 // for dynamic updates
2605 mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease)
2606 {
2607 AuthRecord rr;
2608 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2609 rr.resrec.rrclass = NormalMaxDNSMessageData;
2610 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
2611 rr.resrec.rdestimate = sizeof(rdataOPT);
2612 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
2613 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2614 end = PutResourceRecordTTLJumbo(msg, end, &msg->h.numAdditionals, &rr.resrec, 0);
2615 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
2616 return end;
2617 }
2618
2619 // for dynamic updates
2620 mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease, mDNSu8 *limit)
2621 {
2622 AuthRecord rr;
2623 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2624 rr.resrec.rrclass = NormalMaxDNSMessageData;
2625 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
2626 rr.resrec.rdestimate = sizeof(rdataOPT);
2627 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
2628 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2629 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, 0, limit);
2630 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2631 return end;
2632 }
2633
2634 mDNSexport mDNSu8 *putDNSSECOption(DNSMessage *msg, mDNSu8 *end, mDNSu8 *limit)
2635 {
2636 AuthRecord rr;
2637 mDNSu32 ttl = 0;
2638
2639 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2640 // It is still not clear what the right size is. We will have to fine tune this once we do
2641 // a lot of testing with DNSSEC.
2642 rr.resrec.rrclass = 4096;
2643 rr.resrec.rdlength = 0;
2644 rr.resrec.rdestimate = 0;
2645 // set the DO bit
2646 ttl |= 0x8000;
2647 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, ttl, limit);
2648 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2649 return end;
2650 }
2651
2652 mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
2653 {
2654 if (authInfo && authInfo->AutoTunnel)
2655 {
2656 AuthRecord hinfo;
2657 mDNSu8 *h = hinfo.rdatastorage.u.data;
2658 mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
2659 mDNSu8 *newptr;
2660 mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2661 AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
2662 AppendDomainName (&hinfo.namestorage, &authInfo->domain);
2663 hinfo.resrec.rroriginalttl = 0;
2664 mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
2665 h += 1 + (int)h[0];
2666 mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
2667 hinfo.resrec.rdlength = len;
2668 hinfo.resrec.rdestimate = len;
2669 newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
2670 return newptr;
2671 }
2672 else
2673 return end;
2674 }
2675
2676 // ***************************************************************************
2677 #if COMPILER_LIKES_PRAGMA_MARK
2678 #pragma mark -
2679 #pragma mark - DNS Message Parsing Functions
2680 #endif
2681
2682 mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
2683 {
2684 mDNSu32 sum = 0;
2685 const mDNSu8 *c;
2686
2687 for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
2688 {
2689 sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
2690 (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
2691 sum = (sum<<3) | (sum>>29);
2692 }
2693 if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
2694 return(sum);
2695 }
2696
2697 mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
2698 {
2699 domainname *target;
2700 if (NewRData)
2701 {
2702 rr->rdata = NewRData;
2703 rr->rdlength = rdlength;
2704 }
2705 // Must not try to get target pointer until after updating rr->rdata
2706 target = GetRRDomainNameTarget(rr);
2707 rr->rdlength = GetRDLength(rr, mDNSfalse);
2708 rr->rdestimate = GetRDLength(rr, mDNStrue);
2709 rr->rdatahash = target ? DomainNameHashValue(target) : RDataHashValue(rr);
2710 }
2711
2712 mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
2713 {
2714 mDNSu16 total = 0;
2715
2716 if (ptr < (mDNSu8*)msg || ptr >= end)
2717 { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2718
2719 while (1) // Read sequence of labels
2720 {
2721 const mDNSu8 len = *ptr++; // Read length of this label
2722 if (len == 0) return(ptr); // If length is zero, that means this name is complete
2723 switch (len & 0xC0)
2724 {
2725 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2726 { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2727 if (total + 1 + len >= MAX_DOMAIN_NAME) // Remember: expect at least one more byte for the root label
2728 { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2729 ptr += len;
2730 total += 1 + len;
2731 break;
2732
2733 case 0x40: debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
2734 case 0x80: debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
2735 case 0xC0: return(ptr+1);
2736 }
2737 }
2738 }
2739
2740 // Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
2741 mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
2742 domainname *const name)
2743 {
2744 const mDNSu8 *nextbyte = mDNSNULL; // Record where we got to before we started following pointers
2745 mDNSu8 *np = name->c; // Name pointer
2746 const mDNSu8 *const limit = np + MAX_DOMAIN_NAME; // Limit so we don't overrun buffer
2747
2748 if (ptr < (mDNSu8*)msg || ptr >= end)
2749 { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2750
2751 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2752
2753 while (1) // Read sequence of labels
2754 {
2755 const mDNSu8 len = *ptr++; // Read length of this label
2756 if (len == 0) break; // If length is zero, that means this name is complete
2757 switch (len & 0xC0)
2758 {
2759 int i;
2760 mDNSu16 offset;
2761
2762 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2763 { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2764 if (np + 1 + len >= limit) // Remember: expect at least one more byte for the root label
2765 { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2766 *np++ = len;
2767 for (i=0; i<len; i++) *np++ = *ptr++;
2768 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2769 break;
2770
2771 case 0x40: debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
2772 return(mDNSNULL);
2773
2774 case 0x80: debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
2775
2776 case 0xC0: offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
2777 if (!nextbyte) nextbyte = ptr; // Record where we got to before we started following pointers
2778 ptr = (mDNSu8 *)msg + offset;
2779 if (ptr < (mDNSu8*)msg || ptr >= end)
2780 { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
2781 if (*ptr & 0xC0)
2782 { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
2783 break;
2784 }
2785 }
2786
2787 if (nextbyte) return(nextbyte);
2788 else return(ptr);
2789 }
2790
2791 mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2792 {
2793 mDNSu16 pktrdlength;
2794
2795 ptr = skipDomainName(msg, ptr, end);
2796 if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
2797
2798 if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2799 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
2800 ptr += 10;
2801 if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2802
2803 return(ptr + pktrdlength);
2804 }
2805
2806 // Sanity check whether the NSEC/NSEC3 bitmap is good
2807 mDNSlocal mDNSu8 *SanityCheckBitMap(const mDNSu8 *bmap, const mDNSu8 *end, int len)
2808 {
2809 int win, wlen;
2810
2811 while (bmap < end)
2812 {
2813 if (len < 3)
2814 {
2815 LogInfo("SanityCheckBitMap: invalid length %d", len);
2816 return mDNSNULL;
2817 }
2818
2819 win = *bmap++;
2820 wlen = *bmap++;
2821 len -= 2;
2822 if (len < wlen || wlen < 1 || wlen > 32)
2823 {
2824 LogInfo("SanityCheckBitMap: invalid window length %d", wlen);
2825 return mDNSNULL;
2826 }
2827 if (win < 0 || win >= 256)
2828 {
2829 LogInfo("SanityCheckBitMap: invalid window %d", win);
2830 return mDNSNULL;
2831 }
2832
2833 bmap += wlen;
2834 len -= wlen;
2835 }
2836 return (mDNSu8 *)bmap;
2837 }
2838
2839 // This function is called with "msg" when we receive a DNS message and needs to parse a single resource record
2840 // pointed to by "ptr". Some resource records like SOA, SRV are converted to host order and also expanded
2841 // (domainnames are expanded to 255 bytes) when stored in memory.
2842 //
2843 // This function can also be called with "NULL" msg to parse a single resource record pointed to by ptr.
2844 // The caller can do this only if the names in the resource records are compressed and validity of the
2845 // resource record has already been done before. DNSSEC currently uses it this way.
2846 mDNSexport mDNSBool SetRData(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *end,
2847 LargeCacheRecord *const largecr, mDNSu16 rdlength)
2848 {
2849 CacheRecord *const rr = &largecr->r;
2850 RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
2851
2852 switch (rr->resrec.rrtype)
2853 {
2854 case kDNSType_A:
2855 if (rdlength != sizeof(mDNSv4Addr))
2856 goto fail;
2857 rdb->ipv4.b[0] = ptr[0];
2858 rdb->ipv4.b[1] = ptr[1];
2859 rdb->ipv4.b[2] = ptr[2];
2860 rdb->ipv4.b[3] = ptr[3];
2861 break;
2862
2863 case kDNSType_NS:
2864 case kDNSType_MD:
2865 case kDNSType_MF:
2866 case kDNSType_CNAME:
2867 case kDNSType_MB:
2868 case kDNSType_MG:
2869 case kDNSType_MR:
2870 case kDNSType_PTR:
2871 case kDNSType_NSAP_PTR:
2872 case kDNSType_DNAME:
2873 if (msg)
2874 {
2875 ptr = getDomainName(msg, ptr, end, &rdb->name);
2876 }
2877 else
2878 {
2879 AssignDomainName(&rdb->name, (domainname *)ptr);
2880 ptr += DomainNameLength(&rdb->name);
2881 }
2882 if (ptr != end)
2883 {
2884 debugf("SetRData: Malformed CNAME/PTR RDATA name");
2885 goto fail;
2886 }
2887 break;
2888
2889 case kDNSType_SOA:
2890 if (msg)
2891 {
2892 ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
2893 }
2894 else
2895 {
2896 AssignDomainName(&rdb->soa.mname, (domainname *)ptr);
2897 ptr += DomainNameLength(&rdb->soa.mname);
2898 }
2899 if (!ptr)
2900 {
2901 debugf("SetRData: Malformed SOA RDATA mname");
2902 goto fail;
2903 }
2904 if (msg)
2905 {
2906 ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
2907 }
2908 else
2909 {
2910 AssignDomainName(&rdb->soa.rname, (domainname *)ptr);
2911 ptr += DomainNameLength(&rdb->soa.rname);
2912 }
2913 if (!ptr)
2914 {
2915 debugf("SetRData: Malformed SOA RDATA rname");
2916 goto fail;
2917 }
2918 if (ptr + 0x14 != end)
2919 {
2920 debugf("SetRData: Malformed SOA RDATA");
2921 goto fail;
2922 }
2923 rdb->soa.serial = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
2924 rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
2925 rdb->soa.retry = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
2926 rdb->soa.expire = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
2927 rdb->soa.min = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
2928 break;
2929
2930 case kDNSType_NULL:
2931 case kDNSType_HINFO:
2932 case kDNSType_TXT:
2933 case kDNSType_X25:
2934 case kDNSType_ISDN:
2935 case kDNSType_LOC:
2936 case kDNSType_DHCID:
2937 rr->resrec.rdlength = rdlength;
2938 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
2939 break;
2940
2941 case kDNSType_MX:
2942 case kDNSType_AFSDB:
2943 case kDNSType_RT:
2944 case kDNSType_KX:
2945 // Preference + domainname
2946 if (rdlength < 3)
2947 goto fail;
2948 rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2949 ptr += 2;
2950 if (msg)
2951 {
2952 ptr = getDomainName(msg, ptr, end, &rdb->mx.exchange);
2953 }
2954 else
2955 {
2956 AssignDomainName(&rdb->mx.exchange, (domainname *)ptr);
2957 ptr += DomainNameLength(&rdb->mx.exchange);
2958 }
2959 if (ptr != end)
2960 {
2961 debugf("SetRData: Malformed MX name");
2962 goto fail;
2963 }
2964 break;
2965
2966 case kDNSType_MINFO:
2967 case kDNSType_RP:
2968 // Domainname + domainname
2969 if (msg)
2970 {
2971 ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox);
2972 }
2973 else
2974 {
2975 AssignDomainName(&rdb->rp.mbox, (domainname *)ptr);
2976 ptr += DomainNameLength(&rdb->rp.mbox);
2977 }
2978 if (!ptr)
2979 {
2980 debugf("SetRData: Malformed RP mbox");
2981 goto fail;
2982 }
2983 if (msg)
2984 {
2985 ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
2986 }
2987 else
2988 {
2989 AssignDomainName(&rdb->rp.txt, (domainname *)ptr);
2990 ptr += DomainNameLength(&rdb->rp.txt);
2991 }
2992 if (ptr != end)
2993 {
2994 debugf("SetRData: Malformed RP txt");
2995 goto fail;
2996 }
2997 break;
2998
2999 case kDNSType_PX:
3000 // Preference + domainname + domainname
3001 if (rdlength < 4)
3002 goto fail;
3003 rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3004 ptr += 2;
3005 if (msg)
3006 {
3007 ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
3008 }
3009 else
3010 {
3011 AssignDomainName(&rdb->px.map822, (domainname *)ptr);
3012 ptr += DomainNameLength(&rdb->px.map822);
3013 }
3014 if (!ptr)
3015 {
3016 debugf("SetRData: Malformed PX map822");
3017 goto fail;
3018 }
3019 if (msg)
3020 {
3021 ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
3022 }
3023 else
3024 {
3025 AssignDomainName(&rdb->px.mapx400, (domainname *)ptr);
3026 ptr += DomainNameLength(&rdb->px.mapx400);
3027 }
3028 if (ptr != end)
3029 {
3030 debugf("SetRData: Malformed PX mapx400");
3031 goto fail;
3032 }
3033 break;
3034
3035 case kDNSType_AAAA:
3036 if (rdlength != sizeof(mDNSv6Addr))
3037 goto fail;
3038 mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
3039 break;
3040
3041 case kDNSType_SRV:
3042 // Priority + weight + port + domainname
3043 if (rdlength < 7)
3044 goto fail;
3045 rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3046 rdb->srv.weight = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3047 rdb->srv.port.b[0] = ptr[4];
3048 rdb->srv.port.b[1] = ptr[5];
3049 ptr += 6;
3050 if (msg)
3051 {
3052 ptr = getDomainName(msg, ptr, end, &rdb->srv.target);
3053 }
3054 else
3055 {
3056 AssignDomainName(&rdb->srv.target, (domainname *)ptr);
3057 ptr += DomainNameLength(&rdb->srv.target);
3058 }
3059 if (ptr != end)
3060 {
3061 debugf("SetRData: Malformed SRV RDATA name");
3062 goto fail;
3063 }
3064 break;
3065
3066 case kDNSType_NAPTR:
3067 {
3068 int savelen, len;
3069 domainname name;
3070 const mDNSu8 *orig = ptr;
3071
3072 // Make sure the data is parseable and within the limits. DNSSEC code looks at
3073 // the domain name in the end for a valid domainname.
3074 //
3075 // Fixed length: Order, preference (4 bytes)
3076 // Variable length: flags, service, regexp, domainname
3077
3078 if (rdlength < 8)
3079 goto fail;
3080 // Order, preference.
3081 ptr += 4;
3082 // Parse flags, Service and Regexp
3083 // length in the first byte does not include the length byte itself
3084 len = *ptr + 1;
3085 ptr += len;
3086 if (ptr >= end)
3087 {
3088 LogInfo("SetRData: Malformed NAPTR flags");
3089 goto fail;
3090 }
3091
3092 // Service
3093 len = *ptr + 1;
3094 ptr += len;
3095 if (ptr >= end)
3096 {
3097 LogInfo("SetRData: Malformed NAPTR service");
3098 goto fail;
3099 }
3100
3101 // Regexp
3102 len = *ptr + 1;
3103 ptr += len;
3104 if (ptr >= end)
3105 {
3106 LogInfo("SetRData: Malformed NAPTR regexp");
3107 goto fail;
3108 }
3109
3110 savelen = ptr - orig;
3111
3112 // RFC 2915 states that name compression is not allowed for this field. But RFC 3597
3113 // states that for NAPTR we should decompress. We make sure that we store the full
3114 // name rather than the compressed name
3115 if (msg)
3116 {
3117 ptr = getDomainName(msg, ptr, end, &name);
3118 }
3119 else
3120 {
3121 AssignDomainName(&name, (domainname *)ptr);
3122 ptr += DomainNameLength(&name);
3123 }
3124 if (ptr != end)
3125 {
3126 LogInfo("SetRData: Malformed NAPTR RDATA name");
3127 goto fail;
3128 }
3129
3130 rr->resrec.rdlength = savelen + DomainNameLength(&name);
3131 // The uncompressed size should not exceed the limits
3132 if (rr->resrec.rdlength > MaximumRDSize)
3133 {
3134 LogInfo("SetRData: Malformed NAPTR rdlength %d, rr->resrec.rdlength %d, "
3135 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3136 goto fail;
3137 }
3138 mDNSPlatformMemCopy(rdb->data, orig, savelen);
3139 AssignDomainName((domainname *)(rdb->data + savelen), &name);
3140 break;
3141 }
3142 case kDNSType_OPT: {
3143 mDNSu8 *dataend = rr->resrec.rdata->u.data;
3144 rdataOPT *opt = rr->resrec.rdata->u.opt;
3145 rr->resrec.rdlength = 0;
3146 while (ptr < end && (mDNSu8 *)(opt+1) < &dataend[MaximumRDSize])
3147 {
3148 const rdataOPT *const currentopt = opt;
3149 if (ptr + 4 > end) { LogInfo("SetRData: OPT RDATA ptr + 4 > end"); goto fail; }
3150 opt->opt = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3151 opt->optlen = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3152 ptr += 4;
3153 if (ptr + opt->optlen > end) { LogInfo("SetRData: ptr + opt->optlen > end"); goto fail; }
3154 switch (opt->opt)
3155 {
3156 case kDNSOpt_LLQ:
3157 if (opt->optlen == DNSOpt_LLQData_Space - 4)
3158 {
3159 opt->u.llq.vers = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3160 opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3161 opt->u.llq.err = (mDNSu16)((mDNSu16)ptr[4] << 8 | ptr[5]);
3162 mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
3163 opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
3164 if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
3165 opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
3166 opt++;
3167 }
3168 break;
3169 case kDNSOpt_Lease:
3170 if (opt->optlen == DNSOpt_LeaseData_Space - 4)
3171 {
3172 opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
3173 if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
3174 opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
3175 opt++;
3176 }
3177 break;
3178 case kDNSOpt_Owner:
3179 if (ValidOwnerLength(opt->optlen))
3180 {
3181 opt->u.owner.vers = ptr[0];
3182 opt->u.owner.seq = ptr[1];
3183 mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6); // 6-byte MAC address
3184 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6); // 6-byte MAC address
3185 opt->u.owner.password = zeroEthAddr;
3186 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
3187 {
3188 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6); // 6-byte MAC address
3189 // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
3190 // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
3191 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
3192 mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
3193 }
3194 opt++;
3195 }
3196 break;
3197 case kDNSOpt_Trace:
3198 if (opt->optlen == DNSOpt_TraceData_Space - 4)
3199 {
3200 opt->u.tracer.platf = ptr[0];
3201 opt->u.tracer.mDNSv = (mDNSu32) ((mDNSu32)ptr[1] << 24 | (mDNSu32)ptr[2] << 16 | (mDNSu32)ptr[3] << 8 | ptr[4]);
3202 opt++;
3203 }
3204 break;
3205 }
3206 ptr += currentopt->optlen;
3207 }
3208 rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
3209 if (ptr != end) { LogInfo("SetRData: Malformed OptRdata"); goto fail; }
3210 break;
3211 }
3212
3213 case kDNSType_NSEC: {
3214 domainname name;
3215 int len = rdlength;
3216 int bmaplen, dlen;
3217 const mDNSu8 *orig = ptr;
3218 const mDNSu8 *bmap;
3219
3220 if (msg)
3221 {
3222 ptr = getDomainName(msg, ptr, end, &name);
3223 }
3224 else
3225 {
3226 AssignDomainName(&name, (domainname *)ptr);
3227 ptr += DomainNameLength(&name);
3228 }
3229 if (!ptr)
3230 {
3231 LogInfo("SetRData: Malformed NSEC nextname");
3232 goto fail;
3233 }
3234
3235 dlen = DomainNameLength(&name);
3236
3237 // Multicast NSECs use name compression for this field unlike the unicast case which
3238 // does not use compression. And multicast case always succeeds in compression. So,
3239 // the rdlength includes only the compressed space in that case. So, can't
3240 // use the DomainNameLength of name to reduce the length here.
3241 len -= (ptr - orig);
3242 bmaplen = len; // Save the length of the bitmap
3243 bmap = ptr;
3244 ptr = SanityCheckBitMap(bmap, end, len);
3245 if (!ptr)
3246 goto fail;
3247 if (ptr != end)
3248 {
3249 LogInfo("SetRData: Malformed NSEC length not right");
3250 goto fail;
3251 }
3252
3253 // Initialize the right length here. When we call SetNewRData below which in turn calls
3254 // GetRDLength and for NSEC case, it assumes that rdlength is intitialized
3255 rr->resrec.rdlength = DomainNameLength(&name) + bmaplen;
3256
3257 // Do we have space after the name expansion ?
3258 if (rr->resrec.rdlength > MaximumRDSize)
3259 {
3260 LogInfo("SetRData: Malformed NSEC rdlength %d, rr->resrec.rdlength %d, "
3261 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3262 goto fail;
3263 }
3264 AssignDomainName((domainname *)rdb->data, &name);
3265 mDNSPlatformMemCopy(rdb->data + dlen, bmap, bmaplen);
3266 break;
3267 }
3268 case kDNSType_NSEC3:
3269 {
3270 rdataNSEC3 *nsec3 = (rdataNSEC3 *)ptr;
3271 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
3272 int hashLength, bitmaplen;
3273
3274 if (rdlength < NSEC3_FIXED_SIZE + 1)
3275 {
3276 LogInfo("SetRData: NSEC3 too small length %d", rdlength);
3277 goto fail;
3278 }
3279 if (nsec3->alg != SHA1_DIGEST_TYPE)
3280 {
3281 LogInfo("SetRData: nsec3 alg %d not supported", nsec3->alg);
3282 goto fail;
3283 }
3284 if (swap16(nsec3->iterations) > NSEC3_MAX_ITERATIONS)
3285 {
3286 LogInfo("SetRData: nsec3 iteration count %d too big", swap16(nsec3->iterations));
3287 goto fail;
3288 }
3289 p += nsec3->saltLength;
3290 // There should at least be one byte beyond saltLength
3291 if (p >= end)
3292 {
3293 LogInfo("SetRData: nsec3 too small, at saltlength %d, p %p, end %p", nsec3->saltLength, p, end);
3294 goto fail;
3295 }
3296 // p is pointing at hashLength
3297 hashLength = (int)*p++;
3298 if (!hashLength)
3299 {
3300 LogInfo("SetRData: hashLength zero");
3301 goto fail;
3302 }
3303 p += hashLength;
3304 if (p > end)
3305 {
3306 LogInfo("SetRData: nsec3 too small, at hashLength %d, p %p, end %p", hashLength, p, end);
3307 goto fail;
3308 }
3309
3310 bitmaplen = rdlength - (int)(p - ptr);
3311 p = SanityCheckBitMap(p, end, bitmaplen);
3312 if (!p)
3313 goto fail;
3314 rr->resrec.rdlength = rdlength;
3315 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3316 break;
3317 }
3318 case kDNSType_TKEY:
3319 case kDNSType_TSIG:
3320 {
3321 domainname name;
3322 int dlen, rlen;
3323
3324 // The name should not be compressed. But we take the conservative approach
3325 // and uncompress the name before we store it.
3326 if (msg)
3327 {
3328 ptr = getDomainName(msg, ptr, end, &name);
3329 }
3330 else
3331 {
3332 AssignDomainName(&name, (domainname *)ptr);
3333 ptr += DomainNameLength(&name);
3334 }
3335 if (!ptr)
3336 {
3337 LogInfo("SetRData: Malformed name for TSIG/TKEY type %d", rr->resrec.rrtype);
3338 goto fail;
3339 }
3340 dlen = DomainNameLength(&name);
3341 rlen = end - ptr;
3342 rr->resrec.rdlength = dlen + rlen;
3343 AssignDomainName((domainname *)rdb->data, &name);
3344 mDNSPlatformMemCopy(rdb->data + dlen, ptr, rlen);
3345 break;
3346 }
3347 case kDNSType_RRSIG:
3348 {
3349 const mDNSu8 *sig = ptr + RRSIG_FIXED_SIZE;
3350 const mDNSu8 *orig = sig;
3351 domainname name;
3352 if (rdlength < RRSIG_FIXED_SIZE + 1)
3353 {
3354 LogInfo("SetRData: RRSIG too small length %d", rdlength);
3355 goto fail;
3356 }
3357 if (msg)
3358 {
3359 sig = getDomainName(msg, sig, end, &name);
3360 }
3361 else
3362 {
3363 AssignDomainName(&name, (domainname *)sig);
3364 sig += DomainNameLength(&name);
3365 }
3366 if (!sig)
3367 {
3368 LogInfo("SetRData: Malformed RRSIG record");
3369 goto fail;
3370 }
3371
3372 if ((sig - orig) != DomainNameLength(&name))
3373 {
3374 LogInfo("SetRData: Malformed RRSIG record, signer name compression");
3375 goto fail;
3376 }
3377 // Just ensure that we have at least one byte of the signature
3378 if (sig + 1 >= end)
3379 {
3380 LogInfo("SetRData: Not enough bytes for signature type %d", rr->resrec.rrtype);
3381 goto fail;
3382 }
3383 rr->resrec.rdlength = rdlength;
3384 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3385 break;
3386 }
3387 case kDNSType_DNSKEY:
3388 {
3389 if (rdlength < DNSKEY_FIXED_SIZE + 1)
3390 {
3391 LogInfo("SetRData: DNSKEY too small length %d", rdlength);
3392 goto fail;
3393 }
3394 rr->resrec.rdlength = rdlength;
3395 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3396 break;
3397 }
3398 case kDNSType_DS:
3399 {
3400 if (rdlength < DS_FIXED_SIZE + 1)
3401 {
3402 LogInfo("SetRData: DS too small length %d", rdlength);
3403 goto fail;
3404 }
3405 rr->resrec.rdlength = rdlength;
3406 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3407 break;
3408 }
3409 default:
3410 debugf("SetRData: Warning! Reading resource type %d (%s) as opaque data",
3411 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
3412 // Note: Just because we don't understand the record type, that doesn't
3413 // mean we fail. The DNS protocol specifies rdlength, so we can
3414 // safely skip over unknown records and ignore them.
3415 // We also grab a binary copy of the rdata anyway, since the caller
3416 // might know how to interpret it even if we don't.
3417 rr->resrec.rdlength = rdlength;
3418 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3419 break;
3420 }
3421 return mDNStrue;
3422 fail:
3423 return mDNSfalse;
3424 }
3425
3426 mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
3427 const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
3428 {
3429 CacheRecord *const rr = &largecr->r;
3430 mDNSu16 pktrdlength;
3431
3432 if (largecr == &m->rec && m->rec.r.resrec.RecordType)
3433 {
3434 LogMsg("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
3435 #if ForceAlerts
3436 *(long*)0 = 0;
3437 #endif
3438 }
3439
3440 rr->next = mDNSNULL;
3441 rr->resrec.name = &largecr->namestorage;
3442
3443 rr->NextInKAList = mDNSNULL;
3444 rr->TimeRcvd = m ? m->timenow : 0;
3445 rr->DelayDelivery = 0;
3446 rr->NextRequiredQuery = m ? m->timenow : 0; // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
3447 rr->LastUsed = m ? m->timenow : 0;
3448 rr->CRActiveQuestion = mDNSNULL;
3449 rr->UnansweredQueries = 0;
3450 rr->LastUnansweredTime= 0;
3451 #if ENABLE_MULTI_PACKET_QUERY_SNOOPING
3452 rr->MPUnansweredQ = 0;
3453 rr->MPLastUnansweredQT= 0;
3454 rr->MPUnansweredKA = 0;
3455 rr->MPExpectingKA = mDNSfalse;
3456 #endif
3457 rr->NextInCFList = mDNSNULL;
3458
3459 rr->resrec.InterfaceID = InterfaceID;
3460 rr->resrec.rDNSServer = mDNSNULL;
3461
3462 ptr = getDomainName(msg, ptr, end, &largecr->namestorage); // Will bail out correctly if ptr is NULL
3463 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
3464 rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
3465
3466 if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
3467
3468 rr->resrec.rrtype = (mDNSu16) ((mDNSu16)ptr[0] << 8 | ptr[1]);
3469 rr->resrec.rrclass = (mDNSu16)(((mDNSu16)ptr[2] << 8 | ptr[3]) & kDNSClass_Mask);
3470 rr->resrec.rroriginalttl = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
3471 if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1)
3472 rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond;
3473 // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
3474 // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
3475 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
3476
3477 // If mDNS record has cache-flush bit set, we mark it unique
3478 // For uDNS records, all are implicitly deemed unique (a single DNS server is always
3479 // authoritative for the entire RRSet), unless this is a truncated response
3480 if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC)))
3481 RecordType |= kDNSRecordTypePacketUniqueMask;
3482 ptr += 10;
3483 if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
3484 end = ptr + pktrdlength; // Adjust end to indicate the end of the rdata for this resource record
3485
3486 rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
3487 rr->resrec.rdata->MaxRDLength = MaximumRDSize;
3488
3489 if (pktrdlength > MaximumRDSize)
3490 {
3491 LogInfo("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
3492 DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
3493 goto fail;
3494 }
3495
3496 if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
3497
3498 // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
3499 // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
3500 // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
3501 // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
3502 // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
3503 if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0) // Used in update packets to mean "Delete An RRset" (RFC 2136)
3504 rr->resrec.rdlength = 0;
3505 else if (!SetRData(msg, ptr, end, largecr, pktrdlength))
3506 goto fail;
3507
3508 SetNewRData(&rr->resrec, mDNSNULL, 0); // Sets rdlength, rdestimate, rdatahash for us
3509
3510 // Success! Now fill in RecordType to show this record contains valid data
3511 rr->resrec.RecordType = RecordType;
3512 return(end);
3513
3514 fail:
3515 // If we were unable to parse the rdata in this record, we indicate that by
3516 // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
3517 rr->resrec.RecordType = kDNSRecordTypePacketNegative;
3518 rr->resrec.rdlength = 0;
3519 rr->resrec.rdestimate = 0;
3520 rr->resrec.rdatahash = 0;
3521 return(end);
3522 }
3523
3524 mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
3525 {
3526 ptr = skipDomainName(msg, ptr, end);
3527 if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
3528 if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3529 return(ptr+4);
3530 }
3531
3532 mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
3533 DNSQuestion *question)
3534 {
3535 mDNSPlatformMemZero(question, sizeof(*question));
3536 question->InterfaceID = InterfaceID;
3537 if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
3538 ptr = getDomainName(msg, ptr, end, &question->qname);
3539 if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
3540 if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3541
3542 question->qnamehash = DomainNameHashValue(&question->qname);
3543 question->qtype = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); // Get type
3544 question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); // and class
3545 return(ptr+4);
3546 }
3547
3548 mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
3549 {
3550 int i;
3551 const mDNSu8 *ptr = msg->data;
3552 for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
3553 return(ptr);
3554 }
3555
3556 mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
3557 {
3558 int i;
3559 const mDNSu8 *ptr = LocateAnswers(msg, end);
3560 for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
3561 return(ptr);
3562 }
3563
3564 mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
3565 {
3566 int i;
3567 const mDNSu8 *ptr = LocateAuthorities(msg, end);
3568 for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
3569 return (ptr);
3570 }
3571
3572 mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
3573 {
3574 int i;
3575 const mDNSu8 *ptr = LocateAdditionals(msg, end);
3576
3577 // Locate the OPT record.
3578 // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
3579 // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
3580 // but not necessarily the *last* entry in the Additional Section.
3581 for (i = 0; ptr && i < msg->h.numAdditionals; i++)
3582 {
3583 if (ptr + DNSOpt_Header_Space + minsize <= end && // Make sure we have 11+minsize bytes of data
3584 ptr[0] == 0 && // Name must be root label
3585 ptr[1] == (kDNSType_OPT >> 8 ) && // rrtype OPT
3586 ptr[2] == (kDNSType_OPT & 0xFF) &&
3587 ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
3588 return(ptr);
3589 else
3590 ptr = skipResourceRecord(msg, ptr, end);
3591 }
3592 return(mDNSNULL);
3593 }
3594
3595 // On success, GetLLQOptData returns pointer to storage within shared "m->rec";
3596 // it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
3597 // Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
3598 // The code that currently calls this assumes there's only one, instead of iterating through the set
3599 mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
3600 {
3601 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
3602 if (ptr)
3603 {
3604 ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3605 if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
3606 }
3607 return(mDNSNULL);
3608 }
3609
3610 // Get the lease life of records in a dynamic update
3611 // returns 0 on error or if no lease present
3612 mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end)
3613 {
3614 mDNSu32 result = 0;
3615 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
3616 if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3617 if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease)
3618 result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease;
3619 m->rec.r.resrec.RecordType = 0; // Clear RecordType to show we're not still using it
3620 return(result);
3621 }
3622
3623 mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label)
3624 {
3625 int i;
3626 LogMsg("%2d %s", count, label);
3627 for (i = 0; i < count && ptr; i++)
3628 {
3629 // This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage,
3630 // but since it's only used for debugging (and probably only on OS X, not on
3631 // embedded systems) putting a 9kB object on the stack isn't a big problem.
3632 LargeCacheRecord largecr;
3633 ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr);
3634 if (ptr) LogMsg("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r));
3635 }
3636 if (!ptr) LogMsg("DumpRecords: ERROR: Premature end of packet data");
3637 return(ptr);
3638 }
3639
3640 #define DNS_OP_Name(X) ( \
3641 (X) == kDNSFlag0_OP_StdQuery ? "" : \
3642 (X) == kDNSFlag0_OP_Iquery ? "Iquery " : \
3643 (X) == kDNSFlag0_OP_Status ? "Status " : \
3644 (X) == kDNSFlag0_OP_Unused3 ? "Unused3 " : \
3645 (X) == kDNSFlag0_OP_Notify ? "Notify " : \
3646 (X) == kDNSFlag0_OP_Update ? "Update " : "?? " )
3647
3648 #define DNS_RC_Name(X) ( \
3649 (X) == kDNSFlag1_RC_NoErr ? "NoErr" : \
3650 (X) == kDNSFlag1_RC_FormErr ? "FormErr" : \
3651 (X) == kDNSFlag1_RC_ServFail ? "ServFail" : \
3652 (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" : \
3653 (X) == kDNSFlag1_RC_NotImpl ? "NotImpl" : \
3654 (X) == kDNSFlag1_RC_Refused ? "Refused" : \
3655 (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" : \
3656 (X) == kDNSFlag1_RC_YXRRSet ? "YXRRSet" : \
3657 (X) == kDNSFlag1_RC_NXRRSet ? "NXRRSet" : \
3658 (X) == kDNSFlag1_RC_NotAuth ? "NotAuth" : \
3659 (X) == kDNSFlag1_RC_NotZone ? "NotZone" : "??" )
3660
3661 // Note: DumpPacket expects the packet header fields in host byte order, not network byte order
3662 mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport,
3663 const mDNSAddr *srcaddr, mDNSIPPort srcport,
3664 const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
3665 {
3666 mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update);
3667 const mDNSu8 *ptr = msg->data;
3668 int i;
3669 DNSQuestion q;
3670 char tbuffer[64], sbuffer[64], dbuffer[64] = "";
3671 if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received" )] = 0;
3672 else tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receive")] = 0;
3673 if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port " )] = 0;
3674 else sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0;
3675 if (dstaddr || !mDNSIPPortIsZero(dstport))
3676 dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0;
3677
3678 LogMsg("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --",
3679 tbuffer, transport,
3680 DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
3681 msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query",
3682 msg->h.flags.b[0], msg->h.flags.b[1],
3683 DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
3684 msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
3685 msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "",
3686 msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "",
3687 msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "",
3688 msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "",
3689 msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "",
3690 msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "",
3691 mDNSVal16(msg->h.id),
3692 end - msg->data,
3693 sbuffer, mDNSVal16(srcport), dbuffer,
3694 (msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : ""
3695 );
3696
3697 LogMsg("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions");
3698 for (i = 0; i < msg->h.numQuestions && ptr; i++)
3699 {
3700 ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q);
3701 if (ptr) LogMsg("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype));
3702 }
3703 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers, IsUpdate ? "Prerequisites" : "Answers");
3704 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates" : "Authorities");
3705 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals");
3706 LogMsg("--------------");
3707 }
3708
3709 // ***************************************************************************
3710 #if COMPILER_LIKES_PRAGMA_MARK
3711 #pragma mark -
3712 #pragma mark - Packet Sending Functions
3713 #endif
3714
3715 // Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
3716 struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
3717
3718 struct UDPSocket_struct
3719 {
3720 mDNSIPPort port; // MUST BE FIRST FIELD -- mDNSCoreReceive expects every UDPSocket_struct to begin with mDNSIPPort port
3721 };
3722
3723 // Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
3724 // is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
3725 mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
3726 mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst,
3727 mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo,
3728 mDNSBool useBackgroundTrafficClass)
3729 {
3730 mStatus status = mStatus_NoError;
3731 const mDNSu16 numAdditionals = msg->h.numAdditionals;
3732 mDNSu8 *newend;
3733 mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
3734
3735 #if APPLE_OSX_mDNSResponder
3736 // maintain outbound packet statistics
3737 if (mDNSOpaque16IsZero(msg->h.id))
3738 m->MulticastPacketsSent++;
3739 else
3740 m->UnicastPacketsSent++;
3741 #endif // APPLE_OSX_mDNSResponder
3742
3743 // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
3744 if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
3745 {
3746 LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
3747 return mStatus_BadParamErr;
3748 }
3749
3750 newend = putHINFO(m, msg, end, authInfo, limit);
3751 if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
3752 else end = newend;
3753
3754 // Put all the integer values in IETF byte-order (MSB first, LSB second)
3755 SwapDNSHeaderBytes(msg);
3756
3757 if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0); // DNSDigest_SignMessage operates on message in network byte order
3758 if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
3759 else
3760 {
3761 // Send the packet on the wire
3762 if (!sock)
3763 status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport, useBackgroundTrafficClass);
3764 else
3765 {
3766 mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
3767 mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
3768 char *buf;
3769 long nsent;
3770
3771 // Try to send them in one packet if we can allocate enough memory
3772 buf = mDNSPlatformMemAllocate(msglen + 2);
3773 if (buf)
3774 {
3775 buf[0] = lenbuf[0];
3776 buf[1] = lenbuf[1];
3777 mDNSPlatformMemCopy(buf+2, msg, msglen);
3778 nsent = mDNSPlatformWriteTCP(sock, buf, msglen+2);
3779 if (nsent != (msglen + 2))
3780 {
3781 LogMsg("mDNSSendDNSMessage: write message failed %d/%d", nsent, msglen);
3782 status = mStatus_ConnFailed;
3783 }
3784 mDNSPlatformMemFree(buf);
3785 }
3786 else
3787 {
3788 nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2);
3789 if (nsent != 2)
3790 {
3791 LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2);
3792 status = mStatus_ConnFailed;
3793 }
3794 else
3795 {
3796 nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
3797 if (nsent != msglen)
3798 {
3799 LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen);
3800 status = mStatus_ConnFailed;
3801 }
3802 }
3803 }
3804 }
3805 }
3806
3807 // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
3808 SwapDNSHeaderBytes(msg);
3809
3810 // Dump the packet with the HINFO and TSIG
3811 if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
3812 DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
3813
3814 // put the number of additionals back the way it was
3815 msg->h.numAdditionals = numAdditionals;
3816
3817 return(status);
3818 }
3819
3820 // ***************************************************************************
3821 #if COMPILER_LIKES_PRAGMA_MARK
3822 #pragma mark -
3823 #pragma mark - RR List Management & Task Management
3824 #endif
3825
3826 mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
3827 {
3828 // MUST grab the platform lock FIRST!
3829 mDNSPlatformLock(m);
3830
3831 // Normally, mDNS_reentrancy is zero and so is mDNS_busy
3832 // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
3833 // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
3834 // If mDNS_busy != mDNS_reentrancy that's a bad sign
3835 if (m->mDNS_busy != m->mDNS_reentrancy)
3836 {
3837 LogMsg("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
3838 #if ForceAlerts
3839 *(long*)0 = 0;
3840 #endif
3841 }
3842
3843 // If this is an initial entry into the mDNSCore code, set m->timenow
3844 // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
3845 if (m->mDNS_busy == 0)
3846 {
3847 if (m->timenow)
3848 LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
3849 m->timenow = mDNS_TimeNow_NoLock(m);
3850 if (m->timenow == 0) m->timenow = 1;
3851 }
3852 else if (m->timenow == 0)
3853 {
3854 LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
3855 m->timenow = mDNS_TimeNow_NoLock(m);
3856 if (m->timenow == 0) m->timenow = 1;
3857 }
3858
3859 if (m->timenow_last - m->timenow > 0)
3860 {
3861 m->timenow_adjust += m->timenow_last - m->timenow;
3862 LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
3863 m->timenow = m->timenow_last;
3864 }
3865 m->timenow_last = m->timenow;
3866
3867 // Increment mDNS_busy so we'll recognise re-entrant calls
3868 m->mDNS_busy++;
3869 }
3870
3871 mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
3872 {
3873 AuthRecord *rr;
3874 for (rr = m->NewLocalRecords; rr; rr = rr->next)
3875 if (LocalRecordReady(rr)) return rr;
3876 return mDNSNULL;
3877 }
3878
3879 mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
3880 {
3881 mDNSs32 e = m->timenow + 0x78000000;
3882 if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
3883 if (m->NewQuestions)
3884 {
3885 if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
3886 else return(m->timenow);
3887 }
3888 if (m->NewLocalOnlyQuestions) return(m->timenow);
3889 if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
3890 if (m->NewLocalOnlyRecords) return(m->timenow);
3891 if (m->SPSProxyListChanged) return(m->timenow);
3892 if (m->LocalRemoveEvents) return(m->timenow);
3893
3894 #ifndef UNICAST_DISABLED
3895 if (e - m->NextuDNSEvent > 0) e = m->NextuDNSEvent;
3896 if (e - m->NextScheduledNATOp > 0) e = m->NextScheduledNATOp;
3897 if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
3898 #endif
3899
3900 if (e - m->NextCacheCheck > 0) e = m->NextCacheCheck;
3901 if (e - m->NextScheduledSPS > 0) e = m->NextScheduledSPS;
3902 if (e - m->NextScheduledKA > 0) e = m->NextScheduledKA;
3903
3904 // NextScheduledSPRetry only valid when DelaySleep not set
3905 if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
3906 if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
3907
3908 if (m->SuppressSending)
3909 {
3910 if (e - m->SuppressSending > 0) e = m->SuppressSending;
3911 }
3912 else
3913 {
3914 if (e - m->NextScheduledQuery > 0) e = m->NextScheduledQuery;
3915 if (e - m->NextScheduledProbe > 0) e = m->NextScheduledProbe;
3916 if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
3917 }
3918 if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
3919 return(e);
3920 }
3921
3922 mDNSexport void ShowTaskSchedulingError(mDNS *const m)
3923 {
3924 AuthRecord *rr;
3925 mDNS_Lock(m);
3926
3927 LogMsg("Task Scheduling Error: Continuously busy for more than a second");
3928
3929 // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
3930
3931 if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
3932 LogMsg("Task Scheduling Error: NewQuestion %##s (%s)",
3933 m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
3934
3935 if (m->NewLocalOnlyQuestions)
3936 LogMsg("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
3937 m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
3938
3939 if (m->NewLocalRecords)
3940 {
3941 rr = AnyLocalRecordReady(m);
3942 if (rr) LogMsg("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
3943 }
3944
3945 if (m->NewLocalOnlyRecords) LogMsg("Task Scheduling Error: NewLocalOnlyRecords");
3946
3947 if (m->SPSProxyListChanged) LogMsg("Task Scheduling Error: SPSProxyListChanged");
3948 if (m->LocalRemoveEvents) LogMsg("Task Scheduling Error: LocalRemoveEvents");
3949
3950 if (m->timenow - m->NextScheduledEvent >= 0)
3951 LogMsg("Task Scheduling Error: m->NextScheduledEvent %d", m->timenow - m->NextScheduledEvent);
3952
3953 #ifndef UNICAST_DISABLED
3954 if (m->timenow - m->NextuDNSEvent >= 0)
3955 LogMsg("Task Scheduling Error: m->NextuDNSEvent %d", m->timenow - m->NextuDNSEvent);
3956 if (m->timenow - m->NextScheduledNATOp >= 0)
3957 LogMsg("Task Scheduling Error: m->NextScheduledNATOp %d", m->timenow - m->NextScheduledNATOp);
3958 if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
3959 LogMsg("Task Scheduling Error: m->NextSRVUpdate %d", m->timenow - m->NextSRVUpdate);
3960 #endif
3961
3962 if (m->timenow - m->NextCacheCheck >= 0)
3963 LogMsg("Task Scheduling Error: m->NextCacheCheck %d", m->timenow - m->NextCacheCheck);
3964 if (m->timenow - m->NextScheduledSPS >= 0)
3965 LogMsg("Task Scheduling Error: m->NextScheduledSPS %d", m->timenow - m->NextScheduledSPS);
3966 if (m->timenow - m->NextScheduledKA >= 0)
3967 LogMsg("Task Scheduling Error: m->NextScheduledKA %d", m->timenow - m->NextScheduledKA);
3968 if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
3969 LogMsg("Task Scheduling Error: m->NextScheduledSPRetry %d", m->timenow - m->NextScheduledSPRetry);
3970 if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
3971 LogMsg("Task Scheduling Error: m->DelaySleep %d", m->timenow - m->DelaySleep);
3972
3973 if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
3974 LogMsg("Task Scheduling Error: m->SuppressSending %d", m->timenow - m->SuppressSending);
3975 if (m->timenow - m->NextScheduledQuery >= 0)
3976 LogMsg("Task Scheduling Error: m->NextScheduledQuery %d", m->timenow - m->NextScheduledQuery);
3977 if (m->timenow - m->NextScheduledProbe >= 0)
3978 LogMsg("Task Scheduling Error: m->NextScheduledProbe %d", m->timenow - m->NextScheduledProbe);
3979 if (m->timenow - m->NextScheduledResponse >= 0)
3980 LogMsg("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
3981
3982 mDNS_Unlock(m);
3983 }
3984
3985 mDNSexport void mDNS_Unlock_(mDNS *const m, const char * const functionname)
3986 {
3987 // Decrement mDNS_busy
3988 m->mDNS_busy--;
3989
3990 // Check for locking failures
3991 if (m->mDNS_busy != m->mDNS_reentrancy)
3992 {
3993 LogMsg("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
3994 #if ForceAlerts
3995 *(long*)0 = 0;
3996 #endif
3997 }
3998
3999 // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
4000 if (m->mDNS_busy == 0)
4001 {
4002 m->NextScheduledEvent = GetNextScheduledEvent(m);
4003 if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
4004 m->timenow = 0;
4005 }
4006
4007 // MUST release the platform lock LAST!
4008 mDNSPlatformUnlock(m);
4009 }
4010
4011 // ***************************************************************************
4012 #if COMPILER_LIKES_PRAGMA_MARK
4013 #pragma mark -
4014 #pragma mark - Specialized mDNS version of vsnprintf
4015 #endif
4016
4017 static const struct mDNSprintf_format
4018 {
4019 unsigned leftJustify : 1;
4020 unsigned forceSign : 1;
4021 unsigned zeroPad : 1;
4022 unsigned havePrecision : 1;
4023 unsigned hSize : 1;
4024 unsigned lSize : 1;
4025 char altForm;
4026 char sign; // +, - or space
4027 unsigned int fieldWidth;
4028 unsigned int precision;
4029 } mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
4030
4031 mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
4032 {
4033 mDNSu32 nwritten = 0;
4034 int c;
4035 if (buflen == 0) return(0);
4036 buflen--; // Pre-reserve one space in the buffer for the terminating null
4037 if (buflen == 0) goto exit;
4038
4039 for (c = *fmt; c != 0; c = *++fmt)
4040 {
4041 if (c != '%')
4042 {
4043 *sbuffer++ = (char)c;
4044 if (++nwritten >= buflen) goto exit;
4045 }
4046 else
4047 {
4048 unsigned int i=0, j;
4049 // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
4050 // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
4051 // The size needs to be enough for a 256-byte domain name plus some error text.
4052 #define mDNS_VACB_Size 300
4053 char mDNS_VACB[mDNS_VACB_Size];
4054 #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
4055 #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
4056 char *s = mDNS_VACB_Lim, *digits;
4057 struct mDNSprintf_format F = mDNSprintf_format_default;
4058
4059 while (1) // decode flags
4060 {
4061 c = *++fmt;
4062 if (c == '-') F.leftJustify = 1;
4063 else if (c == '+') F.forceSign = 1;
4064 else if (c == ' ') F.sign = ' ';
4065 else if (c == '#') F.altForm++;
4066 else if (c == '0') F.zeroPad = 1;
4067 else break;
4068 }
4069
4070 if (c == '*') // decode field width
4071 {
4072 int f = va_arg(arg, int);
4073 if (f < 0) { f = -f; F.leftJustify = 1; }
4074 F.fieldWidth = (unsigned int)f;
4075 c = *++fmt;
4076 }
4077 else
4078 {
4079 for (; c >= '0' && c <= '9'; c = *++fmt)
4080 F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
4081 }
4082
4083 if (c == '.') // decode precision
4084 {
4085 if ((c = *++fmt) == '*')
4086 { F.precision = va_arg(arg, unsigned int); c = *++fmt; }
4087 else for (; c >= '0' && c <= '9'; c = *++fmt)
4088 F.precision = (10 * F.precision) + (c - '0');
4089 F.havePrecision = 1;
4090 }
4091
4092 if (F.leftJustify) F.zeroPad = 0;
4093
4094 conv:
4095 switch (c) // perform appropriate conversion
4096 {
4097 unsigned long n;
4098 case 'h': F.hSize = 1; c = *++fmt; goto conv;
4099 case 'l': // fall through
4100 case 'L': F.lSize = 1; c = *++fmt; goto conv;
4101 case 'd':
4102 case 'i': if (F.lSize) n = (unsigned long)va_arg(arg, long);
4103 else n = (unsigned long)va_arg(arg, int);
4104 if (F.hSize) n = (short) n;
4105 if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
4106 else if (F.forceSign) F.sign = '+';
4107 goto decimal;
4108 case 'u': if (F.lSize) n = va_arg(arg, unsigned long);
4109 else n = va_arg(arg, unsigned int);
4110 if (F.hSize) n = (unsigned short) n;
4111 F.sign = 0;
4112 goto decimal;
4113 decimal: if (!F.havePrecision)
4114 {
4115 if (F.zeroPad)
4116 {
4117 F.precision = F.fieldWidth;
4118 if (F.sign) --F.precision;
4119 }
4120 if (F.precision < 1) F.precision = 1;
4121 }
4122 if (F.precision > mDNS_VACB_Size - 1)
4123 F.precision = mDNS_VACB_Size - 1;
4124 for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
4125 for (; i < F.precision; i++) *--s = '0';
4126 if (F.sign) { *--s = F.sign; i++; }
4127 break;
4128
4129 case 'o': if (F.lSize) n = va_arg(arg, unsigned long);
4130 else n = va_arg(arg, unsigned int);
4131 if (F.hSize) n = (unsigned short) n;
4132 if (!F.havePrecision)
4133 {
4134 if (F.zeroPad) F.precision = F.fieldWidth;
4135 if (F.precision < 1) F.precision = 1;
4136 }
4137 if (F.precision > mDNS_VACB_Size - 1)
4138 F.precision = mDNS_VACB_Size - 1;
4139 for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
4140 if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
4141 for (; i < F.precision; i++) *--s = '0';
4142 break;
4143
4144 case 'a': {
4145 unsigned char *a = va_arg(arg, unsigned char *);
4146 if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4147 else
4148 {
4149 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
4150 if (F.altForm)
4151 {
4152 mDNSAddr *ip = (mDNSAddr*)a;
4153 switch (ip->type)
4154 {
4155 case mDNSAddrType_IPv4: F.precision = 4; a = (unsigned char *)&ip->ip.v4; break;
4156 case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
4157 default: F.precision = 0; break;
4158 }
4159 }
4160 if (F.altForm && !F.precision)
4161 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "«ZERO ADDRESS»");
4162 else switch (F.precision)
4163 {
4164 case 4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
4165 a[0], a[1], a[2], a[3]); break;
4166 case 6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
4167 a[0], a[1], a[2], a[3], a[4], a[5]); break;
4168 case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB),
4169 "%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X",
4170 a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7],
4171 a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break;
4172 default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
4173 " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
4174 }
4175 }
4176 }
4177 break;
4178
4179 case 'p': F.havePrecision = F.lSize = 1;
4180 F.precision = sizeof(void*) * 2; // 8 characters on 32-bit; 16 characters on 64-bit
4181 case 'X': digits = "0123456789ABCDEF";
4182 goto hexadecimal;
4183 case 'x': digits = "0123456789abcdef";
4184 hexadecimal: if (F.lSize) n = va_arg(arg, unsigned long);
4185 else n = va_arg(arg, unsigned int);
4186 if (F.hSize) n = (unsigned short) n;
4187 if (!F.havePrecision)
4188 {
4189 if (F.zeroPad)
4190 {
4191 F.precision = F.fieldWidth;
4192 if (F.altForm) F.precision -= 2;
4193 }
4194 if (F.precision < 1) F.precision = 1;
4195 }
4196 if (F.precision > mDNS_VACB_Size - 1)
4197 F.precision = mDNS_VACB_Size - 1;
4198 for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
4199 for (; i < F.precision; i++) *--s = '0';
4200 if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
4201 break;
4202
4203 case 'c': *--s = (char)va_arg(arg, int); i = 1; break;
4204
4205 case 's': s = va_arg(arg, char *);
4206 if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4207 else switch (F.altForm)
4208 {
4209 case 0: i=0;
4210 if (!F.havePrecision) // C string
4211 while (s[i]) i++;
4212 else
4213 {
4214 while ((i < F.precision) && s[i]) i++;
4215 // Make sure we don't truncate in the middle of a UTF-8 character
4216 // If last character we got was any kind of UTF-8 multi-byte character,
4217 // then see if we have to back up.
4218 // This is not as easy as the similar checks below, because
4219 // here we can't assume it's safe to examine the *next* byte, so we
4220 // have to confine ourselves to working only backwards in the string.
4221 j = i; // Record where we got to
4222 // Now, back up until we find first non-continuation-char
4223 while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
4224 // Now s[i-1] is the first non-continuation-char
4225 // and (j-i) is the number of continuation-chars we found
4226 if (i>0 && (s[i-1] & 0xC0) == 0xC0) // If we found a start-char
4227 {
4228 i--; // Tentatively eliminate this start-char as well
4229 // Now (j-i) is the number of characters we're considering eliminating.
4230 // To be legal UTF-8, the start-char must contain (j-i) one-bits,
4231 // followed by a zero bit. If we shift it right by (7-(j-i)) bits
4232 // (with sign extension) then the result has to be 0xFE.
4233 // If this is right, then we reinstate the tentatively eliminated bytes.
4234 if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
4235 }
4236 }
4237 break;
4238 case 1: i = (unsigned char) *s++; break; // Pascal string
4239 case 2: { // DNS label-sequence name
4240 unsigned char *a = (unsigned char *)s;
4241 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
4242 if (*a == 0) *s++ = '.'; // Special case for root DNS name
4243 while (*a)
4244 {
4245 char buf[63*4+1];
4246 if (*a > 63)
4247 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
4248 if (s + *a >= &mDNS_VACB[254])
4249 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
4250 // Need to use ConvertDomainLabelToCString to do proper escaping here,
4251 // so it's clear what's a literal dot and what's a label separator
4252 ConvertDomainLabelToCString((domainlabel*)a, buf);
4253 s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
4254 a += 1 + *a;
4255 }
4256 i = (mDNSu32)(s - mDNS_VACB);
4257 s = mDNS_VACB; // Reset s back to the start of the buffer
4258 break;
4259 }
4260 }
4261 // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
4262 if (F.havePrecision && i > F.precision)
4263 { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4264 break;
4265
4266 case 'n': s = va_arg(arg, char *);
4267 if (F.hSize) *(short *) s = (short)nwritten;
4268 else if (F.lSize) *(long *) s = (long)nwritten;
4269 else *(int *) s = (int)nwritten;
4270 continue;
4271
4272 default: s = mDNS_VACB;
4273 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
4274
4275 case '%': *sbuffer++ = (char)c;
4276 if (++nwritten >= buflen) goto exit;
4277 break;
4278 }
4279
4280 if (i < F.fieldWidth && !F.leftJustify) // Pad on the left
4281 do {
4282 *sbuffer++ = ' ';
4283 if (++nwritten >= buflen) goto exit;
4284 } while (i < --F.fieldWidth);
4285
4286 // Make sure we don't truncate in the middle of a UTF-8 character.
4287 // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
4288 // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
4289 // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
4290 // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
4291 if (i > buflen - nwritten)
4292 { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4293 for (j=0; j<i; j++) *sbuffer++ = *s++; // Write the converted result
4294 nwritten += i;
4295 if (nwritten >= buflen) goto exit;
4296
4297 for (; i < F.fieldWidth; i++) // Pad on the right
4298 {
4299 *sbuffer++ = ' ';
4300 if (++nwritten >= buflen) goto exit;
4301 }
4302 }
4303 }
4304 exit:
4305 *sbuffer++ = 0;
4306 return(nwritten);
4307 }
4308
4309 mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
4310 {
4311 mDNSu32 length;
4312
4313 va_list ptr;
4314 va_start(ptr,fmt);
4315 length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
4316 va_end(ptr);
4317
4318 return(length);
4319 }