]> git.saurik.com Git - apple/mdnsresponder.git/blob - mDNSCore/DNSCommon.c
mDNSResponder-567.tar.gz
[apple/mdnsresponder.git] / mDNSCore / DNSCommon.c
1 /* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2013 Apple Computer, Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18 // Set mDNS_InstantiateInlines to tell mDNSEmbeddedAPI.h to instantiate inline functions, if necessary
19 #define mDNS_InstantiateInlines 1
20 #include "DNSCommon.h"
21 #include "CryptoAlg.h"
22 #include "anonymous.h"
23
24 // Disable certain benign warnings with Microsoft compilers
25 #if (defined(_MSC_VER))
26 // Disable "conditional expression is constant" warning for debug macros.
27 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
28 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
29 #pragma warning(disable:4127)
30 // Disable "array is too small to include a terminating null character" warning
31 // -- domain labels have an initial length byte, not a terminating null character
32 #pragma warning(disable:4295)
33 #endif
34
35 // ***************************************************************************
36 #if COMPILER_LIKES_PRAGMA_MARK
37 #pragma mark - Program Constants
38 #endif
39
40 mDNSexport const mDNSInterfaceID mDNSInterface_Any = 0;
41 mDNSexport const mDNSInterfaceID mDNSInterfaceMark = (mDNSInterfaceID)-1;
42 mDNSexport const mDNSInterfaceID mDNSInterface_LocalOnly = (mDNSInterfaceID)-2;
43 mDNSexport const mDNSInterfaceID mDNSInterface_Unicast = (mDNSInterfaceID)-3;
44 mDNSexport const mDNSInterfaceID mDNSInterface_P2P = (mDNSInterfaceID)-4;
45 mDNSexport const mDNSInterfaceID uDNSInterfaceMark = (mDNSInterfaceID)-5;
46
47 // Note: Microsoft's proposed "Link Local Multicast Name Resolution Protocol" (LLMNR) is essentially a limited version of
48 // Multicast DNS, using the same packet formats, naming syntax, and record types as Multicast DNS, but on a different UDP
49 // port and multicast address, which means it won't interoperate with the existing installed base of Multicast DNS responders.
50 // LLMNR uses IPv4 multicast address 224.0.0.252, IPv6 multicast address FF02::0001:0003, and UDP port 5355.
51 // Uncomment the appropriate lines below to build a special Multicast DNS responder for testing interoperability
52 // with Microsoft's LLMNR client code.
53
54 #define DiscardPortAsNumber 9
55 #define SSHPortAsNumber 22
56 #define UnicastDNSPortAsNumber 53
57 #define SSDPPortAsNumber 1900
58 #define IPSECPortAsNumber 4500
59 #define NSIPCPortAsNumber 5030 // Port used for dnsextd to talk to local nameserver bound to loopback
60 #define NATPMPAnnouncementPortAsNumber 5350
61 #define NATPMPPortAsNumber 5351
62 #define DNSEXTPortAsNumber 5352 // Port used for end-to-end DNS operations like LLQ, Updates with Leases, etc.
63 #define MulticastDNSPortAsNumber 5353
64 #define LoopbackIPCPortAsNumber 5354
65 //#define MulticastDNSPortAsNumber 5355 // LLMNR
66 #define PrivateDNSPortAsNumber 5533
67
68 mDNSexport const mDNSIPPort DiscardPort = { { DiscardPortAsNumber >> 8, DiscardPortAsNumber & 0xFF } };
69 mDNSexport const mDNSIPPort SSHPort = { { SSHPortAsNumber >> 8, SSHPortAsNumber & 0xFF } };
70 mDNSexport const mDNSIPPort UnicastDNSPort = { { UnicastDNSPortAsNumber >> 8, UnicastDNSPortAsNumber & 0xFF } };
71 mDNSexport const mDNSIPPort SSDPPort = { { SSDPPortAsNumber >> 8, SSDPPortAsNumber & 0xFF } };
72 mDNSexport const mDNSIPPort IPSECPort = { { IPSECPortAsNumber >> 8, IPSECPortAsNumber & 0xFF } };
73 mDNSexport const mDNSIPPort NSIPCPort = { { NSIPCPortAsNumber >> 8, NSIPCPortAsNumber & 0xFF } };
74 mDNSexport const mDNSIPPort NATPMPAnnouncementPort = { { NATPMPAnnouncementPortAsNumber >> 8, NATPMPAnnouncementPortAsNumber & 0xFF } };
75 mDNSexport const mDNSIPPort NATPMPPort = { { NATPMPPortAsNumber >> 8, NATPMPPortAsNumber & 0xFF } };
76 mDNSexport const mDNSIPPort DNSEXTPort = { { DNSEXTPortAsNumber >> 8, DNSEXTPortAsNumber & 0xFF } };
77 mDNSexport const mDNSIPPort MulticastDNSPort = { { MulticastDNSPortAsNumber >> 8, MulticastDNSPortAsNumber & 0xFF } };
78 mDNSexport const mDNSIPPort LoopbackIPCPort = { { LoopbackIPCPortAsNumber >> 8, LoopbackIPCPortAsNumber & 0xFF } };
79 mDNSexport const mDNSIPPort PrivateDNSPort = { { PrivateDNSPortAsNumber >> 8, PrivateDNSPortAsNumber & 0xFF } };
80
81 mDNSexport const OwnerOptData zeroOwner = { 0, 0, { { 0 } }, { { 0 } }, { { 0 } } };
82
83 mDNSexport const mDNSIPPort zeroIPPort = { { 0 } };
84 mDNSexport const mDNSv4Addr zerov4Addr = { { 0 } };
85 mDNSexport const mDNSv6Addr zerov6Addr = { { 0 } };
86 mDNSexport const mDNSEthAddr zeroEthAddr = { { 0 } };
87 mDNSexport const mDNSv4Addr onesIPv4Addr = { { 255, 255, 255, 255 } };
88 mDNSexport const mDNSv6Addr onesIPv6Addr = { { 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255 } };
89 mDNSexport const mDNSEthAddr onesEthAddr = { { 255, 255, 255, 255, 255, 255 } };
90 mDNSexport const mDNSAddr zeroAddr = { mDNSAddrType_None, {{{ 0 }}} };
91
92 mDNSexport const mDNSv4Addr AllDNSAdminGroup = { { 239, 255, 255, 251 } };
93 mDNSexport const mDNSv4Addr AllHosts_v4 = { { 224, 0, 0, 1 } }; // For NAT-PMP & PCP Annoucements
94 mDNSexport const mDNSv6Addr AllHosts_v6 = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01 } };
95 mDNSexport const mDNSv6Addr NDP_prefix = { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x01, 0xFF,0x00,0x00,0xFB } }; // FF02:0:0:0:0:1:FF00::/104
96 mDNSexport const mDNSEthAddr AllHosts_v6_Eth = { { 0x33, 0x33, 0x00, 0x00, 0x00, 0x01 } };
97 mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 251 } } } };
98 //mDNSexport const mDNSAddr AllDNSLinkGroup_v4 = { mDNSAddrType_IPv4, { { { 224, 0, 0, 252 } } } }; // LLMNR
99 mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0xFB } } } };
100 //mDNSexport const mDNSAddr AllDNSLinkGroup_v6 = { mDNSAddrType_IPv6, { { { 0xFF,0x02,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x00,0x00,0x00, 0x00,0x01,0x00,0x03 } } } }; // LLMNR
101
102 mDNSexport const mDNSOpaque16 zeroID = { { 0, 0 } };
103 mDNSexport const mDNSOpaque16 onesID = { { 255, 255 } };
104 mDNSexport const mDNSOpaque16 QueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery, 0 } };
105 mDNSexport const mDNSOpaque16 uQueryFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, 0 } };
106 mDNSexport const mDNSOpaque16 DNSSecQFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_StdQuery | kDNSFlag0_RD, kDNSFlag1_CD } };
107 mDNSexport const mDNSOpaque16 ResponseFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_StdQuery | kDNSFlag0_AA, 0 } };
108 mDNSexport const mDNSOpaque16 UpdateReqFlags = { { kDNSFlag0_QR_Query | kDNSFlag0_OP_Update, 0 } };
109 mDNSexport const mDNSOpaque16 UpdateRespFlags = { { kDNSFlag0_QR_Response | kDNSFlag0_OP_Update, 0 } };
110
111 mDNSexport const mDNSOpaque64 zeroOpaque64 = { { 0 } };
112
113 // ***************************************************************************
114 #if COMPILER_LIKES_PRAGMA_MARK
115 #pragma mark -
116 #pragma mark - General Utility Functions
117 #endif
118
119 // return true for RFC1918 private addresses
120 mDNSexport mDNSBool mDNSv4AddrIsRFC1918(const mDNSv4Addr * const addr)
121 {
122 return ((addr->b[0] == 10) || // 10/8 prefix
123 (addr->b[0] == 172 && (addr->b[1] & 0xF0) == 16) || // 172.16/12
124 (addr->b[0] == 192 && addr->b[1] == 168)); // 192.168/16
125 }
126
127 mDNSexport void mDNSAddrMapIPv4toIPv6(mDNSv4Addr* in, mDNSv6Addr* out)
128 {
129 out->l[0] = 0;
130 out->l[1] = 0;
131 out->w[4] = 0;
132 out->w[5] = 0xffff;
133 out->b[12] = in->b[0];
134 out->b[13] = in->b[1];
135 out->b[14] = in->b[2];
136 out->b[15] = in->b[3];
137 }
138
139 mDNSexport mDNSBool mDNSAddrIPv4FromMappedIPv6(mDNSv6Addr *in, mDNSv4Addr* out)
140 {
141 if (in->l[0] != 0 || in->l[1] != 0 || in->w[4] != 0 || in->w[5] != 0xffff)
142 return mDNSfalse;
143
144 out->NotAnInteger = in->l[3];
145 return mDNStrue;
146 }
147
148 mDNSexport NetworkInterfaceInfo *GetFirstActiveInterface(NetworkInterfaceInfo *intf)
149 {
150 while (intf && !intf->InterfaceActive) intf = intf->next;
151 return(intf);
152 }
153
154 mDNSexport mDNSInterfaceID GetNextActiveInterfaceID(const NetworkInterfaceInfo *intf)
155 {
156 const NetworkInterfaceInfo *next = GetFirstActiveInterface(intf->next);
157 if (next) return(next->InterfaceID);else return(mDNSNULL);
158 }
159
160 mDNSexport mDNSu32 NumCacheRecordsForInterfaceID(const mDNS *const m, mDNSInterfaceID id)
161 {
162 mDNSu32 slot, used = 0;
163 CacheGroup *cg;
164 const CacheRecord *rr;
165 FORALL_CACHERECORDS(slot, cg, rr)
166 {
167 if (rr->resrec.InterfaceID == id)
168 used++;
169 }
170 return(used);
171 }
172
173 mDNSexport char *DNSTypeName(mDNSu16 rrtype)
174 {
175 switch (rrtype)
176 {
177 case kDNSType_A: return("Addr");
178 case kDNSType_NS: return("NS");
179 case kDNSType_CNAME: return("CNAME");
180 case kDNSType_SOA: return("SOA");
181 case kDNSType_NULL: return("NULL");
182 case kDNSType_PTR: return("PTR");
183 case kDNSType_HINFO: return("HINFO");
184 case kDNSType_TXT: return("TXT");
185 case kDNSType_AAAA: return("AAAA");
186 case kDNSType_SRV: return("SRV");
187 case kDNSType_OPT: return("OPT");
188 case kDNSType_NSEC: return("NSEC");
189 case kDNSType_NSEC3: return("NSEC3");
190 case kDNSType_NSEC3PARAM: return("NSEC3PARAM");
191 case kDNSType_TSIG: return("TSIG");
192 case kDNSType_RRSIG: return("RRSIG");
193 case kDNSType_DNSKEY: return("DNSKEY");
194 case kDNSType_DS: return("DS");
195 case kDNSQType_ANY: return("ANY");
196 default: {
197 static char buffer[16];
198 mDNS_snprintf(buffer, sizeof(buffer), "TYPE%d", rrtype);
199 return(buffer);
200 }
201 }
202 }
203
204 mDNSlocal char *DNSSECAlgName(mDNSu8 alg)
205 {
206 switch (alg)
207 {
208 case CRYPTO_RSA_SHA1: return "RSA_SHA1";
209 case CRYPTO_DSA_NSEC3_SHA1: return "DSA_NSEC3_SHA1";
210 case CRYPTO_RSA_NSEC3_SHA1: return "RSA_NSEC3_SHA1";
211 case CRYPTO_RSA_SHA256: return "RSA_SHA256";
212 case CRYPTO_RSA_SHA512: return "RSA_SHA512";
213 default: {
214 static char algbuffer[16];
215 mDNS_snprintf(algbuffer, sizeof(algbuffer), "ALG%d", alg);
216 return(algbuffer);
217 }
218 }
219 }
220
221 mDNSlocal char *DNSSECDigestName(mDNSu8 digest)
222 {
223 switch (digest)
224 {
225 case SHA1_DIGEST_TYPE: return "SHA1";
226 case SHA256_DIGEST_TYPE: return "SHA256";
227 default:
228 {
229 static char digbuffer[16];
230 mDNS_snprintf(digbuffer, sizeof(digbuffer), "DIG%d", digest);
231 return(digbuffer);
232 }
233 }
234 }
235
236 mDNSexport mDNSu32 swap32(mDNSu32 x)
237 {
238 mDNSu8 *ptr = (mDNSu8 *)&x;
239 return (mDNSu32)((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
240 }
241
242 mDNSexport mDNSu16 swap16(mDNSu16 x)
243 {
244 mDNSu8 *ptr = (mDNSu8 *)&x;
245 return (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
246 }
247
248 // RFC 4034 Appendix B: Get the keyid of a DNS KEY. It is not transmitted
249 // explicitly on the wire.
250 //
251 // Note: This just helps narrow down the list of keys to look at. It is possible
252 // for two DNS keys to have the same ID i.e., key ID is not a unqiue tag. We ignore
253 // MD5 keys.
254 //
255 // 1st argument - the RDATA part of the DNSKEY RR
256 // 2nd argument - the RDLENGTH
257 //
258 mDNSlocal mDNSu32 keytag(mDNSu8 *key, mDNSu32 keysize)
259 {
260 unsigned long ac;
261 unsigned int i;
262
263 for (ac = 0, i = 0; i < keysize; ++i)
264 ac += (i & 1) ? key[i] : key[i] << 8;
265 ac += (ac >> 16) & 0xFFFF;
266 return ac & 0xFFFF;
267 }
268
269 mDNSexport int baseEncode(char *buffer, int blen, const mDNSu8 *data, int len, int encAlg)
270 {
271 AlgContext *ctx;
272 mDNSu8 *outputBuffer;
273 int length;
274
275 ctx = AlgCreate(ENC_ALG, encAlg);
276 if (!ctx)
277 {
278 LogMsg("baseEncode: AlgCreate failed\n");
279 return 0;
280 }
281 AlgAdd(ctx, data, len);
282 outputBuffer = AlgEncode(ctx);
283 length = 0;
284 if (outputBuffer)
285 {
286 // Note: don't include any spaces in the format string below. This
287 // is also used by NSEC3 code for proving non-existence where it
288 // needs the base32 encoding without any spaces etc.
289 length = mDNS_snprintf(buffer, blen, "%s", outputBuffer);
290 }
291 AlgDestroy(ctx);
292 return length;
293 }
294
295 mDNSlocal void PrintTypeBitmap(const mDNSu8 *bmap, int bitmaplen, char *const buffer, mDNSu32 length)
296 {
297 int win, wlen, type;
298
299 while (bitmaplen > 0)
300 {
301 int i;
302
303 if (bitmaplen < 3)
304 {
305 LogMsg("PrintTypeBitmap: malformed bitmap, bitmaplen %d short", bitmaplen);
306 break;
307 }
308
309 win = *bmap++;
310 wlen = *bmap++;
311 bitmaplen -= 2;
312 if (bitmaplen < wlen || wlen < 1 || wlen > 32)
313 {
314 LogInfo("PrintTypeBitmap: malformed nsec, bitmaplen %d wlen %d", bitmaplen, wlen);
315 break;
316 }
317 if (win < 0 || win >= 256)
318 {
319 LogInfo("PrintTypeBitmap: malformed nsec, bad window win %d", win);
320 break;
321 }
322 type = win * 256;
323 for (i = 0; i < wlen * 8; i++)
324 {
325 if (bmap[i>>3] & (128 >> (i&7)))
326 length += mDNS_snprintf(buffer+length, (MaxMsg - 1) - length, "%s ", DNSTypeName(type + i));
327 }
328 bmap += wlen;
329 bitmaplen -= wlen;
330 }
331 }
332
333 // Parse the fields beyond the base header. NSEC3 should have been validated.
334 mDNSexport void NSEC3Parse(const ResourceRecord *const rr, mDNSu8 **salt, int *hashLength, mDNSu8 **nxtName, int *bitmaplen, mDNSu8 **bitmap)
335 {
336 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
337 rdataNSEC3 *nsec3 = (rdataNSEC3 *)rdb->data;
338 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
339 int hlen;
340
341 if (salt)
342 {
343 if (nsec3->saltLength)
344 *salt = p;
345 else
346 *salt = mDNSNULL;
347 }
348 p += nsec3->saltLength;
349 // p is pointing at hashLength
350 hlen = (int)*p;
351 if (hashLength)
352 *hashLength = hlen;
353 p++;
354 if (nxtName)
355 *nxtName = p;
356 p += hlen;
357 if (bitmaplen)
358 *bitmaplen = rr->rdlength - (int)(p - rdb->data);
359 if (bitmap)
360 *bitmap = p;
361 }
362
363 // Note slight bug: this code uses the rdlength from the ResourceRecord object, to display
364 // the rdata from the RDataBody object. Sometimes this could be the wrong length -- but as
365 // long as this routine is only used for debugging messages, it probably isn't a big problem.
366 mDNSexport char *GetRRDisplayString_rdb(const ResourceRecord *const rr, const RDataBody *const rd1, char *const buffer)
367 {
368 const RDataBody2 *const rd = (RDataBody2 *)rd1;
369 #define RemSpc (MaxMsg-1-length)
370 char *ptr = buffer;
371 mDNSu32 length = mDNS_snprintf(buffer, MaxMsg-1, "%4d %##s %s ", rr->rdlength, rr->name->c, DNSTypeName(rr->rrtype));
372 if (rr->RecordType == kDNSRecordTypePacketNegative) return(buffer);
373 if (!rr->rdlength && rr->rrtype != kDNSType_OPT) { mDNS_snprintf(buffer+length, RemSpc, "<< ZERO RDATA LENGTH >>"); return(buffer); }
374
375 switch (rr->rrtype)
376 {
377 case kDNSType_A: mDNS_snprintf(buffer+length, RemSpc, "%.4a", &rd->ipv4); break;
378
379 case kDNSType_NS: // Same as PTR
380 case kDNSType_CNAME: // Same as PTR
381 case kDNSType_PTR: mDNS_snprintf(buffer+length, RemSpc, "%##s", rd->name.c); break;
382
383 case kDNSType_SOA: mDNS_snprintf(buffer+length, RemSpc, "%##s %##s %d %d %d %d %d",
384 rd->soa.mname.c, rd->soa.rname.c,
385 rd->soa.serial, rd->soa.refresh, rd->soa.retry, rd->soa.expire, rd->soa.min);
386 break;
387
388 case kDNSType_HINFO: // Display this the same as TXT (show all constituent strings)
389 case kDNSType_TXT: {
390 const mDNSu8 *t = rd->txt.c;
391 while (t < rd->txt.c + rr->rdlength)
392 {
393 length += mDNS_snprintf(buffer+length, RemSpc, "%s%#s", t > rd->txt.c ? "¦" : "", t);
394 t += 1 + t[0];
395 }
396 } break;
397
398 case kDNSType_AAAA: mDNS_snprintf(buffer+length, RemSpc, "%.16a", &rd->ipv6); break;
399 case kDNSType_SRV: mDNS_snprintf(buffer+length, RemSpc, "%u %u %u %##s",
400 rd->srv.priority, rd->srv.weight, mDNSVal16(rd->srv.port), rd->srv.target.c); break;
401
402 case kDNSType_OPT: {
403 const rdataOPT *opt;
404 const rdataOPT *const end = (const rdataOPT *)&rd->data[rr->rdlength];
405 length += mDNS_snprintf(buffer+length, RemSpc, "Max %d", rr->rrclass);
406 for (opt = &rd->opt[0]; opt < end; opt++)
407 {
408 switch(opt->opt)
409 {
410 case kDNSOpt_LLQ:
411 length += mDNS_snprintf(buffer+length, RemSpc, " LLQ");
412 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.llq.vers);
413 length += mDNS_snprintf(buffer+length, RemSpc, " Op %d", opt->u.llq.llqOp);
414 length += mDNS_snprintf(buffer+length, RemSpc, " Err/Port %d", opt->u.llq.err);
415 length += mDNS_snprintf(buffer+length, RemSpc, " ID %08X%08X", opt->u.llq.id.l[0], opt->u.llq.id.l[1]);
416 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.llq.llqlease);
417 break;
418 case kDNSOpt_Lease:
419 length += mDNS_snprintf(buffer+length, RemSpc, " Lease %d", opt->u.updatelease);
420 break;
421 case kDNSOpt_Owner:
422 length += mDNS_snprintf(buffer+length, RemSpc, " Owner");
423 length += mDNS_snprintf(buffer+length, RemSpc, " Vers %d", opt->u.owner.vers);
424 length += mDNS_snprintf(buffer+length, RemSpc, " Seq %3d", (mDNSu8)opt->u.owner.seq); // Display as unsigned
425 length += mDNS_snprintf(buffer+length, RemSpc, " MAC %.6a", opt->u.owner.HMAC.b);
426 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
427 {
428 length += mDNS_snprintf(buffer+length, RemSpc, " I-MAC %.6a", opt->u.owner.IMAC.b);
429 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
430 length += mDNS_snprintf(buffer+length, RemSpc, " Password %.6a", opt->u.owner.password.b);
431 }
432 break;
433 case kDNSOpt_Trace:
434 length += mDNS_snprintf(buffer+length, RemSpc, " Trace");
435 length += mDNS_snprintf(buffer+length, RemSpc, " Platform %d", opt->u.tracer.platf);
436 length += mDNS_snprintf(buffer+length, RemSpc, " mDNSVers %d", opt->u.tracer.mDNSv);
437 break;
438 default:
439 length += mDNS_snprintf(buffer+length, RemSpc, " Unknown %d", opt->opt);
440 break;
441 }
442 }
443 }
444 break;
445
446 case kDNSType_NSEC: {
447 domainname *next = (domainname *)rd->data;
448 int len, bitmaplen;
449 mDNSu8 *bmap;
450 len = DomainNameLength(next);
451 bitmaplen = rr->rdlength - len;
452 bmap = (mDNSu8 *)((mDNSu8 *)next + len);
453
454 if (UNICAST_NSEC(rr))
455 length += mDNS_snprintf(buffer+length, RemSpc, "%##s ", next->c);
456 PrintTypeBitmap(bmap, bitmaplen, buffer, length);
457
458 }
459 break;
460 case kDNSType_NSEC3: {
461 rdataNSEC3 *nsec3 = (rdataNSEC3 *)rd->data;
462 const mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
463 int hashLength, bitmaplen, i;
464
465 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s %d %d ",
466 DNSSECDigestName(nsec3->alg), nsec3->flags, swap16(nsec3->iterations));
467
468 if (!nsec3->saltLength)
469 {
470 length += mDNS_snprintf(buffer+length, RemSpc, "-");
471 }
472 else
473 {
474 for (i = 0; i < nsec3->saltLength; i++)
475 {
476 length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
477 }
478 }
479
480 // put a space at the end
481 length += mDNS_snprintf(buffer+length, RemSpc, " ");
482
483 p += nsec3->saltLength;
484 // p is pointing at hashLength
485 hashLength = (int)*p++;
486
487 length += baseEncode(buffer + length, RemSpc, p, hashLength, ENC_BASE32);
488
489 // put a space at the end
490 length += mDNS_snprintf(buffer+length, RemSpc, " ");
491
492 p += hashLength;
493 bitmaplen = rr->rdlength - (int)(p - rd->data);
494 PrintTypeBitmap(p, bitmaplen, buffer, length);
495 }
496 break;
497 case kDNSType_RRSIG: {
498 rdataRRSig *rrsig = (rdataRRSig *)rd->data;
499 mDNSu8 expTimeBuf[64];
500 mDNSu8 inceptTimeBuf[64];
501 unsigned long inceptClock;
502 unsigned long expClock;
503 int len;
504
505 expClock = (unsigned long)swap32(rrsig->sigExpireTime);
506 mDNSPlatformFormatTime(expClock, expTimeBuf, sizeof(expTimeBuf));
507
508 inceptClock = (unsigned long)swap32(rrsig->sigInceptTime);
509 mDNSPlatformFormatTime(inceptClock, inceptTimeBuf, sizeof(inceptTimeBuf));
510
511 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s %s %d %d %s %s %d %##s ",
512 DNSTypeName(swap16(rrsig->typeCovered)), DNSSECAlgName(rrsig->alg), rrsig->labels, swap32(rrsig->origTTL),
513 expTimeBuf, inceptTimeBuf, swap16(rrsig->keyTag), ((domainname *)(&rrsig->signerName))->c);
514
515 len = DomainNameLength((domainname *)&rrsig->signerName);
516 length += baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + len + RRSIG_FIXED_SIZE),
517 rr->rdlength - (len + RRSIG_FIXED_SIZE), ENC_BASE64);
518 }
519 break;
520 case kDNSType_DNSKEY: {
521 rdataDNSKey *rrkey = (rdataDNSKey *)rd->data;
522 length += mDNS_snprintf(buffer+length, RemSpc, "\t%d %d %s %u ", swap16(rrkey->flags), rrkey->proto,
523 DNSSECAlgName(rrkey->alg), (unsigned int)keytag((mDNSu8 *)rrkey, rr->rdlength));
524 length += baseEncode(buffer + length, RemSpc, (const mDNSu8 *)(rd->data + DNSKEY_FIXED_SIZE),
525 rr->rdlength - DNSKEY_FIXED_SIZE, ENC_BASE64);
526 }
527 break;
528 case kDNSType_DS: {
529 mDNSu8 *p;
530 int i;
531 rdataDS *rrds = (rdataDS *)rd->data;
532
533 length += mDNS_snprintf(buffer+length, RemSpc, "\t%s\t%d\t%s ", DNSSECAlgName(rrds->alg), swap16(rrds->keyTag),
534 DNSSECDigestName(rrds->digestType));
535
536 p = (mDNSu8 *)(rd->data + DS_FIXED_SIZE);
537 for (i = 0; i < (rr->rdlength - DS_FIXED_SIZE); i++)
538 {
539 length += mDNS_snprintf(buffer+length, RemSpc, "%x", p[i]);
540 }
541 }
542 break;
543
544 default: mDNS_snprintf(buffer+length, RemSpc, "RDLen %d: %s", rr->rdlength, rd->data);
545 // Really should scan buffer to check if text is valid UTF-8 and only replace with dots if not
546 for (ptr = buffer; *ptr; ptr++) if (*ptr < ' ') *ptr = '.';
547 break;
548 }
549 return(buffer);
550 }
551
552 // See comments in mDNSEmbeddedAPI.h
553 #if _PLATFORM_HAS_STRONG_PRNG_
554 #define mDNSRandomNumber mDNSPlatformRandomNumber
555 #else
556 mDNSlocal mDNSu32 mDNSRandomFromSeed(mDNSu32 seed)
557 {
558 return seed * 21 + 1;
559 }
560
561 mDNSlocal mDNSu32 mDNSMixRandomSeed(mDNSu32 seed, mDNSu8 iteration)
562 {
563 return iteration ? mDNSMixRandomSeed(mDNSRandomFromSeed(seed), --iteration) : seed;
564 }
565
566 mDNSlocal mDNSu32 mDNSRandomNumber()
567 {
568 static mDNSBool seeded = mDNSfalse;
569 static mDNSu32 seed = 0;
570 if (!seeded)
571 {
572 seed = mDNSMixRandomSeed(mDNSPlatformRandomSeed(), 100);
573 seeded = mDNStrue;
574 }
575 return (seed = mDNSRandomFromSeed(seed));
576 }
577 #endif // ! _PLATFORM_HAS_STRONG_PRNG_
578
579 mDNSexport mDNSu32 mDNSRandom(mDNSu32 max) // Returns pseudo-random result from zero to max inclusive
580 {
581 mDNSu32 ret = 0;
582 mDNSu32 mask = 1;
583
584 while (mask < max) mask = (mask << 1) | 1;
585
586 do ret = mDNSRandomNumber() & mask;
587 while (ret > max);
588
589 return ret;
590 }
591
592 mDNSexport mDNSBool mDNSSameAddress(const mDNSAddr *ip1, const mDNSAddr *ip2)
593 {
594 if (ip1->type == ip2->type)
595 {
596 switch (ip1->type)
597 {
598 case mDNSAddrType_None: return(mDNStrue); // Empty addresses have no data and are therefore always equal
599 case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip1->ip.v4, ip2->ip.v4));
600 case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip1->ip.v6, ip2->ip.v6));
601 }
602 }
603 return(mDNSfalse);
604 }
605
606 mDNSexport mDNSBool mDNSAddrIsDNSMulticast(const mDNSAddr *ip)
607 {
608 switch(ip->type)
609 {
610 case mDNSAddrType_IPv4: return (mDNSBool)(mDNSSameIPv4Address(ip->ip.v4, AllDNSLinkGroup_v4.ip.v4));
611 case mDNSAddrType_IPv6: return (mDNSBool)(mDNSSameIPv6Address(ip->ip.v6, AllDNSLinkGroup_v6.ip.v6));
612 default: return(mDNSfalse);
613 }
614 }
615
616 // ***************************************************************************
617 #if COMPILER_LIKES_PRAGMA_MARK
618 #pragma mark -
619 #pragma mark - Domain Name Utility Functions
620 #endif
621
622 mDNSexport mDNSBool SameDomainLabel(const mDNSu8 *a, const mDNSu8 *b)
623 {
624 int i;
625 const int len = *a++;
626
627 if (len > MAX_DOMAIN_LABEL)
628 { debugf("Malformed label (too long)"); return(mDNSfalse); }
629
630 if (len != *b++) return(mDNSfalse);
631 for (i=0; i<len; i++)
632 {
633 mDNSu8 ac = *a++;
634 mDNSu8 bc = *b++;
635 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
636 if (mDNSIsUpperCase(bc)) bc += 'a' - 'A';
637 if (ac != bc) return(mDNSfalse);
638 }
639 return(mDNStrue);
640 }
641
642 mDNSexport mDNSBool SameDomainName(const domainname *const d1, const domainname *const d2)
643 {
644 const mDNSu8 * a = d1->c;
645 const mDNSu8 * b = d2->c;
646 const mDNSu8 *const max = d1->c + MAX_DOMAIN_NAME; // Maximum that's valid
647
648 while (*a || *b)
649 {
650 if (a + 1 + *a >= max)
651 { debugf("Malformed domain name (more than 256 characters)"); return(mDNSfalse); }
652 if (!SameDomainLabel(a, b)) return(mDNSfalse);
653 a += 1 + *a;
654 b += 1 + *b;
655 }
656
657 return(mDNStrue);
658 }
659
660 mDNSexport mDNSBool SameDomainNameCS(const domainname *const d1, const domainname *const d2)
661 {
662 mDNSu16 l1 = DomainNameLength(d1);
663 mDNSu16 l2 = DomainNameLength(d2);
664 return(l1 <= MAX_DOMAIN_NAME && l1 == l2 && mDNSPlatformMemSame(d1, d2, l1));
665 }
666
667 mDNSexport mDNSBool IsLocalDomain(const domainname *d)
668 {
669 // Domains that are defined to be resolved via link-local multicast are:
670 // local., 254.169.in-addr.arpa., and {8,9,A,B}.E.F.ip6.arpa.
671 static const domainname *nL = (const domainname*)"\x5" "local";
672 static const domainname *nR = (const domainname*)"\x3" "254" "\x3" "169" "\x7" "in-addr" "\x4" "arpa";
673 static const domainname *n8 = (const domainname*)"\x1" "8" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
674 static const domainname *n9 = (const domainname*)"\x1" "9" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
675 static const domainname *nA = (const domainname*)"\x1" "a" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
676 static const domainname *nB = (const domainname*)"\x1" "b" "\x1" "e" "\x1" "f" "\x3" "ip6" "\x4" "arpa";
677
678 const domainname *d1, *d2, *d3, *d4, *d5; // Top-level domain, second-level domain, etc.
679 d1 = d2 = d3 = d4 = d5 = mDNSNULL;
680 while (d->c[0])
681 {
682 d5 = d4; d4 = d3; d3 = d2; d2 = d1; d1 = d;
683 d = (const domainname*)(d->c + 1 + d->c[0]);
684 }
685
686 if (d1 && SameDomainName(d1, nL)) return(mDNStrue);
687 if (d4 && SameDomainName(d4, nR)) return(mDNStrue);
688 if (d5 && SameDomainName(d5, n8)) return(mDNStrue);
689 if (d5 && SameDomainName(d5, n9)) return(mDNStrue);
690 if (d5 && SameDomainName(d5, nA)) return(mDNStrue);
691 if (d5 && SameDomainName(d5, nB)) return(mDNStrue);
692 return(mDNSfalse);
693 }
694
695 mDNSexport const mDNSu8 *LastLabel(const domainname *d)
696 {
697 const mDNSu8 *p = d->c;
698 while (d->c[0])
699 {
700 p = d->c;
701 d = (const domainname*)(d->c + 1 + d->c[0]);
702 }
703 return(p);
704 }
705
706 // Returns length of a domain name INCLUDING the byte for the final null label
707 // e.g. for the root label "." it returns one
708 // For the FQDN "com." it returns 5 (length byte, three data bytes, final zero)
709 // Legal results are 1 (just root label) to 256 (MAX_DOMAIN_NAME)
710 // If the given domainname is invalid, result is 257 (MAX_DOMAIN_NAME+1)
711 mDNSexport mDNSu16 DomainNameLengthLimit(const domainname *const name, const mDNSu8 *limit)
712 {
713 const mDNSu8 *src = name->c;
714 while (src < limit && *src <= MAX_DOMAIN_LABEL)
715 {
716 if (*src == 0) return((mDNSu16)(src - name->c + 1));
717 src += 1 + *src;
718 }
719 return(MAX_DOMAIN_NAME+1);
720 }
721
722 // CompressedDomainNameLength returns the length of a domain name INCLUDING the byte
723 // for the final null label, e.g. for the root label "." it returns one.
724 // E.g. for the FQDN "foo.com." it returns 9
725 // (length, three data bytes, length, three more data bytes, final zero).
726 // In the case where a parent domain name is provided, and the given name is a child
727 // of that parent, CompressedDomainNameLength returns the length of the prefix portion
728 // of the child name, plus TWO bytes for the compression pointer.
729 // E.g. for the name "foo.com." with parent "com.", it returns 6
730 // (length, three data bytes, two-byte compression pointer).
731 mDNSexport mDNSu16 CompressedDomainNameLength(const domainname *const name, const domainname *parent)
732 {
733 const mDNSu8 *src = name->c;
734 if (parent && parent->c[0] == 0) parent = mDNSNULL;
735 while (*src)
736 {
737 if (*src > MAX_DOMAIN_LABEL) return(MAX_DOMAIN_NAME+1);
738 if (parent && SameDomainName((const domainname *)src, parent)) return((mDNSu16)(src - name->c + 2));
739 src += 1 + *src;
740 if (src - name->c >= MAX_DOMAIN_NAME) return(MAX_DOMAIN_NAME+1);
741 }
742 return((mDNSu16)(src - name->c + 1));
743 }
744
745 // CountLabels() returns number of labels in name, excluding final root label
746 // (e.g. for "apple.com." CountLabels returns 2.)
747 mDNSexport int CountLabels(const domainname *d)
748 {
749 int count = 0;
750 const mDNSu8 *ptr;
751 for (ptr = d->c; *ptr; ptr = ptr + ptr[0] + 1) count++;
752 return count;
753 }
754
755 // SkipLeadingLabels skips over the first 'skip' labels in the domainname,
756 // returning a pointer to the suffix with 'skip' labels removed.
757 mDNSexport const domainname *SkipLeadingLabels(const domainname *d, int skip)
758 {
759 while (skip > 0 && d->c[0]) { d = (const domainname *)(d->c + 1 + d->c[0]); skip--; }
760 return(d);
761 }
762
763 // AppendLiteralLabelString appends a single label to an existing (possibly empty) domainname.
764 // The C string contains the label as-is, with no escaping, etc.
765 // Any dots in the name are literal dots, not label separators
766 // If successful, AppendLiteralLabelString returns a pointer to the next unused byte
767 // in the domainname bufer (i.e. the next byte after the terminating zero).
768 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
769 // AppendLiteralLabelString returns mDNSNULL.
770 mDNSexport mDNSu8 *AppendLiteralLabelString(domainname *const name, const char *cstr)
771 {
772 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
773 const mDNSu8 *const lim1 = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
774 const mDNSu8 *const lim2 = ptr + 1 + MAX_DOMAIN_LABEL;
775 const mDNSu8 *const lim = (lim1 < lim2) ? lim1 : lim2;
776 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
777
778 while (*cstr && ptr < lim) *ptr++ = (mDNSu8)*cstr++; // Copy the data
779 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
780 *ptr++ = 0; // Put the null root label on the end
781 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
782 else return(ptr); // Success: return new value of ptr
783 }
784
785 // AppendDNSNameString appends zero or more labels to an existing (possibly empty) domainname.
786 // The C string is in conventional DNS syntax:
787 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
788 // If successful, AppendDNSNameString returns a pointer to the next unused byte
789 // in the domainname bufer (i.e. the next byte after the terminating zero).
790 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
791 // AppendDNSNameString returns mDNSNULL.
792 mDNSexport mDNSu8 *AppendDNSNameString(domainname *const name, const char *cstring)
793 {
794 const char *cstr = cstring;
795 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
796 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
797 while (*cstr && ptr < lim) // While more characters, and space to put them...
798 {
799 mDNSu8 *lengthbyte = ptr++; // Record where the length is going to go
800 if (*cstr == '.') { LogMsg("AppendDNSNameString: Illegal empty label in name \"%s\"", cstring); return(mDNSNULL); }
801 while (*cstr && *cstr != '.' && ptr < lim) // While we have characters in the label...
802 {
803 mDNSu8 c = (mDNSu8)*cstr++; // Read the character
804 if (c == '\\') // If escape character, check next character
805 {
806 c = (mDNSu8)*cstr++; // Assume we'll just take the next character
807 if (mDNSIsDigit(cstr[-1]) && mDNSIsDigit(cstr[0]) && mDNSIsDigit(cstr[1]))
808 { // If three decimal digits,
809 int v0 = cstr[-1] - '0'; // then interpret as three-digit decimal
810 int v1 = cstr[ 0] - '0';
811 int v2 = cstr[ 1] - '0';
812 int val = v0 * 100 + v1 * 10 + v2;
813 if (val <= 255) { c = (mDNSu8)val; cstr += 2; } // If valid three-digit decimal value, use it
814 }
815 }
816 *ptr++ = c; // Write the character
817 }
818 if (*cstr) cstr++; // Skip over the trailing dot (if present)
819 if (ptr - lengthbyte - 1 > MAX_DOMAIN_LABEL) // If illegal label, abort
820 return(mDNSNULL);
821 *lengthbyte = (mDNSu8)(ptr - lengthbyte - 1); // Fill in the length byte
822 }
823
824 *ptr++ = 0; // Put the null root label on the end
825 if (*cstr) return(mDNSNULL); // Failure: We didn't successfully consume all input
826 else return(ptr); // Success: return new value of ptr
827 }
828
829 // AppendDomainLabel appends a single label to a name.
830 // If successful, AppendDomainLabel returns a pointer to the next unused byte
831 // in the domainname bufer (i.e. the next byte after the terminating zero).
832 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
833 // AppendDomainLabel returns mDNSNULL.
834 mDNSexport mDNSu8 *AppendDomainLabel(domainname *const name, const domainlabel *const label)
835 {
836 int i;
837 mDNSu8 *ptr = name->c + DomainNameLength(name) - 1;
838
839 // Check label is legal
840 if (label->c[0] > MAX_DOMAIN_LABEL) return(mDNSNULL);
841
842 // Check that ptr + length byte + data bytes + final zero does not exceed our limit
843 if (ptr + 1 + label->c[0] + 1 > name->c + MAX_DOMAIN_NAME) return(mDNSNULL);
844
845 for (i=0; i<=label->c[0]; i++) *ptr++ = label->c[i]; // Copy the label data
846 *ptr++ = 0; // Put the null root label on the end
847 return(ptr);
848 }
849
850 mDNSexport mDNSu8 *AppendDomainName(domainname *const name, const domainname *const append)
851 {
852 mDNSu8 * ptr = name->c + DomainNameLength(name) - 1; // Find end of current name
853 const mDNSu8 *const lim = name->c + MAX_DOMAIN_NAME - 1; // Limit of how much we can add (not counting final zero)
854 const mDNSu8 * src = append->c;
855 while (src[0])
856 {
857 int i;
858 if (ptr + 1 + src[0] > lim) return(mDNSNULL);
859 for (i=0; i<=src[0]; i++) *ptr++ = src[i];
860 *ptr = 0; // Put the null root label on the end
861 src += i;
862 }
863 return(ptr);
864 }
865
866 // MakeDomainLabelFromLiteralString makes a single domain label from a single literal C string (with no escaping).
867 // If successful, MakeDomainLabelFromLiteralString returns mDNStrue.
868 // If unable to convert the whole string to a legal domain label (i.e. because length is more than 63 bytes) then
869 // MakeDomainLabelFromLiteralString makes a legal domain label from the first 63 bytes of the string and returns mDNSfalse.
870 // In some cases silently truncated oversized names to 63 bytes is acceptable, so the return result may be ignored.
871 // In other cases silent truncation may not be acceptable, so in those cases the calling function needs to check the return result.
872 mDNSexport mDNSBool MakeDomainLabelFromLiteralString(domainlabel *const label, const char *cstr)
873 {
874 mDNSu8 * ptr = label->c + 1; // Where we're putting it
875 const mDNSu8 *const limit = label->c + 1 + MAX_DOMAIN_LABEL; // The maximum we can put
876 while (*cstr && ptr < limit) *ptr++ = (mDNSu8)*cstr++; // Copy the label
877 label->c[0] = (mDNSu8)(ptr - label->c - 1); // Set the length byte
878 return(*cstr == 0); // Return mDNStrue if we successfully consumed all input
879 }
880
881 // MakeDomainNameFromDNSNameString makes a native DNS-format domainname from a C string.
882 // The C string is in conventional DNS syntax:
883 // Textual labels, escaped as necessary using the usual DNS '\' notation, separated by dots.
884 // If successful, MakeDomainNameFromDNSNameString returns a pointer to the next unused byte
885 // in the domainname bufer (i.e. the next byte after the terminating zero).
886 // If unable to construct a legal domain name (i.e. label more than 63 bytes, or total more than 256 bytes)
887 // MakeDomainNameFromDNSNameString returns mDNSNULL.
888 mDNSexport mDNSu8 *MakeDomainNameFromDNSNameString(domainname *const name, const char *cstr)
889 {
890 name->c[0] = 0; // Make an empty domain name
891 return(AppendDNSNameString(name, cstr)); // And then add this string to it
892 }
893
894 mDNSexport char *ConvertDomainLabelToCString_withescape(const domainlabel *const label, char *ptr, char esc)
895 {
896 const mDNSu8 * src = label->c; // Domain label we're reading
897 const mDNSu8 len = *src++; // Read length of this (non-null) label
898 const mDNSu8 *const end = src + len; // Work out where the label ends
899 if (len > MAX_DOMAIN_LABEL) return(mDNSNULL); // If illegal label, abort
900 while (src < end) // While we have characters in the label
901 {
902 mDNSu8 c = *src++;
903 if (esc)
904 {
905 if (c == '.' || c == esc) // If character is a dot or the escape character
906 *ptr++ = esc; // Output escape character
907 else if (c <= ' ') // If non-printing ascii,
908 { // Output decimal escape sequence
909 *ptr++ = esc;
910 *ptr++ = (char) ('0' + (c / 100) );
911 *ptr++ = (char) ('0' + (c / 10) % 10);
912 c = (mDNSu8)('0' + (c ) % 10);
913 }
914 }
915 *ptr++ = (char)c; // Copy the character
916 }
917 *ptr = 0; // Null-terminate the string
918 return(ptr); // and return
919 }
920
921 // Note: To guarantee that there will be no possible overrun, cstr must be at least MAX_ESCAPED_DOMAIN_NAME (1009 bytes)
922 mDNSexport char *ConvertDomainNameToCString_withescape(const domainname *const name, char *ptr, char esc)
923 {
924 const mDNSu8 *src = name->c; // Domain name we're reading
925 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
926
927 if (*src == 0) *ptr++ = '.'; // Special case: For root, just write a dot
928
929 while (*src) // While more characters in the domain name
930 {
931 if (src + 1 + *src >= max) return(mDNSNULL);
932 ptr = ConvertDomainLabelToCString_withescape((const domainlabel *)src, ptr, esc);
933 if (!ptr) return(mDNSNULL);
934 src += 1 + *src;
935 *ptr++ = '.'; // Write the dot after the label
936 }
937
938 *ptr++ = 0; // Null-terminate the string
939 return(ptr); // and return
940 }
941
942 // RFC 1034 rules:
943 // Host names must start with a letter, end with a letter or digit,
944 // and have as interior characters only letters, digits, and hyphen.
945 // This was subsequently modified in RFC 1123 to allow the first character to be either a letter or a digit
946
947 mDNSexport void ConvertUTF8PstringToRFC1034HostLabel(const mDNSu8 UTF8Name[], domainlabel *const hostlabel)
948 {
949 const mDNSu8 * src = &UTF8Name[1];
950 const mDNSu8 *const end = &UTF8Name[1] + UTF8Name[0];
951 mDNSu8 * ptr = &hostlabel->c[1];
952 const mDNSu8 *const lim = &hostlabel->c[1] + MAX_DOMAIN_LABEL;
953 while (src < end)
954 {
955 // Delete apostrophes from source name
956 if (src[0] == '\'') { src++; continue; } // Standard straight single quote
957 if (src + 2 < end && src[0] == 0xE2 && src[1] == 0x80 && src[2] == 0x99)
958 { src += 3; continue; } // Unicode curly apostrophe
959 if (ptr < lim)
960 {
961 if (mDNSValidHostChar(*src, (ptr > &hostlabel->c[1]), (src < end-1))) *ptr++ = *src;
962 else if (ptr > &hostlabel->c[1] && ptr[-1] != '-') *ptr++ = '-';
963 }
964 src++;
965 }
966 while (ptr > &hostlabel->c[1] && ptr[-1] == '-') ptr--; // Truncate trailing '-' marks
967 hostlabel->c[0] = (mDNSu8)(ptr - &hostlabel->c[1]);
968 }
969
970 #define ValidTransportProtocol(X) ( (X)[0] == 4 && (X)[1] == '_' && \
971 ((((X)[2] | 0x20) == 'u' && ((X)[3] | 0x20) == 'd') || (((X)[2] | 0x20) == 't' && ((X)[3] | 0x20) == 'c')) && \
972 ((X)[4] | 0x20) == 'p')
973
974 mDNSexport mDNSu8 *ConstructServiceName(domainname *const fqdn,
975 const domainlabel *name, const domainname *type, const domainname *const domain)
976 {
977 int i, len;
978 mDNSu8 *dst = fqdn->c;
979 const mDNSu8 *src;
980 const char *errormsg;
981 #if APPLE_OSX_mDNSResponder
982 mDNSBool loggedUnderscore = mDNSfalse;
983 static char typeBuf[MAX_ESCAPED_DOMAIN_NAME];
984 #endif
985
986 // In the case where there is no name (and ONLY in that case),
987 // a single-label subtype is allowed as the first label of a three-part "type"
988 if (!name && type)
989 {
990 const mDNSu8 *s0 = type->c;
991 if (s0[0] && s0[0] < 0x40) // If legal first label (at least one character, and no more than 63)
992 {
993 const mDNSu8 * s1 = s0 + 1 + s0[0];
994 if (s1[0] && s1[0] < 0x40) // and legal second label (at least one character, and no more than 63)
995 {
996 const mDNSu8 *s2 = s1 + 1 + s1[0];
997 if (s2[0] && s2[0] < 0x40 && s2[1+s2[0]] == 0) // and we have three and only three labels
998 {
999 static const mDNSu8 SubTypeLabel[5] = mDNSSubTypeLabel;
1000 src = s0; // Copy the first label
1001 len = *src;
1002 for (i=0; i <= len; i++) *dst++ = *src++;
1003 for (i=0; i < (int)sizeof(SubTypeLabel); i++) *dst++ = SubTypeLabel[i];
1004 type = (const domainname *)s1;
1005
1006 // Special support to enable the DNSServiceBrowse call made by Bonjour Browser
1007 // For these queries, we retract the "._sub" we just added between the subtype and the main type
1008 // Remove after Bonjour Browser is updated to use DNSServiceQueryRecord instead of DNSServiceBrowse
1009 if (SameDomainName((domainname*)s0, (const domainname*)"\x09_services\x07_dns-sd\x04_udp"))
1010 dst -= sizeof(SubTypeLabel);
1011 }
1012 }
1013 }
1014 }
1015
1016 if (name && name->c[0])
1017 {
1018 src = name->c; // Put the service name into the domain name
1019 len = *src;
1020 if (len >= 0x40) { errormsg = "Service instance name too long"; goto fail; }
1021 for (i=0; i<=len; i++) *dst++ = *src++;
1022 }
1023 else
1024 name = (domainlabel*)""; // Set this up to be non-null, to avoid errors if we have to call LogMsg() below
1025
1026 src = type->c; // Put the service type into the domain name
1027 len = *src;
1028 if (len < 2 || len > 16)
1029 {
1030 LogMsg("Bad service type in %#s.%##s%##s Application protocol name must be underscore plus 1-15 characters. "
1031 "See <http://www.dns-sd.org/ServiceTypes.html>", name->c, type->c, domain->c);
1032 #if APPLE_OSX_mDNSResponder
1033 ConvertDomainNameToCString(type, typeBuf);
1034 mDNSASLLog(mDNSNULL, "serviceType.nameTooLong", "noop", typeBuf, "");
1035 #endif
1036 }
1037 if (len < 2 || len >= 0x40 || (len > 16 && !SameDomainName(domain, &localdomain))) return(mDNSNULL);
1038 if (src[1] != '_') { errormsg = "Application protocol name must begin with underscore"; goto fail; }
1039 for (i=2; i<=len; i++)
1040 {
1041 // Letters and digits are allowed anywhere
1042 if (mDNSIsLetter(src[i]) || mDNSIsDigit(src[i])) continue;
1043 // Hyphens are only allowed as interior characters
1044 // Underscores are not supposed to be allowed at all, but for backwards compatibility with some old products we do allow them,
1045 // with the same rule as hyphens
1046 if ((src[i] == '-' || src[i] == '_') && i > 2 && i < len)
1047 {
1048 #if APPLE_OSX_mDNSResponder
1049 if (src[i] == '_' && loggedUnderscore == mDNSfalse)
1050 {
1051 ConvertDomainNameToCString(type, typeBuf);
1052 mDNSASLLog(mDNSNULL, "serviceType.nameWithUnderscore", "noop", typeBuf, "");
1053 loggedUnderscore = mDNStrue;
1054 }
1055 #endif
1056 continue;
1057 }
1058 errormsg = "Application protocol name must contain only letters, digits, and hyphens";
1059 #if APPLE_OSX_mDNSResponder
1060 {
1061 ConvertDomainNameToCString(type, typeBuf);
1062 mDNSASLLog(mDNSNULL, "serviceType.nameWithIllegalCharacters", "noop", typeBuf, "");
1063 }
1064 #endif
1065 goto fail;
1066 }
1067 for (i=0; i<=len; i++) *dst++ = *src++;
1068
1069 len = *src;
1070 if (!ValidTransportProtocol(src)) { errormsg = "Transport protocol name must be _udp or _tcp"; goto fail; }
1071 for (i=0; i<=len; i++) *dst++ = *src++;
1072
1073 if (*src) { errormsg = "Service type must have only two labels"; goto fail; }
1074
1075 *dst = 0;
1076 if (!domain->c[0]) { errormsg = "Service domain must be non-empty"; goto fail; }
1077 if (SameDomainName(domain, (const domainname*)"\x05" "local" "\x04" "arpa"))
1078 { errormsg = "Illegal domain \"local.arpa.\" Use \"local.\" (or empty string)"; goto fail; }
1079 dst = AppendDomainName(fqdn, domain);
1080 if (!dst) { errormsg = "Service domain too long"; goto fail; }
1081 return(dst);
1082
1083 fail:
1084 LogMsg("ConstructServiceName: %s: %#s.%##s%##s", errormsg, name->c, type->c, domain->c);
1085 return(mDNSNULL);
1086 }
1087
1088 // A service name has the form: instance.application-protocol.transport-protocol.domain
1089 // DeconstructServiceName is currently fairly forgiving: It doesn't try to enforce character
1090 // set or length limits for the protocol names, and the final domain is allowed to be empty.
1091 // However, if the given FQDN doesn't contain at least three labels,
1092 // DeconstructServiceName will reject it and return mDNSfalse.
1093 mDNSexport mDNSBool DeconstructServiceName(const domainname *const fqdn,
1094 domainlabel *const name, domainname *const type, domainname *const domain)
1095 {
1096 int i, len;
1097 const mDNSu8 *src = fqdn->c;
1098 const mDNSu8 *max = fqdn->c + MAX_DOMAIN_NAME;
1099 mDNSu8 *dst;
1100
1101 dst = name->c; // Extract the service name
1102 len = *src;
1103 if (!len) { debugf("DeconstructServiceName: FQDN empty!"); return(mDNSfalse); }
1104 if (len >= 0x40) { debugf("DeconstructServiceName: Instance name too long"); return(mDNSfalse); }
1105 for (i=0; i<=len; i++) *dst++ = *src++;
1106
1107 dst = type->c; // Extract the service type
1108 len = *src;
1109 if (!len) { debugf("DeconstructServiceName: FQDN contains only one label!"); return(mDNSfalse); }
1110 if (len >= 0x40) { debugf("DeconstructServiceName: Application protocol name too long"); return(mDNSfalse); }
1111 if (src[1] != '_') { debugf("DeconstructServiceName: No _ at start of application protocol"); return(mDNSfalse); }
1112 for (i=0; i<=len; i++) *dst++ = *src++;
1113
1114 len = *src;
1115 if (!len) { debugf("DeconstructServiceName: FQDN contains only two labels!"); return(mDNSfalse); }
1116 if (!ValidTransportProtocol(src))
1117 { debugf("DeconstructServiceName: Transport protocol must be _udp or _tcp"); return(mDNSfalse); }
1118 for (i=0; i<=len; i++) *dst++ = *src++;
1119 *dst++ = 0; // Put terminator on the end of service type
1120
1121 dst = domain->c; // Extract the service domain
1122 while (*src)
1123 {
1124 len = *src;
1125 if (len >= 0x40)
1126 { debugf("DeconstructServiceName: Label in service domain too long"); return(mDNSfalse); }
1127 if (src + 1 + len + 1 >= max)
1128 { debugf("DeconstructServiceName: Total service domain too long"); return(mDNSfalse); }
1129 for (i=0; i<=len; i++) *dst++ = *src++;
1130 }
1131 *dst++ = 0; // Put the null root label on the end
1132
1133 return(mDNStrue);
1134 }
1135
1136 mDNSexport mStatus DNSNameToLowerCase(domainname *d, domainname *result)
1137 {
1138 const mDNSu8 *a = d->c;
1139 mDNSu8 *b = result->c;
1140 const mDNSu8 *const max = d->c + MAX_DOMAIN_NAME;
1141 int i, len;
1142
1143 while (*a)
1144 {
1145 if (a + 1 + *a >= max)
1146 {
1147 LogMsg("DNSNameToLowerCase: ERROR!! Malformed Domain name");
1148 return mStatus_BadParamErr;
1149 }
1150 len = *a++;
1151 *b++ = len;
1152 for (i = 0; i < len; i++)
1153 {
1154 mDNSu8 ac = *a++;
1155 if (mDNSIsUpperCase(ac)) ac += 'a' - 'A';
1156 *b++ = ac;
1157 }
1158 }
1159 *b = 0;
1160
1161 return mStatus_NoError;
1162 }
1163
1164 mDNSexport const mDNSu8 *NSEC3HashName(const domainname *name, rdataNSEC3 *nsec3, const mDNSu8 *AnonData, int AnonDataLen,
1165 const mDNSu8 hash[NSEC3_MAX_HASH_LEN], int *dlen)
1166 {
1167 AlgContext *ctx;
1168 int i;
1169 domainname lname;
1170 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
1171 const mDNSu8 *digest;
1172 int digestlen;
1173 mDNSBool first = mDNStrue;
1174
1175 if (DNSNameToLowerCase((domainname *)name, &lname) != mStatus_NoError)
1176 {
1177 LogMsg("NSEC3HashName: ERROR!! DNSNameToLowerCase failed");
1178 return mDNSNULL;
1179 }
1180
1181 digest = lname.c;
1182 digestlen = DomainNameLength(&lname);
1183
1184 // Note that it is "i <=". The first iteration is for digesting the name and salt.
1185 // The iteration count does not include that.
1186 for (i = 0; i <= swap16(nsec3->iterations); i++)
1187 {
1188 ctx = AlgCreate(DIGEST_ALG, nsec3->alg);
1189 if (!ctx)
1190 {
1191 LogMsg("NSEC3HashName: ERROR!! Cannot allocate context");
1192 return mDNSNULL;
1193 }
1194
1195 AlgAdd(ctx, digest, digestlen);
1196 if (nsec3->saltLength)
1197 AlgAdd(ctx, p, nsec3->saltLength);
1198 if (AnonDataLen)
1199 AlgAdd(ctx, AnonData, AnonDataLen);
1200 if (first)
1201 {
1202 first = mDNSfalse;
1203 digest = hash;
1204 digestlen = AlgLength(ctx);
1205 }
1206 AlgFinal(ctx, (void *)digest, digestlen);
1207 AlgDestroy(ctx);
1208 }
1209 *dlen = digestlen;
1210 return digest;
1211 }
1212
1213 // Notes on UTF-8:
1214 // 0xxxxxxx represents a 7-bit ASCII value from 0x00 to 0x7F
1215 // 10xxxxxx is a continuation byte of a multi-byte character
1216 // 110xxxxx is the first byte of a 2-byte character (11 effective bits; values 0x 80 - 0x 800-1)
1217 // 1110xxxx is the first byte of a 3-byte character (16 effective bits; values 0x 800 - 0x 10000-1)
1218 // 11110xxx is the first byte of a 4-byte character (21 effective bits; values 0x 10000 - 0x 200000-1)
1219 // 111110xx is the first byte of a 5-byte character (26 effective bits; values 0x 200000 - 0x 4000000-1)
1220 // 1111110x is the first byte of a 6-byte character (31 effective bits; values 0x4000000 - 0x80000000-1)
1221 //
1222 // UTF-16 surrogate pairs are used in UTF-16 to encode values larger than 0xFFFF.
1223 // Although UTF-16 surrogate pairs are not supposed to appear in legal UTF-8, we want to be defensive
1224 // about that too. (See <http://www.unicode.org/faq/utf_bom.html#34>, "What are surrogates?")
1225 // The first of pair is a UTF-16 value in the range 0xD800-0xDBFF (11101101 1010xxxx 10xxxxxx in UTF-8),
1226 // and the second is a UTF-16 value in the range 0xDC00-0xDFFF (11101101 1011xxxx 10xxxxxx in UTF-8).
1227
1228 mDNSexport mDNSu32 TruncateUTF8ToLength(mDNSu8 *string, mDNSu32 length, mDNSu32 max)
1229 {
1230 if (length > max)
1231 {
1232 mDNSu8 c1 = string[max]; // First byte after cut point
1233 mDNSu8 c2 = (max+1 < length) ? string[max+1] : (mDNSu8)0xB0; // Second byte after cut point
1234 length = max; // Trim length down
1235 while (length > 0)
1236 {
1237 // Check if the byte right after the chop point is a UTF-8 continuation byte,
1238 // or if the character right after the chop point is the second of a UTF-16 surrogate pair.
1239 // If so, then we continue to chop more bytes until we get to a legal chop point.
1240 mDNSBool continuation = ((c1 & 0xC0) == 0x80);
1241 mDNSBool secondsurrogate = (c1 == 0xED && (c2 & 0xF0) == 0xB0);
1242 if (!continuation && !secondsurrogate) break;
1243 c2 = c1;
1244 c1 = string[--length];
1245 }
1246 // Having truncated characters off the end of our string, also cut off any residual white space
1247 while (length > 0 && string[length-1] <= ' ') length--;
1248 }
1249 return(length);
1250 }
1251
1252 // Returns true if a rich text label ends in " (nnn)", or if an RFC 1034
1253 // name ends in "-nnn", where n is some decimal number.
1254 mDNSexport mDNSBool LabelContainsSuffix(const domainlabel *const name, const mDNSBool RichText)
1255 {
1256 mDNSu16 l = name->c[0];
1257
1258 if (RichText)
1259 {
1260 if (l < 4) return mDNSfalse; // Need at least " (2)"
1261 if (name->c[l--] != ')') return mDNSfalse; // Last char must be ')'
1262 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Preceeded by a digit
1263 l--;
1264 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
1265 return (name->c[l] == '(' && name->c[l - 1] == ' ');
1266 }
1267 else
1268 {
1269 if (l < 2) return mDNSfalse; // Need at least "-2"
1270 if (!mDNSIsDigit(name->c[l])) return mDNSfalse; // Last char must be a digit
1271 l--;
1272 while (l > 2 && mDNSIsDigit(name->c[l])) l--; // Strip off digits
1273 return (name->c[l] == '-');
1274 }
1275 }
1276
1277 // removes an auto-generated suffix (appended on a name collision) from a label. caller is
1278 // responsible for ensuring that the label does indeed contain a suffix. returns the number
1279 // from the suffix that was removed.
1280 mDNSexport mDNSu32 RemoveLabelSuffix(domainlabel *name, mDNSBool RichText)
1281 {
1282 mDNSu32 val = 0, multiplier = 1;
1283
1284 // Chop closing parentheses from RichText suffix
1285 if (RichText && name->c[0] >= 1 && name->c[name->c[0]] == ')') name->c[0]--;
1286
1287 // Get any existing numerical suffix off the name
1288 while (mDNSIsDigit(name->c[name->c[0]]))
1289 { val += (name->c[name->c[0]] - '0') * multiplier; multiplier *= 10; name->c[0]--; }
1290
1291 // Chop opening parentheses or dash from suffix
1292 if (RichText)
1293 {
1294 if (name->c[0] >= 2 && name->c[name->c[0]] == '(' && name->c[name->c[0]-1] == ' ') name->c[0] -= 2;
1295 }
1296 else
1297 {
1298 if (name->c[0] >= 1 && name->c[name->c[0]] == '-') name->c[0] -= 1;
1299 }
1300
1301 return(val);
1302 }
1303
1304 // appends a numerical suffix to a label, with the number following a whitespace and enclosed
1305 // in parentheses (rich text) or following two consecutive hyphens (RFC 1034 domain label).
1306 mDNSexport void AppendLabelSuffix(domainlabel *const name, mDNSu32 val, const mDNSBool RichText)
1307 {
1308 mDNSu32 divisor = 1, chars = 2; // Shortest possible RFC1034 name suffix is 2 characters ("-2")
1309 if (RichText) chars = 4; // Shortest possible RichText suffix is 4 characters (" (2)")
1310
1311 // Truncate trailing spaces from RichText names
1312 if (RichText) while (name->c[name->c[0]] == ' ') name->c[0]--;
1313
1314 while (divisor < 0xFFFFFFFFUL/10 && val >= divisor * 10) { divisor *= 10; chars++; }
1315
1316 name->c[0] = (mDNSu8) TruncateUTF8ToLength(name->c+1, name->c[0], MAX_DOMAIN_LABEL - chars);
1317
1318 if (RichText) { name->c[++name->c[0]] = ' '; name->c[++name->c[0]] = '('; }
1319 else { name->c[++name->c[0]] = '-'; }
1320
1321 while (divisor)
1322 {
1323 name->c[++name->c[0]] = (mDNSu8)('0' + val / divisor);
1324 val %= divisor;
1325 divisor /= 10;
1326 }
1327
1328 if (RichText) name->c[++name->c[0]] = ')';
1329 }
1330
1331 mDNSexport void IncrementLabelSuffix(domainlabel *name, mDNSBool RichText)
1332 {
1333 mDNSu32 val = 0;
1334
1335 if (LabelContainsSuffix(name, RichText))
1336 val = RemoveLabelSuffix(name, RichText);
1337
1338 // If no existing suffix, start by renaming "Foo" as "Foo (2)" or "Foo-2" as appropriate.
1339 // If existing suffix in the range 2-9, increment it.
1340 // If we've had ten conflicts already, there are probably too many hosts trying to use the same name,
1341 // so add a random increment to improve the chances of finding an available name next time.
1342 if (val == 0) val = 2;
1343 else if (val < 10) val++;
1344 else val += 1 + mDNSRandom(99);
1345
1346 AppendLabelSuffix(name, val, RichText);
1347 }
1348
1349 // ***************************************************************************
1350 #if COMPILER_LIKES_PRAGMA_MARK
1351 #pragma mark -
1352 #pragma mark - Resource Record Utility Functions
1353 #endif
1354
1355 // Set up a AuthRecord with sensible default values.
1356 // These defaults may be overwritten with new values before mDNS_Register is called
1357 mDNSexport void mDNS_SetupResourceRecord(AuthRecord *rr, RData *RDataStorage, mDNSInterfaceID InterfaceID,
1358 mDNSu16 rrtype, mDNSu32 ttl, mDNSu8 RecordType, AuthRecType artype, mDNSRecordCallback Callback, void *Context)
1359 {
1360 //
1361 // LocalOnly auth record can be created with LocalOnly InterfaceID or a valid InterfaceID.
1362 // Most of the applications normally create with LocalOnly InterfaceID and we store them as
1363 // such, so that we can deliver the response to questions that specify LocalOnly InterfaceID.
1364 // LocalOnly resource records can also be created with valid InterfaceID which happens today
1365 // when we create LocalOnly records for /etc/hosts.
1366
1367 if (InterfaceID == mDNSInterface_LocalOnly && artype != AuthRecordLocalOnly)
1368 {
1369 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch LocalOnly record InterfaceID %p called with artype %d", InterfaceID, artype);
1370 return;
1371 }
1372 else if (InterfaceID == mDNSInterface_P2P && artype != AuthRecordP2P)
1373 {
1374 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch P2P record InterfaceID %p called with artype %d", InterfaceID, artype);
1375 return;
1376 }
1377 else if (!InterfaceID && (artype == AuthRecordP2P || artype == AuthRecordLocalOnly))
1378 {
1379 LogMsg("mDNS_SetupResourceRecord: ERROR!! Mismatch InterfaceAny record InterfaceID %p called with artype %d", InterfaceID, artype);
1380 return;
1381 }
1382
1383 // Don't try to store a TTL bigger than we can represent in platform time units
1384 if (ttl > 0x7FFFFFFFUL / mDNSPlatformOneSecond)
1385 ttl = 0x7FFFFFFFUL / mDNSPlatformOneSecond;
1386 else if (ttl == 0) // And Zero TTL is illegal
1387 ttl = DefaultTTLforRRType(rrtype);
1388
1389 // Field Group 1: The actual information pertaining to this resource record
1390 rr->resrec.RecordType = RecordType;
1391 rr->resrec.InterfaceID = InterfaceID;
1392 rr->resrec.name = &rr->namestorage;
1393 rr->resrec.rrtype = rrtype;
1394 rr->resrec.rrclass = kDNSClass_IN;
1395 rr->resrec.rroriginalttl = ttl;
1396 rr->resrec.rDNSServer = mDNSNULL;
1397 rr->resrec.AnonInfo = mDNSNULL;
1398 // rr->resrec.rdlength = MUST set by client and/or in mDNS_Register_internal
1399 // rr->resrec.rdestimate = set in mDNS_Register_internal
1400 // rr->resrec.rdata = MUST be set by client
1401
1402 if (RDataStorage)
1403 rr->resrec.rdata = RDataStorage;
1404 else
1405 {
1406 rr->resrec.rdata = &rr->rdatastorage;
1407 rr->resrec.rdata->MaxRDLength = sizeof(RDataBody);
1408 }
1409
1410 // Field Group 2: Persistent metadata for Authoritative Records
1411 rr->Additional1 = mDNSNULL;
1412 rr->Additional2 = mDNSNULL;
1413 rr->DependentOn = mDNSNULL;
1414 rr->RRSet = mDNSNULL;
1415 rr->RecordCallback = Callback;
1416 rr->RecordContext = Context;
1417
1418 rr->AutoTarget = Target_Manual;
1419 rr->AllowRemoteQuery = mDNSfalse;
1420 rr->ForceMCast = mDNSfalse;
1421
1422 rr->WakeUp = zeroOwner;
1423 rr->AddressProxy = zeroAddr;
1424 rr->TimeRcvd = 0;
1425 rr->TimeExpire = 0;
1426 rr->ARType = artype;
1427 rr->AuthFlags = 0;
1428
1429 // Field Group 3: Transient state for Authoritative Records (set in mDNS_Register_internal)
1430 // Field Group 4: Transient uDNS state for Authoritative Records (set in mDNS_Register_internal)
1431
1432 // For now, until the uDNS code is fully integrated, it's helpful to zero the uDNS state fields here too, just in case
1433 // (e.g. uDNS_RegisterService short-circuits the usual mDNS_Register_internal record registration calls, so a bunch
1434 // of fields don't get set up properly. In particular, if we don't zero rr->QueuedRData then the uDNS code crashes.)
1435 rr->state = regState_Zero;
1436 rr->uselease = 0;
1437 rr->expire = 0;
1438 rr->Private = 0;
1439 rr->updateid = zeroID;
1440 rr->zone = rr->resrec.name;
1441 rr->nta = mDNSNULL;
1442 rr->tcp = mDNSNULL;
1443 rr->OrigRData = 0;
1444 rr->OrigRDLen = 0;
1445 rr->InFlightRData = 0;
1446 rr->InFlightRDLen = 0;
1447 rr->QueuedRData = 0;
1448 rr->QueuedRDLen = 0;
1449 mDNSPlatformMemZero(&rr->NATinfo, sizeof(rr->NATinfo));
1450 rr->SRVChanged = mDNSfalse;
1451 rr->mState = mergeState_Zero;
1452
1453 rr->namestorage.c[0] = 0; // MUST be set by client before calling mDNS_Register()
1454 }
1455
1456 mDNSexport void mDNS_SetupQuestion(DNSQuestion *const q, const mDNSInterfaceID InterfaceID, const domainname *const name,
1457 const mDNSu16 qtype, mDNSQuestionCallback *const callback, void *const context)
1458 {
1459 q->InterfaceID = InterfaceID;
1460 q->flags = 0;
1461 q->Target = zeroAddr;
1462 AssignDomainName(&q->qname, name);
1463 q->qtype = qtype;
1464 q->qclass = kDNSClass_IN;
1465 q->LongLived = (qtype == kDNSType_PTR);
1466 q->ExpectUnique = (qtype != kDNSType_PTR);
1467 q->ForceMCast = mDNSfalse;
1468 q->ReturnIntermed = mDNSfalse;
1469 q->SuppressUnusable = mDNSfalse;
1470 q->SearchListIndex = 0;
1471 q->AppendSearchDomains = 0;
1472 q->RetryWithSearchDomains = mDNSfalse;
1473 q->TimeoutQuestion = 0;
1474 q->WakeOnResolve = 0;
1475 q->UseBackgroundTrafficClass = mDNSfalse;
1476 q->ValidationRequired = 0;
1477 q->ValidatingResponse = 0;
1478 q->ProxyQuestion = 0;
1479 q->qnameOrig = mDNSNULL;
1480 q->AnonInfo = mDNSNULL;
1481 q->pid = mDNSPlatformGetPID();
1482 q->DisallowPID = mDNSfalse;
1483 q->ServiceID = -1;
1484 q->QuestionCallback = callback;
1485 q->QuestionContext = context;
1486 }
1487
1488 mDNSexport mDNSu32 RDataHashValue(const ResourceRecord *const rr)
1489 {
1490 int len = rr->rdlength;
1491 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1492 const mDNSu8 *ptr = rdb->data;
1493 mDNSu32 sum = 0;
1494
1495 switch(rr->rrtype)
1496 {
1497 case kDNSType_NS:
1498 case kDNSType_MD:
1499 case kDNSType_MF:
1500 case kDNSType_CNAME:
1501 case kDNSType_MB:
1502 case kDNSType_MG:
1503 case kDNSType_MR:
1504 case kDNSType_PTR:
1505 case kDNSType_NSAP_PTR:
1506 case kDNSType_DNAME: return DomainNameHashValue(&rdb->name);
1507
1508 case kDNSType_SOA: return rdb->soa.serial +
1509 rdb->soa.refresh +
1510 rdb->soa.retry +
1511 rdb->soa.expire +
1512 rdb->soa.min +
1513 DomainNameHashValue(&rdb->soa.mname) +
1514 DomainNameHashValue(&rdb->soa.rname);
1515
1516 case kDNSType_MX:
1517 case kDNSType_AFSDB:
1518 case kDNSType_RT:
1519 case kDNSType_KX: return DomainNameHashValue(&rdb->mx.exchange);
1520
1521 case kDNSType_MINFO:
1522 case kDNSType_RP: return DomainNameHashValue(&rdb->rp.mbox) + DomainNameHashValue(&rdb->rp.txt);
1523
1524 case kDNSType_PX: return DomainNameHashValue(&rdb->px.map822) + DomainNameHashValue(&rdb->px.mapx400);
1525
1526 case kDNSType_SRV: return DomainNameHashValue(&rdb->srv.target);
1527
1528 case kDNSType_OPT: return 0; // OPT is a pseudo-RR container structure; makes no sense to compare
1529
1530 case kDNSType_NSEC: {
1531 int dlen;
1532 dlen = DomainNameLength((domainname *)rdb->data);
1533 sum = DomainNameHashValue((domainname *)rdb->data);
1534 ptr += dlen;
1535 len -= dlen;
1536 /* FALLTHROUGH */
1537 }
1538
1539 default:
1540 {
1541 int i;
1542 for (i=0; i+1 < len; i+=2)
1543 {
1544 sum += (((mDNSu32)(ptr[i])) << 8) | ptr[i+1];
1545 sum = (sum<<3) | (sum>>29);
1546 }
1547 if (i < len)
1548 {
1549 sum += ((mDNSu32)(ptr[i])) << 8;
1550 }
1551 return(sum);
1552 }
1553 }
1554 }
1555
1556 // r1 has to be a full ResourceRecord including rrtype and rdlength
1557 // r2 is just a bare RDataBody, which MUST be the same rrtype and rdlength as r1
1558 mDNSexport mDNSBool SameRDataBody(const ResourceRecord *const r1, const RDataBody *const r2, DomainNameComparisonFn *samename)
1559 {
1560 const RDataBody2 *const b1 = (RDataBody2 *)r1->rdata->u.data;
1561 const RDataBody2 *const b2 = (RDataBody2 *)r2;
1562 switch(r1->rrtype)
1563 {
1564 case kDNSType_NS:
1565 case kDNSType_MD:
1566 case kDNSType_MF:
1567 case kDNSType_CNAME:
1568 case kDNSType_MB:
1569 case kDNSType_MG:
1570 case kDNSType_MR:
1571 case kDNSType_PTR:
1572 case kDNSType_NSAP_PTR:
1573 case kDNSType_DNAME: return(SameDomainName(&b1->name, &b2->name));
1574
1575 case kDNSType_SOA: return (mDNSBool)( b1->soa.serial == b2->soa.serial &&
1576 b1->soa.refresh == b2->soa.refresh &&
1577 b1->soa.retry == b2->soa.retry &&
1578 b1->soa.expire == b2->soa.expire &&
1579 b1->soa.min == b2->soa.min &&
1580 samename(&b1->soa.mname, &b2->soa.mname) &&
1581 samename(&b1->soa.rname, &b2->soa.rname));
1582
1583 case kDNSType_MX:
1584 case kDNSType_AFSDB:
1585 case kDNSType_RT:
1586 case kDNSType_KX: return (mDNSBool)( b1->mx.preference == b2->mx.preference &&
1587 samename(&b1->mx.exchange, &b2->mx.exchange));
1588
1589 case kDNSType_MINFO:
1590 case kDNSType_RP: return (mDNSBool)( samename(&b1->rp.mbox, &b2->rp.mbox) &&
1591 samename(&b1->rp.txt, &b2->rp.txt));
1592
1593 case kDNSType_PX: return (mDNSBool)( b1->px.preference == b2->px.preference &&
1594 samename(&b1->px.map822, &b2->px.map822) &&
1595 samename(&b1->px.mapx400, &b2->px.mapx400));
1596
1597 case kDNSType_SRV: return (mDNSBool)( b1->srv.priority == b2->srv.priority &&
1598 b1->srv.weight == b2->srv.weight &&
1599 mDNSSameIPPort(b1->srv.port, b2->srv.port) &&
1600 samename(&b1->srv.target, &b2->srv.target));
1601
1602 case kDNSType_OPT: return mDNSfalse; // OPT is a pseudo-RR container structure; makes no sense to compare
1603 case kDNSType_NSEC: {
1604 // If the "nxt" name changes in case, we want to delete the old
1605 // and store just the new one. If the caller passes in SameDomainCS for "samename",
1606 // we would return "false" when the only change between the two rdata is the case
1607 // change in "nxt".
1608 //
1609 // Note: rdlength of both the RData are same (ensured by the caller) and hence we can
1610 // use just r1->rdlength below
1611
1612 int dlen1 = DomainNameLength((domainname *)b1->data);
1613 int dlen2 = DomainNameLength((domainname *)b2->data);
1614 return (mDNSBool)(dlen1 == dlen2 &&
1615 samename((domainname *)b1->data, (domainname *)b2->data) &&
1616 mDNSPlatformMemSame(b1->data + dlen1, b2->data + dlen2, r1->rdlength - dlen1));
1617 }
1618
1619 default: return(mDNSPlatformMemSame(b1->data, b2->data, r1->rdlength));
1620 }
1621 }
1622
1623 mDNSexport mDNSBool BitmapTypeCheck(mDNSu8 *bmap, int bitmaplen, mDNSu16 type)
1624 {
1625 int win, wlen;
1626 int wintype;
1627
1628 // The window that this type belongs to. NSEC has 256 windows that
1629 // comprises of 256 types.
1630 wintype = type >> 8;
1631
1632 while (bitmaplen > 0)
1633 {
1634 if (bitmaplen < 3)
1635 {
1636 LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d short", bitmaplen);
1637 return mDNSfalse;
1638 }
1639
1640 win = *bmap++;
1641 wlen = *bmap++;
1642 bitmaplen -= 2;
1643 if (bitmaplen < wlen || wlen < 1 || wlen > 32)
1644 {
1645 LogInfo("BitmapTypeCheck: malformed nsec, bitmaplen %d wlen %d, win %d", bitmaplen, wlen, win);
1646 return mDNSfalse;
1647 }
1648 if (win < 0 || win >= 256)
1649 {
1650 LogInfo("BitmapTypeCheck: malformed nsec, wlen %d", wlen);
1651 return mDNSfalse;
1652 }
1653 if (win == wintype)
1654 {
1655 // First byte in the window serves 0 to 7, the next one serves 8 to 15 and so on.
1656 // Calculate the right byte offset first.
1657 int boff = (type & 0xff ) >> 3;
1658 if (wlen <= boff)
1659 return mDNSfalse;
1660 // The last three bits values 0 to 7 corresponds to bit positions
1661 // within the byte.
1662 return (bmap[boff] & (0x80 >> (type & 7)));
1663 }
1664 else
1665 {
1666 // If the windows are ordered, then we could check to see
1667 // if wintype > win and then return early.
1668 bmap += wlen;
1669 bitmaplen -= wlen;
1670 }
1671 }
1672 return mDNSfalse;
1673 }
1674
1675 // Don't call this function if the resource record is not NSEC. It will return false
1676 // which means that the type does not exist.
1677 mDNSexport mDNSBool RRAssertsExistence(const ResourceRecord *const rr, mDNSu16 type)
1678 {
1679 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1680 mDNSu8 *nsec = (mDNSu8 *)rdb->data;
1681 int len, bitmaplen;
1682 mDNSu8 *bmap;
1683
1684 if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1685
1686 len = DomainNameLength((domainname *)nsec);
1687
1688 bitmaplen = rr->rdlength - len;
1689 bmap = nsec + len;
1690 return (BitmapTypeCheck(bmap, bitmaplen, type));
1691 }
1692
1693 // Don't call this function if the resource record is not NSEC. It will return false
1694 // which means that the type exists.
1695 mDNSexport mDNSBool RRAssertsNonexistence(const ResourceRecord *const rr, mDNSu16 type)
1696 {
1697 if (rr->rrtype != kDNSType_NSEC) return mDNSfalse;
1698
1699 return !RRAssertsExistence(rr, type);
1700 }
1701
1702 // Checks whether the RRSIG or NSEC record answers the question "q".
1703 mDNSlocal mDNSBool DNSSECRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q, mDNSBool *checkType)
1704 {
1705 *checkType = mDNStrue;
1706
1707 // This function is called for all questions and as long as the type matches,
1708 // return true. For the types (RRSIG and NSEC) that are specifically checked in
1709 // this function, returning true still holds good.
1710 if (q->qtype == rr->rrtype)
1711 return mDNStrue;
1712
1713 // For DS and DNSKEY questions, the types should match i.e., don't answer using CNAME
1714 // records as it answers any question type.
1715 //
1716 // - DS record comes from the parent zone where CNAME record cannot coexist and hence
1717 // cannot possibly answer it.
1718 //
1719 // - For DNSKEY, one could potentially follow CNAME but there could be a DNSKEY at
1720 // the "qname" itself. To keep it simple, we don't follow CNAME.
1721
1722 if ((q->qtype == kDNSType_DS || q->qtype == kDNSType_DNSKEY) && (q->qtype != rr->rrtype))
1723 {
1724 debugf("DNSSECRecordAnswersQuestion: %d type resource record matched question %##s (%s), ignoring", rr->rrtype,
1725 q->qname.c, DNSTypeName(q->qtype));
1726 return mDNSfalse;
1727 }
1728
1729 // If we are validating a response using DNSSEC, we might already have the records
1730 // for the "q->qtype" in the cache but we issued a query with DO bit set
1731 // to get the RRSIGs e.g., if you have two questions one of which does not require
1732 // DNSSEC validation. When the RRSIG is added to the cache, we need to deliver
1733 // the response to the question. The RRSIG type won't match the q->qtype and hence
1734 // we need to bypass the check in that case.
1735 if (rr->rrtype == kDNSType_RRSIG && q->ValidatingResponse)
1736 {
1737 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
1738 rdataRRSig *rrsig = (rdataRRSig *)rdb->data;
1739 mDNSu16 typeCovered = swap16(rrsig->typeCovered);
1740 debugf("DNSSECRecordAnswersQuestion: Matching RRSIG typeCovered %s", DNSTypeName(typeCovered));
1741 if (typeCovered != kDNSType_CNAME && typeCovered != q->qtype)
1742 {
1743 debugf("DNSSECRecordAnswersQuestion: RRSIG did not match question %##s (%s)", q->qname.c,
1744 DNSTypeName(q->qtype));
1745 return mDNSfalse;
1746 }
1747 LogInfo("DNSSECRecordAnswersQuestion: RRSIG matched question %##s (%s)", q->qname.c,
1748 DNSTypeName(q->qtype));
1749 *checkType = mDNSfalse;
1750 return mDNStrue;
1751 }
1752 // If the NSEC record asserts the non-existence of a name looked up by the question, we would
1753 // typically answer that e.g., the bitmap asserts that q->qtype does not exist. If we have
1754 // to prove the non-existence as required by ValidatingResponse and ValidationRequired question,
1755 // then we should not answer that as it may not be the right one always. We may need more than
1756 // one NSEC to prove the non-existence.
1757 if (rr->rrtype == kDNSType_NSEC && DNSSECQuestion(q))
1758 {
1759 debugf("DNSSECRecordAnswersQuestion: Question %##s (%s) matched record %##s (NSEC)", q->qname.c,
1760 DNSTypeName(q->qtype), rr->name->c);
1761 return mDNSfalse;
1762 }
1763 return mDNStrue;
1764 }
1765
1766 // ResourceRecordAnswersQuestion returns mDNStrue if the given resource record is a valid answer to the given question.
1767 // SameNameRecordAnswersQuestion is the same, except it skips the expensive SameDomainName() call.
1768 // SameDomainName() is generally cheap when the names don't match, but expensive when they do match,
1769 // because it has to check all the way to the end of the names to be sure.
1770 // In cases where we know in advance that the names match it's especially advantageous to skip the
1771 // SameDomainName() call because that's precisely the time when it's most expensive and least useful.
1772
1773 mDNSexport mDNSBool SameNameRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1774 {
1775 mDNSBool checkType = mDNStrue;
1776
1777 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1778 // are handled in LocalOnlyRecordAnswersQuestion
1779 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1780 {
1781 LogMsg("SameNameRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1782 return mDNSfalse;
1783 }
1784 if (QuerySuppressed(q))
1785 return mDNSfalse;
1786
1787 if (rr->InterfaceID &&
1788 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1789 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1790
1791 // Resource record received via unicast, the resolver group ID should match ?
1792 if (!rr->InterfaceID)
1793 {
1794 mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1795 mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1796 if (idr != idq) return(mDNSfalse);
1797 if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1798 }
1799
1800 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1801 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1802
1803 // CNAME answers question of any type and a negative cache record should not prevent us from querying other
1804 // valid types at the same name.
1805 if (rr->rrtype == kDNSType_CNAME && rr->RecordType == kDNSRecordTypePacketNegative && rr->rrtype != q->qtype)
1806 return mDNSfalse;
1807
1808 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1809 if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1810 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1811
1812 #if APPLE_OSX_mDNSResponder
1813 if (!mDNSPlatformValidRecordForQuestion(rr, q))
1814 return mDNSfalse;
1815 #endif // APPLE_OSX_mDNSResponder
1816
1817 if (!AnonInfoAnswersQuestion(rr, q))
1818 return mDNSfalse;
1819
1820 return(mDNStrue);
1821 }
1822
1823 mDNSexport mDNSBool ResourceRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1824 {
1825 if (!SameNameRecordAnswersQuestion(rr, q))
1826 return mDNSfalse;
1827
1828 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1829 }
1830
1831 // We have a separate function to handle LocalOnly AuthRecords because they can be created with
1832 // a valid InterfaceID (e.g., scoped /etc/hosts) and can be used to answer unicast questions unlike
1833 // multicast resource records (which has a valid InterfaceID) which can't be used to answer
1834 // unicast questions. ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion can't tell whether
1835 // a resource record is multicast or LocalOnly by just looking at the ResourceRecord because
1836 // LocalOnly records are truly identified by ARType in the AuthRecord. As P2P and LocalOnly record
1837 // are kept in the same hash table, we use the same function to make it easy for the callers when
1838 // they walk the hash table to answer LocalOnly/P2P questions
1839 //
1840 mDNSexport mDNSBool LocalOnlyRecordAnswersQuestion(AuthRecord *const ar, const DNSQuestion *const q)
1841 {
1842 ResourceRecord *rr = &ar->resrec;
1843
1844 // mDNSInterface_Any questions can be answered with LocalOnly/P2P records in this function. AuthRecord_Any
1845 // records are handled in ResourceRecordAnswersQuestion/SameNameRecordAnswersQuestion
1846 if (RRAny(ar))
1847 {
1848 LogMsg("LocalOnlyRecordAnswersQuestion: ERROR!! called with regular AuthRecordAny %##s", rr->name->c);
1849 return mDNSfalse;
1850 }
1851
1852 // Questions with mDNSInterface_LocalOnly InterfaceID should be answered with all resource records that are
1853 // *local* to the machine. These include resource records that have InterfaceID set to mDNSInterface_LocalOnly,
1854 // mDNSInterface_Any and any other real InterfaceID. Hence, LocalOnly questions should not be checked against
1855 // the InterfaceID in the resource record.
1856 //
1857 // mDNSInterface_Unicast does not indicate any scope and hence treat them like mDNSInterface_Any.
1858
1859 if (rr->InterfaceID &&
1860 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly && q->InterfaceID != mDNSInterface_Unicast &&
1861 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1862
1863 // Entries in /etc/hosts are added as LocalOnly resource records. The LocalOnly resource records
1864 // may have a scope e.g., fe80::1%en0. The question may be scoped or not: the InterfaceID may be set
1865 // to mDNSInterface_Any, mDNSInterface_LocalOnly or a real InterfaceID (scoped).
1866 //
1867 // 1) Question: Any, LocalOnly Record: no scope. This question should be answered with this record.
1868 //
1869 // 2) Question: Any, LocalOnly Record: scoped. This question should be answered with the record because
1870 // traditionally applications never specify scope e.g., getaddrinfo, but need to be able
1871 // to get to /etc/hosts entries.
1872 //
1873 // 3) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: no scope. This is the inverse of (2).
1874 // If we register a LocalOnly record, we need to answer a LocalOnly question. If the /etc/hosts has a
1875 // non scoped entry, it may not make sense to answer a scoped question. But we can't tell these two
1876 // cases apart. As we currently answer LocalOnly question with LocalOnly record, we continue to do so.
1877 //
1878 // 4) Question: Scoped (LocalOnly or InterfaceID), LocalOnly Record: scoped. LocalOnly questions should be
1879 // answered with any resource record where as if it has a valid InterfaceID, the scope should match.
1880 //
1881 // (1) and (2) is bypassed because we check for a non-NULL InterfaceID above. For (3), the InterfaceID is NULL
1882 // and hence bypassed above. For (4) we bypassed LocalOnly questions and checked the scope of the record
1883 // against the question.
1884 //
1885 // For P2P, InterfaceIDs of the question and the record should match.
1886
1887 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1888 // LocalOnly authoritative answers are exempt. LocalOnly authoritative answers are used for /etc/host entries.
1889 // We don't want a local process to be able to create a fake LocalOnly address record for "www.bigbank.com" which would then
1890 // cause other applications (e.g. Safari) to connect to the wrong address. The rpc to register records filters out records
1891 // with names that don't end in local and have mDNSInterface_LocalOnly set.
1892 //
1893 // Note: The check is bypassed for LocalOnly and for P2P it is not needed as only .local records are registered and for
1894 // a question to match its names, it also has to end in .local and that question can't be a unicast question (See
1895 // Question_uDNS macro and its usage). As P2P does not enforce .local only registrations we still make this check
1896 // and also makes it future proof.
1897
1898 if (ar->ARType != AuthRecordLocalOnly && rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1899
1900 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1901 if (!RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1902 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1903
1904 if (!AnonInfoAnswersQuestion(rr, q))
1905 return mDNSfalse;
1906
1907 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1908 }
1909
1910 mDNSexport mDNSBool AnyTypeRecordAnswersQuestion(const ResourceRecord *const rr, const DNSQuestion *const q)
1911 {
1912 // LocalOnly/P2P questions can be answered with AuthRecordAny in this function. LocalOnly/P2P records
1913 // are handled in LocalOnlyRecordAnswersQuestion
1914 if ((rr->InterfaceID == mDNSInterface_LocalOnly) || (rr->InterfaceID == mDNSInterface_P2P))
1915 {
1916 LogMsg("AnyTypeRecordAnswersQuestion: ERROR!! called with LocalOnly ResourceRecord %p, Question %p", rr->InterfaceID, q->InterfaceID);
1917 return mDNSfalse;
1918 }
1919 if (rr->InterfaceID &&
1920 q->InterfaceID && q->InterfaceID != mDNSInterface_LocalOnly &&
1921 rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1922
1923 // Resource record received via unicast, the resolver group ID should match ?
1924 // Note that Auth Records are normally setup with NULL InterfaceID and
1925 // both the DNSServers are assumed to be NULL in that case
1926 if (!rr->InterfaceID)
1927 {
1928 mDNSu16 idr = (rr->rDNSServer ? rr->rDNSServer->resGroupID : 0);
1929 mDNSu16 idq = (q->qDNSServer ? q->qDNSServer->resGroupID : 0);
1930 if (idr != idq) return(mDNSfalse);
1931 }
1932
1933 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question
1934 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1935
1936 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1937
1938 if (!AnonInfoAnswersQuestion(rr, q))
1939 return mDNSfalse;
1940
1941 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1942 }
1943
1944 // This is called with both unicast resource record and multicast resource record. The question that
1945 // received the unicast response could be the regular unicast response from a DNS server or a response
1946 // to a mDNS QU query. The main reason we need this function is that we can't compare DNSServers between the
1947 // question and the resource record because the resource record is not completely initialized in
1948 // mDNSCoreReceiveResponse when this function is called.
1949 mDNSexport mDNSBool ResourceRecordAnswersUnicastResponse(const ResourceRecord *const rr, const DNSQuestion *const q)
1950 {
1951 mDNSBool checkType = mDNStrue;
1952
1953 if (QuerySuppressed(q))
1954 return mDNSfalse;
1955
1956 // For resource records created using multicast, the InterfaceIDs have to match
1957 if (rr->InterfaceID &&
1958 q->InterfaceID && rr->InterfaceID != q->InterfaceID) return(mDNSfalse);
1959
1960 // If ResourceRecord received via multicast, but question was unicast, then shouldn't use record to answer this question.
1961 if (rr->InterfaceID && !mDNSOpaque16IsZero(q->TargetQID)) return(mDNSfalse);
1962
1963 if (!DNSSECRecordAnswersQuestion(rr, q, &checkType)) return mDNSfalse;
1964
1965 // RR type CNAME matches any query type. QTYPE ANY matches any RR type. QCLASS ANY matches any RR class.
1966 if (checkType && !RRTypeAnswersQuestionType(rr,q->qtype)) return(mDNSfalse);
1967
1968 if (rr->rrclass != q->qclass && q->qclass != kDNSQClass_ANY) return(mDNSfalse);
1969
1970 return(rr->namehash == q->qnamehash && SameDomainName(rr->name, &q->qname));
1971 }
1972
1973 mDNSexport mDNSu16 GetRDLength(const ResourceRecord *const rr, mDNSBool estimate)
1974 {
1975 const RDataBody2 *const rd = (RDataBody2 *)rr->rdata->u.data;
1976 const domainname *const name = estimate ? rr->name : mDNSNULL;
1977 if (rr->rrclass == kDNSQClass_ANY) return(rr->rdlength); // Used in update packets to mean "Delete An RRset" (RFC 2136)
1978 else switch (rr->rrtype)
1979 {
1980 case kDNSType_A: return(sizeof(rd->ipv4));
1981
1982 case kDNSType_NS:
1983 case kDNSType_CNAME:
1984 case kDNSType_PTR:
1985 case kDNSType_DNAME: return(CompressedDomainNameLength(&rd->name, name));
1986
1987 case kDNSType_SOA: return (mDNSu16)(CompressedDomainNameLength(&rd->soa.mname, name) +
1988 CompressedDomainNameLength(&rd->soa.rname, name) +
1989 5 * sizeof(mDNSOpaque32));
1990
1991 case kDNSType_NULL:
1992 case kDNSType_TSIG:
1993 case kDNSType_TXT:
1994 case kDNSType_X25:
1995 case kDNSType_ISDN:
1996 case kDNSType_LOC:
1997 case kDNSType_DHCID: return(rr->rdlength); // Not self-describing, so have to just trust rdlength
1998
1999 case kDNSType_HINFO: return (mDNSu16)(2 + (int)rd->data[0] + (int)rd->data[1 + (int)rd->data[0]]);
2000
2001 case kDNSType_MX:
2002 case kDNSType_AFSDB:
2003 case kDNSType_RT:
2004 case kDNSType_KX: return (mDNSu16)(2 + CompressedDomainNameLength(&rd->mx.exchange, name));
2005
2006 case kDNSType_RP: return (mDNSu16)(CompressedDomainNameLength(&rd->rp.mbox, name) +
2007 CompressedDomainNameLength(&rd->rp.txt, name));
2008
2009 case kDNSType_PX: return (mDNSu16)(2 + CompressedDomainNameLength(&rd->px.map822, name) +
2010 CompressedDomainNameLength(&rd->px.mapx400, name));
2011
2012 case kDNSType_AAAA: return(sizeof(rd->ipv6));
2013
2014 case kDNSType_SRV: return (mDNSu16)(6 + CompressedDomainNameLength(&rd->srv.target, name));
2015
2016 case kDNSType_OPT: return(rr->rdlength);
2017
2018 case kDNSType_NSEC: {
2019 domainname *next = (domainname *)rd->data;
2020 int dlen = DomainNameLength(next);
2021 //
2022 if (UNICAST_NSEC(rr))
2023 return (mDNSu16)(CompressedDomainNameLength(next, name) + rr->rdlength - dlen);
2024 else
2025 return (mDNSu16)((estimate ? 2 : dlen) + rr->rdlength - dlen);
2026 }
2027
2028 default: debugf("Warning! Don't know how to get length of resource type %d", rr->rrtype);
2029 return(rr->rdlength);
2030 }
2031 }
2032
2033 // When a local client registers (or updates) a record, we use this routine to do some simple validation checks
2034 // to help reduce the risk of bogus malformed data on the network
2035 mDNSexport mDNSBool ValidateRData(const mDNSu16 rrtype, const mDNSu16 rdlength, const RData *const rd)
2036 {
2037 mDNSu16 len;
2038
2039 switch(rrtype)
2040 {
2041 case kDNSType_A: return(rdlength == sizeof(mDNSv4Addr));
2042
2043 case kDNSType_NS: // Same as PTR
2044 case kDNSType_MD: // Same as PTR
2045 case kDNSType_MF: // Same as PTR
2046 case kDNSType_CNAME: // Same as PTR
2047 //case kDNSType_SOA not checked
2048 case kDNSType_MB: // Same as PTR
2049 case kDNSType_MG: // Same as PTR
2050 case kDNSType_MR: // Same as PTR
2051 //case kDNSType_NULL not checked (no specified format, so always valid)
2052 //case kDNSType_WKS not checked
2053 case kDNSType_PTR: len = DomainNameLengthLimit(&rd->u.name, rd->u.data + rdlength);
2054 return(len <= MAX_DOMAIN_NAME && rdlength == len);
2055
2056 case kDNSType_HINFO: // Same as TXT (roughly)
2057 case kDNSType_MINFO: // Same as TXT (roughly)
2058 case kDNSType_TXT: if (!rdlength) return(mDNSfalse); // TXT record has to be at least one byte (RFC 1035)
2059 {
2060 const mDNSu8 *ptr = rd->u.txt.c;
2061 const mDNSu8 *end = rd->u.txt.c + rdlength;
2062 while (ptr < end) ptr += 1 + ptr[0];
2063 return (ptr == end);
2064 }
2065
2066 case kDNSType_AAAA: return(rdlength == sizeof(mDNSv6Addr));
2067
2068 case kDNSType_MX: // Must be at least two-byte preference, plus domainname
2069 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2070 len = DomainNameLengthLimit(&rd->u.mx.exchange, rd->u.data + rdlength);
2071 return(len <= MAX_DOMAIN_NAME && rdlength == 2+len);
2072
2073 case kDNSType_SRV: // Must be at least priority+weight+port, plus domainname
2074 // Call to DomainNameLengthLimit() implicitly enforces both requirements for us
2075 len = DomainNameLengthLimit(&rd->u.srv.target, rd->u.data + rdlength);
2076 return(len <= MAX_DOMAIN_NAME && rdlength == 6+len);
2077
2078 //case kDNSType_NSEC not checked
2079
2080 default: return(mDNStrue); // Allow all other types without checking
2081 }
2082 }
2083
2084 // ***************************************************************************
2085 #if COMPILER_LIKES_PRAGMA_MARK
2086 #pragma mark -
2087 #pragma mark - DNS Message Creation Functions
2088 #endif
2089
2090 mDNSexport void InitializeDNSMessage(DNSMessageHeader *h, mDNSOpaque16 id, mDNSOpaque16 flags)
2091 {
2092 h->id = id;
2093 h->flags = flags;
2094 h->numQuestions = 0;
2095 h->numAnswers = 0;
2096 h->numAuthorities = 0;
2097 h->numAdditionals = 0;
2098 }
2099
2100 mDNSexport const mDNSu8 *FindCompressionPointer(const mDNSu8 *const base, const mDNSu8 *const end, const mDNSu8 *const domname)
2101 {
2102 const mDNSu8 *result = end - *domname - 1;
2103
2104 if (*domname == 0) return(mDNSNULL); // There's no point trying to match just the root label
2105
2106 // This loop examines each possible starting position in packet, starting end of the packet and working backwards
2107 while (result >= base)
2108 {
2109 // If the length byte and first character of the label match, then check further to see
2110 // if this location in the packet will yield a useful name compression pointer.
2111 if (result[0] == domname[0] && result[1] == domname[1])
2112 {
2113 const mDNSu8 *name = domname;
2114 const mDNSu8 *targ = result;
2115 while (targ + *name < end)
2116 {
2117 // First see if this label matches
2118 int i;
2119 const mDNSu8 *pointertarget;
2120 for (i=0; i <= *name; i++) if (targ[i] != name[i]) break;
2121 if (i <= *name) break; // If label did not match, bail out
2122 targ += 1 + *name; // Else, did match, so advance target pointer
2123 name += 1 + *name; // and proceed to check next label
2124 if (*name == 0 && *targ == 0) return(result); // If no more labels, we found a match!
2125 if (*name == 0) break; // If no more labels to match, we failed, so bail out
2126
2127 // The label matched, so now follow the pointer (if appropriate) and then see if the next label matches
2128 if (targ[0] < 0x40) continue; // If length value, continue to check next label
2129 if (targ[0] < 0xC0) break; // If 40-BF, not valid
2130 if (targ+1 >= end) break; // Second byte not present!
2131 pointertarget = base + (((mDNSu16)(targ[0] & 0x3F)) << 8) + targ[1];
2132 if (targ < pointertarget) break; // Pointertarget must point *backwards* in the packet
2133 if (pointertarget[0] >= 0x40) break; // Pointertarget must point to a valid length byte
2134 targ = pointertarget;
2135 }
2136 }
2137 result--; // We failed to match at this search position, so back up the tentative result pointer and try again
2138 }
2139 return(mDNSNULL);
2140 }
2141
2142 // Put a string of dot-separated labels as length-prefixed labels
2143 // domainname is a fully-qualified name (i.e. assumed to be ending in a dot, even if it doesn't)
2144 // msg points to the message we're building (pass mDNSNULL if we don't want to use compression pointers)
2145 // end points to the end of the message so far
2146 // ptr points to where we want to put the name
2147 // limit points to one byte past the end of the buffer that we must not overrun
2148 // domainname is the name to put
2149 mDNSexport mDNSu8 *putDomainNameAsLabels(const DNSMessage *const msg,
2150 mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name)
2151 {
2152 const mDNSu8 *const base = (const mDNSu8 *)msg;
2153 const mDNSu8 * np = name->c;
2154 const mDNSu8 *const max = name->c + MAX_DOMAIN_NAME; // Maximum that's valid
2155 const mDNSu8 * pointer = mDNSNULL;
2156 const mDNSu8 *const searchlimit = ptr;
2157
2158 if (!ptr) { LogMsg("putDomainNameAsLabels %##s ptr is null", name->c); return(mDNSNULL); }
2159
2160 if (!*np) // If just writing one-byte root label, make sure we have space for that
2161 {
2162 if (ptr >= limit) return(mDNSNULL);
2163 }
2164 else // else, loop through writing labels and/or a compression offset
2165 {
2166 do {
2167 if (*np > MAX_DOMAIN_LABEL)
2168 { LogMsg("Malformed domain name %##s (label more than 63 bytes)", name->c); return(mDNSNULL); }
2169
2170 // This check correctly allows for the final trailing root label:
2171 // e.g.
2172 // Suppose our domain name is exactly 256 bytes long, including the final trailing root label.
2173 // Suppose np is now at name->c[249], and we're about to write our last non-null label ("local").
2174 // We know that max will be at name->c[256]
2175 // That means that np + 1 + 5 == max - 1, so we (just) pass the "if" test below, write our
2176 // six bytes, then exit the loop, write the final terminating root label, and the domain
2177 // name we've written is exactly 256 bytes long, exactly at the correct legal limit.
2178 // If the name is one byte longer, then we fail the "if" test below, and correctly bail out.
2179 if (np + 1 + *np >= max)
2180 { LogMsg("Malformed domain name %##s (more than 256 bytes)", name->c); return(mDNSNULL); }
2181
2182 if (base) pointer = FindCompressionPointer(base, searchlimit, np);
2183 if (pointer) // Use a compression pointer if we can
2184 {
2185 const mDNSu16 offset = (mDNSu16)(pointer - base);
2186 if (ptr+2 > limit) return(mDNSNULL); // If we don't have two bytes of space left, give up
2187 *ptr++ = (mDNSu8)(0xC0 | (offset >> 8));
2188 *ptr++ = (mDNSu8)( offset & 0xFF);
2189 return(ptr);
2190 }
2191 else // Else copy one label and try again
2192 {
2193 int i;
2194 mDNSu8 len = *np++;
2195 // If we don't at least have enough space for this label *plus* a terminating zero on the end, give up
2196 if (ptr + 1 + len >= limit) return(mDNSNULL);
2197 *ptr++ = len;
2198 for (i=0; i<len; i++) *ptr++ = *np++;
2199 }
2200 } while (*np); // While we've got characters remaining in the name, continue
2201 }
2202
2203 *ptr++ = 0; // Put the final root label
2204 return(ptr);
2205 }
2206
2207 mDNSlocal mDNSu8 *putVal16(mDNSu8 *ptr, mDNSu16 val)
2208 {
2209 ptr[0] = (mDNSu8)((val >> 8 ) & 0xFF);
2210 ptr[1] = (mDNSu8)((val ) & 0xFF);
2211 return ptr + sizeof(mDNSOpaque16);
2212 }
2213
2214 mDNSlocal mDNSu8 *putVal32(mDNSu8 *ptr, mDNSu32 val)
2215 {
2216 ptr[0] = (mDNSu8)((val >> 24) & 0xFF);
2217 ptr[1] = (mDNSu8)((val >> 16) & 0xFF);
2218 ptr[2] = (mDNSu8)((val >> 8) & 0xFF);
2219 ptr[3] = (mDNSu8)((val ) & 0xFF);
2220 return ptr + sizeof(mDNSu32);
2221 }
2222
2223 // Copy the RDATA information. The actual in memory storage for the data might be bigger than what the rdlength
2224 // says. Hence, the only way to copy out the data from a resource record is to use putRData.
2225 // msg points to the message we're building (pass mDNSNULL for "msg" if we don't want to use compression pointers)
2226 mDNSexport mDNSu8 *putRData(const DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const ResourceRecord *const rr)
2227 {
2228 const RDataBody2 *const rdb = (RDataBody2 *)rr->rdata->u.data;
2229 switch (rr->rrtype)
2230 {
2231 case kDNSType_A: if (rr->rdlength != 4)
2232 { debugf("putRData: Illegal length %d for kDNSType_A", rr->rdlength); return(mDNSNULL); }
2233 if (ptr + 4 > limit) return(mDNSNULL);
2234 *ptr++ = rdb->ipv4.b[0];
2235 *ptr++ = rdb->ipv4.b[1];
2236 *ptr++ = rdb->ipv4.b[2];
2237 *ptr++ = rdb->ipv4.b[3];
2238 return(ptr);
2239
2240 case kDNSType_NS:
2241 case kDNSType_CNAME:
2242 case kDNSType_PTR:
2243 case kDNSType_DNAME: return(putDomainNameAsLabels(msg, ptr, limit, &rdb->name));
2244
2245 case kDNSType_SOA: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.mname);
2246 if (!ptr) return(mDNSNULL);
2247 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->soa.rname);
2248 if (!ptr || ptr + 20 > limit) return(mDNSNULL);
2249 ptr = putVal32(ptr, rdb->soa.serial);
2250 ptr = putVal32(ptr, rdb->soa.refresh);
2251 ptr = putVal32(ptr, rdb->soa.retry);
2252 ptr = putVal32(ptr, rdb->soa.expire);
2253 ptr = putVal32(ptr, rdb->soa.min);
2254 return(ptr);
2255
2256 case kDNSType_NULL:
2257 case kDNSType_HINFO:
2258 case kDNSType_TSIG:
2259 case kDNSType_TXT:
2260 case kDNSType_X25:
2261 case kDNSType_ISDN:
2262 case kDNSType_LOC:
2263 case kDNSType_DHCID: if (ptr + rr->rdlength > limit) return(mDNSNULL);
2264 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2265 return(ptr + rr->rdlength);
2266
2267 case kDNSType_MX:
2268 case kDNSType_AFSDB:
2269 case kDNSType_RT:
2270 case kDNSType_KX: if (ptr + 3 > limit) return(mDNSNULL);
2271 ptr = putVal16(ptr, rdb->mx.preference);
2272 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->mx.exchange));
2273
2274 case kDNSType_RP: ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.mbox);
2275 if (!ptr) return(mDNSNULL);
2276 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->rp.txt);
2277 return(ptr);
2278
2279 case kDNSType_PX: if (ptr + 5 > limit) return(mDNSNULL);
2280 ptr = putVal16(ptr, rdb->px.preference);
2281 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.map822);
2282 if (!ptr) return(mDNSNULL);
2283 ptr = putDomainNameAsLabels(msg, ptr, limit, &rdb->px.mapx400);
2284 return(ptr);
2285
2286 case kDNSType_AAAA: if (rr->rdlength != sizeof(rdb->ipv6))
2287 { debugf("putRData: Illegal length %d for kDNSType_AAAA", rr->rdlength); return(mDNSNULL); }
2288 if (ptr + sizeof(rdb->ipv6) > limit) return(mDNSNULL);
2289 mDNSPlatformMemCopy(ptr, &rdb->ipv6, sizeof(rdb->ipv6));
2290 return(ptr + sizeof(rdb->ipv6));
2291
2292 case kDNSType_SRV: if (ptr + 7 > limit) return(mDNSNULL);
2293 *ptr++ = (mDNSu8)(rdb->srv.priority >> 8);
2294 *ptr++ = (mDNSu8)(rdb->srv.priority & 0xFF);
2295 *ptr++ = (mDNSu8)(rdb->srv.weight >> 8);
2296 *ptr++ = (mDNSu8)(rdb->srv.weight & 0xFF);
2297 *ptr++ = rdb->srv.port.b[0];
2298 *ptr++ = rdb->srv.port.b[1];
2299 return(putDomainNameAsLabels(msg, ptr, limit, &rdb->srv.target));
2300
2301 case kDNSType_OPT: {
2302 int len = 0;
2303 const rdataOPT *opt;
2304 const rdataOPT *const end = (const rdataOPT *)&rr->rdata->u.data[rr->rdlength];
2305 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2306 len += DNSOpt_Data_Space(opt);
2307 if (ptr + len > limit)
2308 {
2309 LogMsg("ERROR: putOptRData - out of space");
2310 return mDNSNULL;
2311 }
2312 for (opt = &rr->rdata->u.opt[0]; opt < end; opt++)
2313 {
2314 const int space = DNSOpt_Data_Space(opt);
2315 ptr = putVal16(ptr, opt->opt);
2316 ptr = putVal16(ptr, (mDNSu16)space - 4);
2317 switch (opt->opt)
2318 {
2319 case kDNSOpt_LLQ:
2320 ptr = putVal16(ptr, opt->u.llq.vers);
2321 ptr = putVal16(ptr, opt->u.llq.llqOp);
2322 ptr = putVal16(ptr, opt->u.llq.err);
2323 mDNSPlatformMemCopy(ptr, opt->u.llq.id.b, 8); // 8-byte id
2324 ptr += 8;
2325 ptr = putVal32(ptr, opt->u.llq.llqlease);
2326 break;
2327 case kDNSOpt_Lease:
2328 ptr = putVal32(ptr, opt->u.updatelease);
2329 break;
2330 case kDNSOpt_Owner:
2331 *ptr++ = opt->u.owner.vers;
2332 *ptr++ = opt->u.owner.seq;
2333 mDNSPlatformMemCopy(ptr, opt->u.owner.HMAC.b, 6); // 6-byte Host identifier
2334 ptr += 6;
2335 if (space >= DNSOpt_OwnerData_ID_Wake_Space)
2336 {
2337 mDNSPlatformMemCopy(ptr, opt->u.owner.IMAC.b, 6); // 6-byte interface MAC
2338 ptr += 6;
2339 if (space > DNSOpt_OwnerData_ID_Wake_Space)
2340 {
2341 mDNSPlatformMemCopy(ptr, opt->u.owner.password.b, space - DNSOpt_OwnerData_ID_Wake_Space);
2342 ptr += space - DNSOpt_OwnerData_ID_Wake_Space;
2343 }
2344 }
2345 break;
2346 case kDNSOpt_Trace:
2347 *ptr++ = opt->u.tracer.platf;
2348 ptr = putVal32(ptr, opt->u.tracer.mDNSv);
2349 break;
2350 }
2351 }
2352 return ptr;
2353 }
2354
2355 case kDNSType_NSEC: {
2356 // For NSEC records, rdlength represents the exact number of bytes
2357 // of in memory storage.
2358 int len = rr->rdlength;
2359 mDNSu8 *nsec = (mDNSu8 *)rdb->data;
2360 domainname *name = (domainname *)nsec;
2361 int dlen;
2362
2363 dlen = DomainNameLength(name);
2364 len -= dlen;
2365 nsec += dlen;
2366 // This function is called when we are sending a NSEC record as part of mDNS,
2367 // or to copy the data to any other buffer needed which could be a mDNS or uDNS
2368 // NSEC record. The only time compression is used that when we are sending it
2369 // in mDNS (indicated by non-NULL "msg") and hence we handle mDNS case
2370 // separately.
2371 if (!UNICAST_NSEC(rr))
2372 {
2373 mDNSu8 *save = ptr;
2374 int i, j, wlen;
2375 wlen = *(nsec + 1);
2376 nsec += 2; // Skip the window number and len
2377 len -= 2;
2378
2379 // For our simplified use of NSEC synthetic records:
2380 //
2381 // nextname is always the record's own name,
2382 // the block number is always 0,
2383 // the count byte is a value in the range 1-32,
2384 // followed by the 1-32 data bytes
2385 //
2386 // Note: When we send the NSEC record in mDNS, the window size is set to 32.
2387 // We need to find out what the last non-NULL byte is. If we are copying out
2388 // from an RDATA, we have the right length. As we need to handle both the case,
2389 // we loop to find the right value instead of blindly using len to copy.
2390
2391 for (i=wlen; i>0; i--) if (nsec[i-1]) break;
2392
2393 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2394 if (!ptr) { LogInfo("putRData: Can't put name, Length %d, record %##s", limit - save, rr->name->c); return(mDNSNULL); }
2395 if (i) // Only put a block if at least one type exists for this name
2396 {
2397 if (ptr + 2 + i > limit) { LogInfo("putRData: Can't put window, Length %d, i %d, record %##s", limit - ptr, i, rr->name->c); return(mDNSNULL); }
2398 *ptr++ = 0;
2399 *ptr++ = (mDNSu8)i;
2400 for (j=0; j<i; j++) *ptr++ = nsec[j];
2401 }
2402 return ptr;
2403 }
2404 else
2405 {
2406 int win, wlen;
2407
2408 // Sanity check whether the bitmap is good
2409 while (len)
2410 {
2411 if (len < 3)
2412 { LogMsg("putRData: invalid length %d", len); return mDNSNULL; }
2413
2414 win = *nsec++;
2415 wlen = *nsec++;
2416 len -= 2;
2417 if (len < wlen || wlen < 1 || wlen > 32)
2418 { LogMsg("putRData: invalid window length %d", wlen); return mDNSNULL; }
2419 if (win < 0 || win >= 256)
2420 { LogMsg("putRData: invalid window %d", win); return mDNSNULL; }
2421
2422 nsec += wlen;
2423 len -= wlen;
2424 }
2425 if (ptr + rr->rdlength > limit) { LogMsg("putRData: NSEC rdlength beyond limit %##s (%s), ptr %p, rdlength %d, limit %p", rr->name->c, DNSTypeName(rr->rrtype), ptr, rr->rdlength, limit); return(mDNSNULL);}
2426
2427 // No compression allowed for "nxt", just copy the data.
2428 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2429 return(ptr + rr->rdlength);
2430 }
2431 }
2432
2433 default: debugf("putRData: Warning! Writing unknown resource type %d as raw data", rr->rrtype);
2434 if (ptr + rr->rdlength > limit) return(mDNSNULL);
2435 mDNSPlatformMemCopy(ptr, rdb->data, rr->rdlength);
2436 return(ptr + rr->rdlength);
2437 }
2438 }
2439
2440 #define IsUnicastUpdate(X) (!mDNSOpaque16IsZero((X)->h.id) && ((X)->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update)
2441
2442 mDNSexport mDNSu8 *PutResourceRecordTTLWithLimit(DNSMessage *const msg, mDNSu8 *ptr, mDNSu16 *count, ResourceRecord *rr, mDNSu32 ttl, const mDNSu8 *limit)
2443 {
2444 mDNSu8 *endofrdata;
2445 mDNSu16 actualLength;
2446 // When sending SRV to conventional DNS server (i.e. in DNS update requests) we should not do name compression on the rdata (RFC 2782)
2447 const DNSMessage *const rdatacompressionbase = (IsUnicastUpdate(msg) && rr->rrtype == kDNSType_SRV) ? mDNSNULL : msg;
2448
2449 if (rr->RecordType == kDNSRecordTypeUnregistered)
2450 {
2451 LogMsg("PutResourceRecordTTLWithLimit ERROR! Attempt to put kDNSRecordTypeUnregistered %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2452 return(ptr);
2453 }
2454
2455 if (!ptr)
2456 {
2457 LogMsg("PutResourceRecordTTLWithLimit ptr is null %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2458 return(mDNSNULL);
2459 }
2460
2461 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->name);
2462 // If we're out-of-space, return mDNSNULL
2463 if (!ptr || ptr + 10 >= limit)
2464 {
2465 LogInfo("PutResourceRecordTTLWithLimit: can't put name, out of space %##s (%s), ptr %p, limit %p", rr->name->c,
2466 DNSTypeName(rr->rrtype), ptr, limit);
2467 return(mDNSNULL);
2468 }
2469 ptr[0] = (mDNSu8)(rr->rrtype >> 8);
2470 ptr[1] = (mDNSu8)(rr->rrtype & 0xFF);
2471 ptr[2] = (mDNSu8)(rr->rrclass >> 8);
2472 ptr[3] = (mDNSu8)(rr->rrclass & 0xFF);
2473 ptr[4] = (mDNSu8)((ttl >> 24) & 0xFF);
2474 ptr[5] = (mDNSu8)((ttl >> 16) & 0xFF);
2475 ptr[6] = (mDNSu8)((ttl >> 8) & 0xFF);
2476 ptr[7] = (mDNSu8)( ttl & 0xFF);
2477 // ptr[8] and ptr[9] filled in *after* we find out how much space the rdata takes
2478
2479 endofrdata = putRData(rdatacompressionbase, ptr+10, limit, rr);
2480 if (!endofrdata)
2481 {
2482 LogInfo("PutResourceRecordTTLWithLimit: Ran out of space in PutResourceRecord for %##s (%s), ptr %p, limit %p", rr->name->c,
2483 DNSTypeName(rr->rrtype), ptr+10, limit);
2484 return(mDNSNULL);
2485 }
2486
2487 // Go back and fill in the actual number of data bytes we wrote
2488 // (actualLength can be less than rdlength when domain name compression is used)
2489 actualLength = (mDNSu16)(endofrdata - ptr - 10);
2490 ptr[8] = (mDNSu8)(actualLength >> 8);
2491 ptr[9] = (mDNSu8)(actualLength & 0xFF);
2492
2493 if (count) (*count)++;
2494 else LogMsg("PutResourceRecordTTL: ERROR: No target count to update for %##s (%s)", rr->name->c, DNSTypeName(rr->rrtype));
2495 return(endofrdata);
2496 }
2497
2498 mDNSlocal mDNSu8 *putEmptyResourceRecord(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, mDNSu16 *count, const AuthRecord *rr)
2499 {
2500 ptr = putDomainNameAsLabels(msg, ptr, limit, rr->resrec.name);
2501 if (!ptr || ptr + 10 > limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
2502 ptr[0] = (mDNSu8)(rr->resrec.rrtype >> 8); // Put type
2503 ptr[1] = (mDNSu8)(rr->resrec.rrtype & 0xFF);
2504 ptr[2] = (mDNSu8)(rr->resrec.rrclass >> 8); // Put class
2505 ptr[3] = (mDNSu8)(rr->resrec.rrclass & 0xFF);
2506 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // TTL is zero
2507 ptr[8] = ptr[9] = 0; // RDATA length is zero
2508 (*count)++;
2509 return(ptr + 10);
2510 }
2511
2512 mDNSexport mDNSu8 *putQuestion(DNSMessage *const msg, mDNSu8 *ptr, const mDNSu8 *const limit, const domainname *const name, mDNSu16 rrtype, mDNSu16 rrclass)
2513 {
2514 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2515 if (!ptr || ptr+4 >= limit) return(mDNSNULL); // If we're out-of-space, return mDNSNULL
2516 ptr[0] = (mDNSu8)(rrtype >> 8);
2517 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2518 ptr[2] = (mDNSu8)(rrclass >> 8);
2519 ptr[3] = (mDNSu8)(rrclass & 0xFF);
2520 msg->h.numQuestions++;
2521 return(ptr+4);
2522 }
2523
2524 // for dynamic updates
2525 mDNSexport mDNSu8 *putZone(DNSMessage *const msg, mDNSu8 *ptr, mDNSu8 *limit, const domainname *zone, mDNSOpaque16 zoneClass)
2526 {
2527 ptr = putDomainNameAsLabels(msg, ptr, limit, zone);
2528 if (!ptr || ptr + 4 > limit) return mDNSNULL; // If we're out-of-space, return NULL
2529 *ptr++ = (mDNSu8)(kDNSType_SOA >> 8);
2530 *ptr++ = (mDNSu8)(kDNSType_SOA & 0xFF);
2531 *ptr++ = zoneClass.b[0];
2532 *ptr++ = zoneClass.b[1];
2533 msg->h.mDNS_numZones++;
2534 return ptr;
2535 }
2536
2537 // for dynamic updates
2538 mDNSexport mDNSu8 *putPrereqNameNotInUse(const domainname *const name, DNSMessage *const msg, mDNSu8 *const ptr, mDNSu8 *const end)
2539 {
2540 AuthRecord prereq;
2541 mDNS_SetupResourceRecord(&prereq, mDNSNULL, mDNSInterface_Any, kDNSQType_ANY, kStandardTTL, 0, AuthRecordAny, mDNSNULL, mDNSNULL);
2542 AssignDomainName(&prereq.namestorage, name);
2543 prereq.resrec.rrtype = kDNSQType_ANY;
2544 prereq.resrec.rrclass = kDNSClass_NONE;
2545 return putEmptyResourceRecord(msg, ptr, end, &msg->h.mDNS_numPrereqs, &prereq);
2546 }
2547
2548 // for dynamic updates
2549 mDNSexport mDNSu8 *putDeletionRecord(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr)
2550 {
2551 // deletion: specify record w/ TTL 0, class NONE
2552 const mDNSu16 origclass = rr->rrclass;
2553 rr->rrclass = kDNSClass_NONE;
2554 ptr = PutResourceRecordTTLJumbo(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0);
2555 rr->rrclass = origclass;
2556 return ptr;
2557 }
2558
2559 // for dynamic updates
2560 mDNSexport mDNSu8 *putDeletionRecordWithLimit(DNSMessage *msg, mDNSu8 *ptr, ResourceRecord *rr, mDNSu8 *limit)
2561 {
2562 // deletion: specify record w/ TTL 0, class NONE
2563 const mDNSu16 origclass = rr->rrclass;
2564 rr->rrclass = kDNSClass_NONE;
2565 ptr = PutResourceRecordTTLWithLimit(msg, ptr, &msg->h.mDNS_numUpdates, rr, 0, limit);
2566 rr->rrclass = origclass;
2567 return ptr;
2568 }
2569
2570 mDNSexport mDNSu8 *putDeleteRRSetWithLimit(DNSMessage *msg, mDNSu8 *ptr, const domainname *name, mDNSu16 rrtype, mDNSu8 *limit)
2571 {
2572 mDNSu16 class = kDNSQClass_ANY;
2573
2574 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2575 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2576 ptr[0] = (mDNSu8)(rrtype >> 8);
2577 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2578 ptr[2] = (mDNSu8)(class >> 8);
2579 ptr[3] = (mDNSu8)(class & 0xFF);
2580 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2581 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2582
2583 msg->h.mDNS_numUpdates++;
2584 return ptr + 10;
2585 }
2586
2587 // for dynamic updates
2588 mDNSexport mDNSu8 *putDeleteAllRRSets(DNSMessage *msg, mDNSu8 *ptr, const domainname *name)
2589 {
2590 const mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
2591 mDNSu16 class = kDNSQClass_ANY;
2592 mDNSu16 rrtype = kDNSQType_ANY;
2593
2594 ptr = putDomainNameAsLabels(msg, ptr, limit, name);
2595 if (!ptr || ptr + 10 >= limit) return mDNSNULL; // If we're out-of-space, return mDNSNULL
2596 ptr[0] = (mDNSu8)(rrtype >> 8);
2597 ptr[1] = (mDNSu8)(rrtype & 0xFF);
2598 ptr[2] = (mDNSu8)(class >> 8);
2599 ptr[3] = (mDNSu8)(class & 0xFF);
2600 ptr[4] = ptr[5] = ptr[6] = ptr[7] = 0; // zero ttl
2601 ptr[8] = ptr[9] = 0; // zero rdlength/rdata
2602
2603 msg->h.mDNS_numUpdates++;
2604 return ptr + 10;
2605 }
2606
2607 // for dynamic updates
2608 mDNSexport mDNSu8 *putUpdateLease(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease)
2609 {
2610 AuthRecord rr;
2611 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2612 rr.resrec.rrclass = NormalMaxDNSMessageData;
2613 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
2614 rr.resrec.rdestimate = sizeof(rdataOPT);
2615 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
2616 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2617 end = PutResourceRecordTTLJumbo(msg, end, &msg->h.numAdditionals, &rr.resrec, 0);
2618 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTL"); return mDNSNULL; }
2619 return end;
2620 }
2621
2622 // for dynamic updates
2623 mDNSexport mDNSu8 *putUpdateLeaseWithLimit(DNSMessage *msg, mDNSu8 *end, mDNSu32 lease, mDNSu8 *limit)
2624 {
2625 AuthRecord rr;
2626 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2627 rr.resrec.rrclass = NormalMaxDNSMessageData;
2628 rr.resrec.rdlength = sizeof(rdataOPT); // One option in this OPT record
2629 rr.resrec.rdestimate = sizeof(rdataOPT);
2630 rr.resrec.rdata->u.opt[0].opt = kDNSOpt_Lease;
2631 rr.resrec.rdata->u.opt[0].u.updatelease = lease;
2632 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, 0, limit);
2633 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2634 return end;
2635 }
2636
2637 mDNSexport mDNSu8 *putDNSSECOption(DNSMessage *msg, mDNSu8 *end, mDNSu8 *limit)
2638 {
2639 AuthRecord rr;
2640 mDNSu32 ttl = 0;
2641
2642 mDNS_SetupResourceRecord(&rr, mDNSNULL, mDNSInterface_Any, kDNSType_OPT, kStandardTTL, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2643 // It is still not clear what the right size is. We will have to fine tune this once we do
2644 // a lot of testing with DNSSEC.
2645 rr.resrec.rrclass = 4096;
2646 rr.resrec.rdlength = 0;
2647 rr.resrec.rdestimate = 0;
2648 // set the DO bit
2649 ttl |= 0x8000;
2650 end = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &rr.resrec, ttl, limit);
2651 if (!end) { LogMsg("ERROR: putUpdateLease - PutResourceRecordTTLWithLimit"); return mDNSNULL; }
2652 return end;
2653 }
2654
2655 mDNSexport mDNSu8 *putHINFO(const mDNS *const m, DNSMessage *const msg, mDNSu8 *end, DomainAuthInfo *authInfo, mDNSu8 *limit)
2656 {
2657 if (authInfo && authInfo->AutoTunnel)
2658 {
2659 AuthRecord hinfo;
2660 mDNSu8 *h = hinfo.rdatastorage.u.data;
2661 mDNSu16 len = 2 + m->HIHardware.c[0] + m->HISoftware.c[0];
2662 mDNSu8 *newptr;
2663 mDNS_SetupResourceRecord(&hinfo, mDNSNULL, mDNSInterface_Any, kDNSType_HINFO, 0, kDNSRecordTypeUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
2664 AppendDomainLabel(&hinfo.namestorage, &m->hostlabel);
2665 AppendDomainName (&hinfo.namestorage, &authInfo->domain);
2666 hinfo.resrec.rroriginalttl = 0;
2667 mDNSPlatformMemCopy(h, &m->HIHardware, 1 + (mDNSu32)m->HIHardware.c[0]);
2668 h += 1 + (int)h[0];
2669 mDNSPlatformMemCopy(h, &m->HISoftware, 1 + (mDNSu32)m->HISoftware.c[0]);
2670 hinfo.resrec.rdlength = len;
2671 hinfo.resrec.rdestimate = len;
2672 newptr = PutResourceRecordTTLWithLimit(msg, end, &msg->h.numAdditionals, &hinfo.resrec, 0, limit);
2673 return newptr;
2674 }
2675 else
2676 return end;
2677 }
2678
2679 // ***************************************************************************
2680 #if COMPILER_LIKES_PRAGMA_MARK
2681 #pragma mark -
2682 #pragma mark - DNS Message Parsing Functions
2683 #endif
2684
2685 mDNSexport mDNSu32 DomainNameHashValue(const domainname *const name)
2686 {
2687 mDNSu32 sum = 0;
2688 const mDNSu8 *c;
2689
2690 for (c = name->c; c[0] != 0 && c[1] != 0; c += 2)
2691 {
2692 sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8) |
2693 (mDNSIsUpperCase(c[1]) ? c[1] + 'a' - 'A' : c[1]);
2694 sum = (sum<<3) | (sum>>29);
2695 }
2696 if (c[0]) sum += ((mDNSIsUpperCase(c[0]) ? c[0] + 'a' - 'A' : c[0]) << 8);
2697 return(sum);
2698 }
2699
2700 mDNSexport void SetNewRData(ResourceRecord *const rr, RData *NewRData, mDNSu16 rdlength)
2701 {
2702 domainname *target;
2703 if (NewRData)
2704 {
2705 rr->rdata = NewRData;
2706 rr->rdlength = rdlength;
2707 }
2708 // Must not try to get target pointer until after updating rr->rdata
2709 target = GetRRDomainNameTarget(rr);
2710 rr->rdlength = GetRDLength(rr, mDNSfalse);
2711 rr->rdestimate = GetRDLength(rr, mDNStrue);
2712 rr->rdatahash = target ? DomainNameHashValue(target) : RDataHashValue(rr);
2713 }
2714
2715 mDNSexport const mDNSu8 *skipDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end)
2716 {
2717 mDNSu16 total = 0;
2718
2719 if (ptr < (mDNSu8*)msg || ptr >= end)
2720 { debugf("skipDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2721
2722 while (1) // Read sequence of labels
2723 {
2724 const mDNSu8 len = *ptr++; // Read length of this label
2725 if (len == 0) return(ptr); // If length is zero, that means this name is complete
2726 switch (len & 0xC0)
2727 {
2728 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2729 { debugf("skipDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2730 if (total + 1 + len >= MAX_DOMAIN_NAME) // Remember: expect at least one more byte for the root label
2731 { debugf("skipDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2732 ptr += len;
2733 total += 1 + len;
2734 break;
2735
2736 case 0x40: debugf("skipDomainName: Extended EDNS0 label types 0x%X not supported", len); return(mDNSNULL);
2737 case 0x80: debugf("skipDomainName: Illegal label length 0x%X", len); return(mDNSNULL);
2738 case 0xC0: return(ptr+1);
2739 }
2740 }
2741 }
2742
2743 // Routine to fetch an FQDN from the DNS message, following compression pointers if necessary.
2744 mDNSexport const mDNSu8 *getDomainName(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end,
2745 domainname *const name)
2746 {
2747 const mDNSu8 *nextbyte = mDNSNULL; // Record where we got to before we started following pointers
2748 mDNSu8 *np = name->c; // Name pointer
2749 const mDNSu8 *const limit = np + MAX_DOMAIN_NAME; // Limit so we don't overrun buffer
2750
2751 if (ptr < (mDNSu8*)msg || ptr >= end)
2752 { debugf("getDomainName: Illegal ptr not within packet boundaries"); return(mDNSNULL); }
2753
2754 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2755
2756 while (1) // Read sequence of labels
2757 {
2758 const mDNSu8 len = *ptr++; // Read length of this label
2759 if (len == 0) break; // If length is zero, that means this name is complete
2760 switch (len & 0xC0)
2761 {
2762 int i;
2763 mDNSu16 offset;
2764
2765 case 0x00: if (ptr + len >= end) // Remember: expect at least one more byte for the root label
2766 { debugf("getDomainName: Malformed domain name (overruns packet end)"); return(mDNSNULL); }
2767 if (np + 1 + len >= limit) // Remember: expect at least one more byte for the root label
2768 { debugf("getDomainName: Malformed domain name (more than 256 characters)"); return(mDNSNULL); }
2769 *np++ = len;
2770 for (i=0; i<len; i++) *np++ = *ptr++;
2771 *np = 0; // Tentatively place the root label here (may be overwritten if we have more labels)
2772 break;
2773
2774 case 0x40: debugf("getDomainName: Extended EDNS0 label types 0x%X not supported in name %##s", len, name->c);
2775 return(mDNSNULL);
2776
2777 case 0x80: debugf("getDomainName: Illegal label length 0x%X in domain name %##s", len, name->c); return(mDNSNULL);
2778
2779 case 0xC0: offset = (mDNSu16)((((mDNSu16)(len & 0x3F)) << 8) | *ptr++);
2780 if (!nextbyte) nextbyte = ptr; // Record where we got to before we started following pointers
2781 ptr = (mDNSu8 *)msg + offset;
2782 if (ptr < (mDNSu8*)msg || ptr >= end)
2783 { debugf("getDomainName: Illegal compression pointer not within packet boundaries"); return(mDNSNULL); }
2784 if (*ptr & 0xC0)
2785 { debugf("getDomainName: Compression pointer must point to real label"); return(mDNSNULL); }
2786 break;
2787 }
2788 }
2789
2790 if (nextbyte) return(nextbyte);
2791 else return(ptr);
2792 }
2793
2794 mDNSexport const mDNSu8 *skipResourceRecord(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
2795 {
2796 mDNSu16 pktrdlength;
2797
2798 ptr = skipDomainName(msg, ptr, end);
2799 if (!ptr) { debugf("skipResourceRecord: Malformed RR name"); return(mDNSNULL); }
2800
2801 if (ptr + 10 > end) { debugf("skipResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
2802 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
2803 ptr += 10;
2804 if (ptr + pktrdlength > end) { debugf("skipResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
2805
2806 return(ptr + pktrdlength);
2807 }
2808
2809 // Sanity check whether the NSEC/NSEC3 bitmap is good
2810 mDNSlocal mDNSu8 *SanityCheckBitMap(const mDNSu8 *bmap, const mDNSu8 *end, int len)
2811 {
2812 int win, wlen;
2813
2814 while (bmap < end)
2815 {
2816 if (len < 3)
2817 {
2818 LogInfo("SanityCheckBitMap: invalid length %d", len);
2819 return mDNSNULL;
2820 }
2821
2822 win = *bmap++;
2823 wlen = *bmap++;
2824 len -= 2;
2825 if (len < wlen || wlen < 1 || wlen > 32)
2826 {
2827 LogInfo("SanityCheckBitMap: invalid window length %d", wlen);
2828 return mDNSNULL;
2829 }
2830 if (win < 0 || win >= 256)
2831 {
2832 LogInfo("SanityCheckBitMap: invalid window %d", win);
2833 return mDNSNULL;
2834 }
2835
2836 bmap += wlen;
2837 len -= wlen;
2838 }
2839 return (mDNSu8 *)bmap;
2840 }
2841
2842 // This function is called with "msg" when we receive a DNS message and needs to parse a single resource record
2843 // pointed to by "ptr". Some resource records like SOA, SRV are converted to host order and also expanded
2844 // (domainnames are expanded to 255 bytes) when stored in memory.
2845 //
2846 // This function can also be called with "NULL" msg to parse a single resource record pointed to by ptr.
2847 // The caller can do this only if the names in the resource records are compressed and validity of the
2848 // resource record has already been done before. DNSSEC currently uses it this way.
2849 mDNSexport mDNSBool SetRData(const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *end,
2850 LargeCacheRecord *const largecr, mDNSu16 rdlength)
2851 {
2852 CacheRecord *const rr = &largecr->r;
2853 RDataBody2 *const rdb = (RDataBody2 *)rr->smallrdatastorage.data;
2854
2855 switch (rr->resrec.rrtype)
2856 {
2857 case kDNSType_A:
2858 if (rdlength != sizeof(mDNSv4Addr))
2859 goto fail;
2860 rdb->ipv4.b[0] = ptr[0];
2861 rdb->ipv4.b[1] = ptr[1];
2862 rdb->ipv4.b[2] = ptr[2];
2863 rdb->ipv4.b[3] = ptr[3];
2864 break;
2865
2866 case kDNSType_NS:
2867 case kDNSType_MD:
2868 case kDNSType_MF:
2869 case kDNSType_CNAME:
2870 case kDNSType_MB:
2871 case kDNSType_MG:
2872 case kDNSType_MR:
2873 case kDNSType_PTR:
2874 case kDNSType_NSAP_PTR:
2875 case kDNSType_DNAME:
2876 if (msg)
2877 {
2878 ptr = getDomainName(msg, ptr, end, &rdb->name);
2879 }
2880 else
2881 {
2882 AssignDomainName(&rdb->name, (domainname *)ptr);
2883 ptr += DomainNameLength(&rdb->name);
2884 }
2885 if (ptr != end)
2886 {
2887 debugf("SetRData: Malformed CNAME/PTR RDATA name");
2888 goto fail;
2889 }
2890 break;
2891
2892 case kDNSType_SOA:
2893 if (msg)
2894 {
2895 ptr = getDomainName(msg, ptr, end, &rdb->soa.mname);
2896 }
2897 else
2898 {
2899 AssignDomainName(&rdb->soa.mname, (domainname *)ptr);
2900 ptr += DomainNameLength(&rdb->soa.mname);
2901 }
2902 if (!ptr)
2903 {
2904 debugf("SetRData: Malformed SOA RDATA mname");
2905 goto fail;
2906 }
2907 if (msg)
2908 {
2909 ptr = getDomainName(msg, ptr, end, &rdb->soa.rname);
2910 }
2911 else
2912 {
2913 AssignDomainName(&rdb->soa.rname, (domainname *)ptr);
2914 ptr += DomainNameLength(&rdb->soa.rname);
2915 }
2916 if (!ptr)
2917 {
2918 debugf("SetRData: Malformed SOA RDATA rname");
2919 goto fail;
2920 }
2921 if (ptr + 0x14 != end)
2922 {
2923 debugf("SetRData: Malformed SOA RDATA");
2924 goto fail;
2925 }
2926 rdb->soa.serial = (mDNSs32) ((mDNSs32)ptr[0x00] << 24 | (mDNSs32)ptr[0x01] << 16 | (mDNSs32)ptr[0x02] << 8 | ptr[0x03]);
2927 rdb->soa.refresh = (mDNSu32) ((mDNSu32)ptr[0x04] << 24 | (mDNSu32)ptr[0x05] << 16 | (mDNSu32)ptr[0x06] << 8 | ptr[0x07]);
2928 rdb->soa.retry = (mDNSu32) ((mDNSu32)ptr[0x08] << 24 | (mDNSu32)ptr[0x09] << 16 | (mDNSu32)ptr[0x0A] << 8 | ptr[0x0B]);
2929 rdb->soa.expire = (mDNSu32) ((mDNSu32)ptr[0x0C] << 24 | (mDNSu32)ptr[0x0D] << 16 | (mDNSu32)ptr[0x0E] << 8 | ptr[0x0F]);
2930 rdb->soa.min = (mDNSu32) ((mDNSu32)ptr[0x10] << 24 | (mDNSu32)ptr[0x11] << 16 | (mDNSu32)ptr[0x12] << 8 | ptr[0x13]);
2931 break;
2932
2933 case kDNSType_NULL:
2934 case kDNSType_HINFO:
2935 case kDNSType_TXT:
2936 case kDNSType_X25:
2937 case kDNSType_ISDN:
2938 case kDNSType_LOC:
2939 case kDNSType_DHCID:
2940 rr->resrec.rdlength = rdlength;
2941 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
2942 break;
2943
2944 case kDNSType_MX:
2945 case kDNSType_AFSDB:
2946 case kDNSType_RT:
2947 case kDNSType_KX:
2948 // Preference + domainname
2949 if (rdlength < 3)
2950 goto fail;
2951 rdb->mx.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
2952 ptr += 2;
2953 if (msg)
2954 {
2955 ptr = getDomainName(msg, ptr, end, &rdb->mx.exchange);
2956 }
2957 else
2958 {
2959 AssignDomainName(&rdb->mx.exchange, (domainname *)ptr);
2960 ptr += DomainNameLength(&rdb->mx.exchange);
2961 }
2962 if (ptr != end)
2963 {
2964 debugf("SetRData: Malformed MX name");
2965 goto fail;
2966 }
2967 break;
2968
2969 case kDNSType_MINFO:
2970 case kDNSType_RP:
2971 // Domainname + domainname
2972 if (msg)
2973 {
2974 ptr = getDomainName(msg, ptr, end, &rdb->rp.mbox);
2975 }
2976 else
2977 {
2978 AssignDomainName(&rdb->rp.mbox, (domainname *)ptr);
2979 ptr += DomainNameLength(&rdb->rp.mbox);
2980 }
2981 if (!ptr)
2982 {
2983 debugf("SetRData: Malformed RP mbox");
2984 goto fail;
2985 }
2986 if (msg)
2987 {
2988 ptr = getDomainName(msg, ptr, end, &rdb->rp.txt);
2989 }
2990 else
2991 {
2992 AssignDomainName(&rdb->rp.txt, (domainname *)ptr);
2993 ptr += DomainNameLength(&rdb->rp.txt);
2994 }
2995 if (ptr != end)
2996 {
2997 debugf("SetRData: Malformed RP txt");
2998 goto fail;
2999 }
3000 break;
3001
3002 case kDNSType_PX:
3003 // Preference + domainname + domainname
3004 if (rdlength < 4)
3005 goto fail;
3006 rdb->px.preference = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3007 ptr += 2;
3008 if (msg)
3009 {
3010 ptr = getDomainName(msg, ptr, end, &rdb->px.map822);
3011 }
3012 else
3013 {
3014 AssignDomainName(&rdb->px.map822, (domainname *)ptr);
3015 ptr += DomainNameLength(&rdb->px.map822);
3016 }
3017 if (!ptr)
3018 {
3019 debugf("SetRData: Malformed PX map822");
3020 goto fail;
3021 }
3022 if (msg)
3023 {
3024 ptr = getDomainName(msg, ptr, end, &rdb->px.mapx400);
3025 }
3026 else
3027 {
3028 AssignDomainName(&rdb->px.mapx400, (domainname *)ptr);
3029 ptr += DomainNameLength(&rdb->px.mapx400);
3030 }
3031 if (ptr != end)
3032 {
3033 debugf("SetRData: Malformed PX mapx400");
3034 goto fail;
3035 }
3036 break;
3037
3038 case kDNSType_AAAA:
3039 if (rdlength != sizeof(mDNSv6Addr))
3040 goto fail;
3041 mDNSPlatformMemCopy(&rdb->ipv6, ptr, sizeof(rdb->ipv6));
3042 break;
3043
3044 case kDNSType_SRV:
3045 // Priority + weight + port + domainname
3046 if (rdlength < 7)
3047 goto fail;
3048 rdb->srv.priority = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3049 rdb->srv.weight = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3050 rdb->srv.port.b[0] = ptr[4];
3051 rdb->srv.port.b[1] = ptr[5];
3052 ptr += 6;
3053 if (msg)
3054 {
3055 ptr = getDomainName(msg, ptr, end, &rdb->srv.target);
3056 }
3057 else
3058 {
3059 AssignDomainName(&rdb->srv.target, (domainname *)ptr);
3060 ptr += DomainNameLength(&rdb->srv.target);
3061 }
3062 if (ptr != end)
3063 {
3064 debugf("SetRData: Malformed SRV RDATA name");
3065 goto fail;
3066 }
3067 break;
3068
3069 case kDNSType_NAPTR:
3070 {
3071 int savelen, len;
3072 domainname name;
3073 const mDNSu8 *orig = ptr;
3074
3075 // Make sure the data is parseable and within the limits. DNSSEC code looks at
3076 // the domain name in the end for a valid domainname.
3077 //
3078 // Fixed length: Order, preference (4 bytes)
3079 // Variable length: flags, service, regexp, domainname
3080
3081 if (rdlength < 8)
3082 goto fail;
3083 // Order, preference.
3084 ptr += 4;
3085 // Parse flags, Service and Regexp
3086 // length in the first byte does not include the length byte itself
3087 len = *ptr + 1;
3088 ptr += len;
3089 if (ptr >= end)
3090 {
3091 LogInfo("SetRData: Malformed NAPTR flags");
3092 goto fail;
3093 }
3094
3095 // Service
3096 len = *ptr + 1;
3097 ptr += len;
3098 if (ptr >= end)
3099 {
3100 LogInfo("SetRData: Malformed NAPTR service");
3101 goto fail;
3102 }
3103
3104 // Regexp
3105 len = *ptr + 1;
3106 ptr += len;
3107 if (ptr >= end)
3108 {
3109 LogInfo("SetRData: Malformed NAPTR regexp");
3110 goto fail;
3111 }
3112
3113 savelen = ptr - orig;
3114
3115 // RFC 2915 states that name compression is not allowed for this field. But RFC 3597
3116 // states that for NAPTR we should decompress. We make sure that we store the full
3117 // name rather than the compressed name
3118 if (msg)
3119 {
3120 ptr = getDomainName(msg, ptr, end, &name);
3121 }
3122 else
3123 {
3124 AssignDomainName(&name, (domainname *)ptr);
3125 ptr += DomainNameLength(&name);
3126 }
3127 if (ptr != end)
3128 {
3129 LogInfo("SetRData: Malformed NAPTR RDATA name");
3130 goto fail;
3131 }
3132
3133 rr->resrec.rdlength = savelen + DomainNameLength(&name);
3134 // The uncompressed size should not exceed the limits
3135 if (rr->resrec.rdlength > MaximumRDSize)
3136 {
3137 LogInfo("SetRData: Malformed NAPTR rdlength %d, rr->resrec.rdlength %d, "
3138 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3139 goto fail;
3140 }
3141 mDNSPlatformMemCopy(rdb->data, orig, savelen);
3142 AssignDomainName((domainname *)(rdb->data + savelen), &name);
3143 break;
3144 }
3145 case kDNSType_OPT: {
3146 mDNSu8 *dataend = rr->resrec.rdata->u.data;
3147 rdataOPT *opt = rr->resrec.rdata->u.opt;
3148 rr->resrec.rdlength = 0;
3149 while (ptr < end && (mDNSu8 *)(opt+1) < &dataend[MaximumRDSize])
3150 {
3151 const rdataOPT *const currentopt = opt;
3152 if (ptr + 4 > end) { LogInfo("SetRData: OPT RDATA ptr + 4 > end"); goto fail; }
3153 opt->opt = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3154 opt->optlen = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3155 ptr += 4;
3156 if (ptr + opt->optlen > end) { LogInfo("SetRData: ptr + opt->optlen > end"); goto fail; }
3157 switch (opt->opt)
3158 {
3159 case kDNSOpt_LLQ:
3160 if (opt->optlen == DNSOpt_LLQData_Space - 4)
3161 {
3162 opt->u.llq.vers = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]);
3163 opt->u.llq.llqOp = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]);
3164 opt->u.llq.err = (mDNSu16)((mDNSu16)ptr[4] << 8 | ptr[5]);
3165 mDNSPlatformMemCopy(opt->u.llq.id.b, ptr+6, 8);
3166 opt->u.llq.llqlease = (mDNSu32) ((mDNSu32)ptr[14] << 24 | (mDNSu32)ptr[15] << 16 | (mDNSu32)ptr[16] << 8 | ptr[17]);
3167 if (opt->u.llq.llqlease > 0x70000000UL / mDNSPlatformOneSecond)
3168 opt->u.llq.llqlease = 0x70000000UL / mDNSPlatformOneSecond;
3169 opt++;
3170 }
3171 break;
3172 case kDNSOpt_Lease:
3173 if (opt->optlen == DNSOpt_LeaseData_Space - 4)
3174 {
3175 opt->u.updatelease = (mDNSu32) ((mDNSu32)ptr[0] << 24 | (mDNSu32)ptr[1] << 16 | (mDNSu32)ptr[2] << 8 | ptr[3]);
3176 if (opt->u.updatelease > 0x70000000UL / mDNSPlatformOneSecond)
3177 opt->u.updatelease = 0x70000000UL / mDNSPlatformOneSecond;
3178 opt++;
3179 }
3180 break;
3181 case kDNSOpt_Owner:
3182 if (ValidOwnerLength(opt->optlen))
3183 {
3184 opt->u.owner.vers = ptr[0];
3185 opt->u.owner.seq = ptr[1];
3186 mDNSPlatformMemCopy(opt->u.owner.HMAC.b, ptr+2, 6); // 6-byte MAC address
3187 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+2, 6); // 6-byte MAC address
3188 opt->u.owner.password = zeroEthAddr;
3189 if (opt->optlen >= DNSOpt_OwnerData_ID_Wake_Space-4)
3190 {
3191 mDNSPlatformMemCopy(opt->u.owner.IMAC.b, ptr+8, 6); // 6-byte MAC address
3192 // This mDNSPlatformMemCopy is safe because the ValidOwnerLength(opt->optlen) check above
3193 // ensures that opt->optlen is no more than DNSOpt_OwnerData_ID_Wake_PW6_Space - 4
3194 if (opt->optlen > DNSOpt_OwnerData_ID_Wake_Space-4)
3195 mDNSPlatformMemCopy(opt->u.owner.password.b, ptr+14, opt->optlen - (DNSOpt_OwnerData_ID_Wake_Space-4));
3196 }
3197 opt++;
3198 }
3199 break;
3200 case kDNSOpt_Trace:
3201 if (opt->optlen == DNSOpt_TraceData_Space - 4)
3202 {
3203 opt->u.tracer.platf = ptr[0];
3204 opt->u.tracer.mDNSv = (mDNSu32) ((mDNSu32)ptr[1] << 24 | (mDNSu32)ptr[2] << 16 | (mDNSu32)ptr[3] << 8 | ptr[4]);
3205 opt++;
3206 }
3207 else
3208 {
3209 opt->u.tracer.platf = 0xFF;
3210 opt->u.tracer.mDNSv = 0xFFFFFFFF;
3211 opt++;
3212 }
3213 break;
3214 }
3215 ptr += currentopt->optlen;
3216 }
3217 rr->resrec.rdlength = (mDNSu16)((mDNSu8*)opt - rr->resrec.rdata->u.data);
3218 if (ptr != end) { LogInfo("SetRData: Malformed OptRdata"); goto fail; }
3219 break;
3220 }
3221
3222 case kDNSType_NSEC: {
3223 domainname name;
3224 int len = rdlength;
3225 int bmaplen, dlen;
3226 const mDNSu8 *orig = ptr;
3227 const mDNSu8 *bmap;
3228
3229 if (msg)
3230 {
3231 ptr = getDomainName(msg, ptr, end, &name);
3232 }
3233 else
3234 {
3235 AssignDomainName(&name, (domainname *)ptr);
3236 ptr += DomainNameLength(&name);
3237 }
3238 if (!ptr)
3239 {
3240 LogInfo("SetRData: Malformed NSEC nextname");
3241 goto fail;
3242 }
3243
3244 dlen = DomainNameLength(&name);
3245
3246 // Multicast NSECs use name compression for this field unlike the unicast case which
3247 // does not use compression. And multicast case always succeeds in compression. So,
3248 // the rdlength includes only the compressed space in that case. So, can't
3249 // use the DomainNameLength of name to reduce the length here.
3250 len -= (ptr - orig);
3251 bmaplen = len; // Save the length of the bitmap
3252 bmap = ptr;
3253 ptr = SanityCheckBitMap(bmap, end, len);
3254 if (!ptr)
3255 goto fail;
3256 if (ptr != end)
3257 {
3258 LogInfo("SetRData: Malformed NSEC length not right");
3259 goto fail;
3260 }
3261
3262 // Initialize the right length here. When we call SetNewRData below which in turn calls
3263 // GetRDLength and for NSEC case, it assumes that rdlength is intitialized
3264 rr->resrec.rdlength = DomainNameLength(&name) + bmaplen;
3265
3266 // Do we have space after the name expansion ?
3267 if (rr->resrec.rdlength > MaximumRDSize)
3268 {
3269 LogInfo("SetRData: Malformed NSEC rdlength %d, rr->resrec.rdlength %d, "
3270 "bmaplen %d, name %##s", rdlength, rr->resrec.rdlength, name.c);
3271 goto fail;
3272 }
3273 AssignDomainName((domainname *)rdb->data, &name);
3274 mDNSPlatformMemCopy(rdb->data + dlen, bmap, bmaplen);
3275 break;
3276 }
3277 case kDNSType_NSEC3:
3278 {
3279 rdataNSEC3 *nsec3 = (rdataNSEC3 *)ptr;
3280 mDNSu8 *p = (mDNSu8 *)&nsec3->salt;
3281 int hashLength, bitmaplen;
3282
3283 if (rdlength < NSEC3_FIXED_SIZE + 1)
3284 {
3285 LogInfo("SetRData: NSEC3 too small length %d", rdlength);
3286 goto fail;
3287 }
3288 if (nsec3->alg != SHA1_DIGEST_TYPE)
3289 {
3290 LogInfo("SetRData: nsec3 alg %d not supported", nsec3->alg);
3291 goto fail;
3292 }
3293 if (swap16(nsec3->iterations) > NSEC3_MAX_ITERATIONS)
3294 {
3295 LogInfo("SetRData: nsec3 iteration count %d too big", swap16(nsec3->iterations));
3296 goto fail;
3297 }
3298 p += nsec3->saltLength;
3299 // There should at least be one byte beyond saltLength
3300 if (p >= end)
3301 {
3302 LogInfo("SetRData: nsec3 too small, at saltlength %d, p %p, end %p", nsec3->saltLength, p, end);
3303 goto fail;
3304 }
3305 // p is pointing at hashLength
3306 hashLength = (int)*p++;
3307 if (!hashLength)
3308 {
3309 LogInfo("SetRData: hashLength zero");
3310 goto fail;
3311 }
3312 p += hashLength;
3313 if (p > end)
3314 {
3315 LogInfo("SetRData: nsec3 too small, at hashLength %d, p %p, end %p", hashLength, p, end);
3316 goto fail;
3317 }
3318
3319 bitmaplen = rdlength - (int)(p - ptr);
3320 p = SanityCheckBitMap(p, end, bitmaplen);
3321 if (!p)
3322 goto fail;
3323 rr->resrec.rdlength = rdlength;
3324 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3325 break;
3326 }
3327 case kDNSType_TKEY:
3328 case kDNSType_TSIG:
3329 {
3330 domainname name;
3331 int dlen, rlen;
3332
3333 // The name should not be compressed. But we take the conservative approach
3334 // and uncompress the name before we store it.
3335 if (msg)
3336 {
3337 ptr = getDomainName(msg, ptr, end, &name);
3338 }
3339 else
3340 {
3341 AssignDomainName(&name, (domainname *)ptr);
3342 ptr += DomainNameLength(&name);
3343 }
3344 if (!ptr)
3345 {
3346 LogInfo("SetRData: Malformed name for TSIG/TKEY type %d", rr->resrec.rrtype);
3347 goto fail;
3348 }
3349 dlen = DomainNameLength(&name);
3350 rlen = end - ptr;
3351 rr->resrec.rdlength = dlen + rlen;
3352 AssignDomainName((domainname *)rdb->data, &name);
3353 mDNSPlatformMemCopy(rdb->data + dlen, ptr, rlen);
3354 break;
3355 }
3356 case kDNSType_RRSIG:
3357 {
3358 const mDNSu8 *sig = ptr + RRSIG_FIXED_SIZE;
3359 const mDNSu8 *orig = sig;
3360 domainname name;
3361 if (rdlength < RRSIG_FIXED_SIZE + 1)
3362 {
3363 LogInfo("SetRData: RRSIG too small length %d", rdlength);
3364 goto fail;
3365 }
3366 if (msg)
3367 {
3368 sig = getDomainName(msg, sig, end, &name);
3369 }
3370 else
3371 {
3372 AssignDomainName(&name, (domainname *)sig);
3373 sig += DomainNameLength(&name);
3374 }
3375 if (!sig)
3376 {
3377 LogInfo("SetRData: Malformed RRSIG record");
3378 goto fail;
3379 }
3380
3381 if ((sig - orig) != DomainNameLength(&name))
3382 {
3383 LogInfo("SetRData: Malformed RRSIG record, signer name compression");
3384 goto fail;
3385 }
3386 // Just ensure that we have at least one byte of the signature
3387 if (sig + 1 >= end)
3388 {
3389 LogInfo("SetRData: Not enough bytes for signature type %d", rr->resrec.rrtype);
3390 goto fail;
3391 }
3392 rr->resrec.rdlength = rdlength;
3393 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3394 break;
3395 }
3396 case kDNSType_DNSKEY:
3397 {
3398 if (rdlength < DNSKEY_FIXED_SIZE + 1)
3399 {
3400 LogInfo("SetRData: DNSKEY too small length %d", rdlength);
3401 goto fail;
3402 }
3403 rr->resrec.rdlength = rdlength;
3404 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3405 break;
3406 }
3407 case kDNSType_DS:
3408 {
3409 if (rdlength < DS_FIXED_SIZE + 1)
3410 {
3411 LogInfo("SetRData: DS too small length %d", rdlength);
3412 goto fail;
3413 }
3414 rr->resrec.rdlength = rdlength;
3415 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3416 break;
3417 }
3418 default:
3419 debugf("SetRData: Warning! Reading resource type %d (%s) as opaque data",
3420 rr->resrec.rrtype, DNSTypeName(rr->resrec.rrtype));
3421 // Note: Just because we don't understand the record type, that doesn't
3422 // mean we fail. The DNS protocol specifies rdlength, so we can
3423 // safely skip over unknown records and ignore them.
3424 // We also grab a binary copy of the rdata anyway, since the caller
3425 // might know how to interpret it even if we don't.
3426 rr->resrec.rdlength = rdlength;
3427 mDNSPlatformMemCopy(rdb->data, ptr, rdlength);
3428 break;
3429 }
3430 return mDNStrue;
3431 fail:
3432 return mDNSfalse;
3433 }
3434
3435 mDNSexport const mDNSu8 *GetLargeResourceRecord(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr,
3436 const mDNSu8 *end, const mDNSInterfaceID InterfaceID, mDNSu8 RecordType, LargeCacheRecord *const largecr)
3437 {
3438 CacheRecord *const rr = &largecr->r;
3439 mDNSu16 pktrdlength;
3440
3441 if (largecr == &m->rec && m->rec.r.resrec.RecordType)
3442 {
3443 LogMsg("GetLargeResourceRecord: m->rec appears to be already in use for %s", CRDisplayString(m, &m->rec.r));
3444 #if ForceAlerts
3445 *(long*)0 = 0;
3446 #endif
3447 }
3448
3449 rr->next = mDNSNULL;
3450 rr->resrec.name = &largecr->namestorage;
3451
3452 rr->NextInKAList = mDNSNULL;
3453 rr->TimeRcvd = m ? m->timenow : 0;
3454 rr->DelayDelivery = 0;
3455 rr->NextRequiredQuery = m ? m->timenow : 0; // Will be updated to the real value when we call SetNextCacheCheckTimeForRecord()
3456 rr->LastUsed = m ? m->timenow : 0;
3457 rr->CRActiveQuestion = mDNSNULL;
3458 rr->UnansweredQueries = 0;
3459 rr->LastUnansweredTime= 0;
3460 #if ENABLE_MULTI_PACKET_QUERY_SNOOPING
3461 rr->MPUnansweredQ = 0;
3462 rr->MPLastUnansweredQT= 0;
3463 rr->MPUnansweredKA = 0;
3464 rr->MPExpectingKA = mDNSfalse;
3465 #endif
3466 rr->NextInCFList = mDNSNULL;
3467
3468 rr->resrec.InterfaceID = InterfaceID;
3469 rr->resrec.rDNSServer = mDNSNULL;
3470
3471 ptr = getDomainName(msg, ptr, end, &largecr->namestorage); // Will bail out correctly if ptr is NULL
3472 if (!ptr) { debugf("GetLargeResourceRecord: Malformed RR name"); return(mDNSNULL); }
3473 rr->resrec.namehash = DomainNameHashValue(rr->resrec.name);
3474
3475 if (ptr + 10 > end) { debugf("GetLargeResourceRecord: Malformed RR -- no type/class/ttl/len!"); return(mDNSNULL); }
3476
3477 rr->resrec.rrtype = (mDNSu16) ((mDNSu16)ptr[0] << 8 | ptr[1]);
3478 rr->resrec.rrclass = (mDNSu16)(((mDNSu16)ptr[2] << 8 | ptr[3]) & kDNSClass_Mask);
3479 rr->resrec.rroriginalttl = (mDNSu32) ((mDNSu32)ptr[4] << 24 | (mDNSu32)ptr[5] << 16 | (mDNSu32)ptr[6] << 8 | ptr[7]);
3480 if (rr->resrec.rroriginalttl > 0x70000000UL / mDNSPlatformOneSecond && (mDNSs32)rr->resrec.rroriginalttl != -1)
3481 rr->resrec.rroriginalttl = 0x70000000UL / mDNSPlatformOneSecond;
3482 // Note: We don't have to adjust m->NextCacheCheck here -- this is just getting a record into memory for
3483 // us to look at. If we decide to copy it into the cache, then we'll update m->NextCacheCheck accordingly.
3484 pktrdlength = (mDNSu16)((mDNSu16)ptr[8] << 8 | ptr[9]);
3485
3486 // If mDNS record has cache-flush bit set, we mark it unique
3487 // For uDNS records, all are implicitly deemed unique (a single DNS server is always
3488 // authoritative for the entire RRSet), unless this is a truncated response
3489 if (ptr[2] & (kDNSClass_UniqueRRSet >> 8) || (!InterfaceID && !(msg->h.flags.b[0] & kDNSFlag0_TC)))
3490 RecordType |= kDNSRecordTypePacketUniqueMask;
3491 ptr += 10;
3492 if (ptr + pktrdlength > end) { debugf("GetLargeResourceRecord: RDATA exceeds end of packet"); return(mDNSNULL); }
3493 end = ptr + pktrdlength; // Adjust end to indicate the end of the rdata for this resource record
3494
3495 rr->resrec.rdata = (RData*)&rr->smallrdatastorage;
3496 rr->resrec.rdata->MaxRDLength = MaximumRDSize;
3497
3498 if (pktrdlength > MaximumRDSize)
3499 {
3500 LogInfo("GetLargeResourceRecord: %s rdata size (%d) exceeds storage (%d)",
3501 DNSTypeName(rr->resrec.rrtype), pktrdlength, rr->resrec.rdata->MaxRDLength);
3502 goto fail;
3503 }
3504
3505 if (!RecordType) LogMsg("GetLargeResourceRecord: No RecordType for %##s", rr->resrec.name->c);
3506
3507 // IMPORTANT: Any record type we understand and unpack into a structure containing domainnames needs to have corresponding
3508 // cases in SameRDataBody() and RDataHashValue() to do a semantic comparison (or checksum) of the structure instead of a blind
3509 // bitwise memory compare (or sum). This is because a domainname is a fixed size structure holding variable-length data.
3510 // Any bytes past the logical end of the name are undefined, and a blind bitwise memory compare may indicate that
3511 // two domainnames are different when semantically they are the same name and it's only the unused bytes that differ.
3512 if (rr->resrec.rrclass == kDNSQClass_ANY && pktrdlength == 0) // Used in update packets to mean "Delete An RRset" (RFC 2136)
3513 rr->resrec.rdlength = 0;
3514 else if (!SetRData(msg, ptr, end, largecr, pktrdlength))
3515 goto fail;
3516
3517 SetNewRData(&rr->resrec, mDNSNULL, 0); // Sets rdlength, rdestimate, rdatahash for us
3518
3519 // Success! Now fill in RecordType to show this record contains valid data
3520 rr->resrec.RecordType = RecordType;
3521 return(end);
3522
3523 fail:
3524 // If we were unable to parse the rdata in this record, we indicate that by
3525 // returing a 'kDNSRecordTypePacketNegative' record with rdlength set to zero
3526 rr->resrec.RecordType = kDNSRecordTypePacketNegative;
3527 rr->resrec.rdlength = 0;
3528 rr->resrec.rdestimate = 0;
3529 rr->resrec.rdatahash = 0;
3530 return(end);
3531 }
3532
3533 mDNSexport const mDNSu8 *skipQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end)
3534 {
3535 ptr = skipDomainName(msg, ptr, end);
3536 if (!ptr) { debugf("skipQuestion: Malformed domain name in DNS question section"); return(mDNSNULL); }
3537 if (ptr+4 > end) { debugf("skipQuestion: Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3538 return(ptr+4);
3539 }
3540
3541 mDNSexport const mDNSu8 *getQuestion(const DNSMessage *msg, const mDNSu8 *ptr, const mDNSu8 *end, const mDNSInterfaceID InterfaceID,
3542 DNSQuestion *question)
3543 {
3544 mDNSPlatformMemZero(question, sizeof(*question));
3545 question->InterfaceID = InterfaceID;
3546 if (!InterfaceID) question->TargetQID = onesID; // In DNSQuestions we use TargetQID as the indicator of whether it's unicast or multicast
3547 ptr = getDomainName(msg, ptr, end, &question->qname);
3548 if (!ptr) { debugf("Malformed domain name in DNS question section"); return(mDNSNULL); }
3549 if (ptr+4 > end) { debugf("Malformed DNS question section -- no query type and class!"); return(mDNSNULL); }
3550
3551 question->qnamehash = DomainNameHashValue(&question->qname);
3552 question->qtype = (mDNSu16)((mDNSu16)ptr[0] << 8 | ptr[1]); // Get type
3553 question->qclass = (mDNSu16)((mDNSu16)ptr[2] << 8 | ptr[3]); // and class
3554 return(ptr+4);
3555 }
3556
3557 mDNSexport const mDNSu8 *LocateAnswers(const DNSMessage *const msg, const mDNSu8 *const end)
3558 {
3559 int i;
3560 const mDNSu8 *ptr = msg->data;
3561 for (i = 0; i < msg->h.numQuestions && ptr; i++) ptr = skipQuestion(msg, ptr, end);
3562 return(ptr);
3563 }
3564
3565 mDNSexport const mDNSu8 *LocateAuthorities(const DNSMessage *const msg, const mDNSu8 *const end)
3566 {
3567 int i;
3568 const mDNSu8 *ptr = LocateAnswers(msg, end);
3569 for (i = 0; i < msg->h.numAnswers && ptr; i++) ptr = skipResourceRecord(msg, ptr, end);
3570 return(ptr);
3571 }
3572
3573 mDNSexport const mDNSu8 *LocateAdditionals(const DNSMessage *const msg, const mDNSu8 *const end)
3574 {
3575 int i;
3576 const mDNSu8 *ptr = LocateAuthorities(msg, end);
3577 for (i = 0; i < msg->h.numAuthorities; i++) ptr = skipResourceRecord(msg, ptr, end);
3578 return (ptr);
3579 }
3580
3581 mDNSexport const mDNSu8 *LocateOptRR(const DNSMessage *const msg, const mDNSu8 *const end, int minsize)
3582 {
3583 int i;
3584 const mDNSu8 *ptr = LocateAdditionals(msg, end);
3585
3586 // Locate the OPT record.
3587 // According to RFC 2671, "One OPT pseudo-RR can be added to the additional data section of either a request or a response."
3588 // This implies that there may be *at most* one OPT record per DNS message, in the Additional Section,
3589 // but not necessarily the *last* entry in the Additional Section.
3590 for (i = 0; ptr && i < msg->h.numAdditionals; i++)
3591 {
3592 if (ptr + DNSOpt_Header_Space + minsize <= end && // Make sure we have 11+minsize bytes of data
3593 ptr[0] == 0 && // Name must be root label
3594 ptr[1] == (kDNSType_OPT >> 8 ) && // rrtype OPT
3595 ptr[2] == (kDNSType_OPT & 0xFF) &&
3596 ((mDNSu16)ptr[9] << 8 | (mDNSu16)ptr[10]) >= (mDNSu16)minsize)
3597 return(ptr);
3598 else
3599 ptr = skipResourceRecord(msg, ptr, end);
3600 }
3601 return(mDNSNULL);
3602 }
3603
3604 // On success, GetLLQOptData returns pointer to storage within shared "m->rec";
3605 // it is caller's responsibilty to clear m->rec.r.resrec.RecordType after use
3606 // Note: An OPT RDataBody actually contains one or more variable-length rdataOPT objects packed together
3607 // The code that currently calls this assumes there's only one, instead of iterating through the set
3608 mDNSexport const rdataOPT *GetLLQOptData(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *const end)
3609 {
3610 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LLQData_Space);
3611 if (ptr)
3612 {
3613 ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3614 if (ptr && m->rec.r.resrec.RecordType != kDNSRecordTypePacketNegative) return(&m->rec.r.resrec.rdata->u.opt[0]);
3615 }
3616 return(mDNSNULL);
3617 }
3618
3619 // Get the lease life of records in a dynamic update
3620 // returns 0 on error or if no lease present
3621 mDNSexport mDNSu32 GetPktLease(mDNS *m, DNSMessage *msg, const mDNSu8 *end)
3622 {
3623 mDNSu32 result = 0;
3624 const mDNSu8 *ptr = LocateOptRR(msg, end, DNSOpt_LeaseData_Space);
3625 if (ptr) ptr = GetLargeResourceRecord(m, msg, ptr, end, 0, kDNSRecordTypePacketAdd, &m->rec);
3626 if (ptr && m->rec.r.resrec.rdlength >= DNSOpt_LeaseData_Space && m->rec.r.resrec.rdata->u.opt[0].opt == kDNSOpt_Lease)
3627 result = m->rec.r.resrec.rdata->u.opt[0].u.updatelease;
3628 m->rec.r.resrec.RecordType = 0; // Clear RecordType to show we're not still using it
3629 return(result);
3630 }
3631
3632 mDNSlocal const mDNSu8 *DumpRecords(mDNS *const m, const DNSMessage *const msg, const mDNSu8 *ptr, const mDNSu8 *const end, int count, char *label)
3633 {
3634 int i;
3635 LogMsg("%2d %s", count, label);
3636 for (i = 0; i < count && ptr; i++)
3637 {
3638 // This puts a LargeCacheRecord on the stack instead of using the shared m->rec storage,
3639 // but since it's only used for debugging (and probably only on OS X, not on
3640 // embedded systems) putting a 9kB object on the stack isn't a big problem.
3641 LargeCacheRecord largecr;
3642 ptr = GetLargeResourceRecord(m, msg, ptr, end, mDNSInterface_Any, kDNSRecordTypePacketAns, &largecr);
3643 if (ptr) LogMsg("%2d TTL%8d %s", i, largecr.r.resrec.rroriginalttl, CRDisplayString(m, &largecr.r));
3644 }
3645 if (!ptr) LogMsg("DumpRecords: ERROR: Premature end of packet data");
3646 return(ptr);
3647 }
3648
3649 #define DNS_OP_Name(X) ( \
3650 (X) == kDNSFlag0_OP_StdQuery ? "" : \
3651 (X) == kDNSFlag0_OP_Iquery ? "Iquery " : \
3652 (X) == kDNSFlag0_OP_Status ? "Status " : \
3653 (X) == kDNSFlag0_OP_Unused3 ? "Unused3 " : \
3654 (X) == kDNSFlag0_OP_Notify ? "Notify " : \
3655 (X) == kDNSFlag0_OP_Update ? "Update " : "?? " )
3656
3657 #define DNS_RC_Name(X) ( \
3658 (X) == kDNSFlag1_RC_NoErr ? "NoErr" : \
3659 (X) == kDNSFlag1_RC_FormErr ? "FormErr" : \
3660 (X) == kDNSFlag1_RC_ServFail ? "ServFail" : \
3661 (X) == kDNSFlag1_RC_NXDomain ? "NXDomain" : \
3662 (X) == kDNSFlag1_RC_NotImpl ? "NotImpl" : \
3663 (X) == kDNSFlag1_RC_Refused ? "Refused" : \
3664 (X) == kDNSFlag1_RC_YXDomain ? "YXDomain" : \
3665 (X) == kDNSFlag1_RC_YXRRSet ? "YXRRSet" : \
3666 (X) == kDNSFlag1_RC_NXRRSet ? "NXRRSet" : \
3667 (X) == kDNSFlag1_RC_NotAuth ? "NotAuth" : \
3668 (X) == kDNSFlag1_RC_NotZone ? "NotZone" : "??" )
3669
3670 // Note: DumpPacket expects the packet header fields in host byte order, not network byte order
3671 mDNSexport void DumpPacket(mDNS *const m, mStatus status, mDNSBool sent, char *transport,
3672 const mDNSAddr *srcaddr, mDNSIPPort srcport,
3673 const mDNSAddr *dstaddr, mDNSIPPort dstport, const DNSMessage *const msg, const mDNSu8 *const end)
3674 {
3675 mDNSBool IsUpdate = ((msg->h.flags.b[0] & kDNSFlag0_OP_Mask) == kDNSFlag0_OP_Update);
3676 const mDNSu8 *ptr = msg->data;
3677 int i;
3678 DNSQuestion q;
3679 char tbuffer[64], sbuffer[64], dbuffer[64] = "";
3680 if (!status) tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), sent ? "Sent" : "Received" )] = 0;
3681 else tbuffer[mDNS_snprintf(tbuffer, sizeof(tbuffer), "ERROR %d %sing", status, sent ? "Send" : "Receive")] = 0;
3682 if (sent) sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "port " )] = 0;
3683 else sbuffer[mDNS_snprintf(sbuffer, sizeof(sbuffer), "%#a:", srcaddr)] = 0;
3684 if (dstaddr || !mDNSIPPortIsZero(dstport))
3685 dbuffer[mDNS_snprintf(dbuffer, sizeof(dbuffer), " to %#a:%d", dstaddr, mDNSVal16(dstport))] = 0;
3686
3687 LogMsg("-- %s %s DNS %s%s (flags %02X%02X) RCODE: %s (%d) %s%s%s%s%s%sID: %d %d bytes from %s%d%s%s --",
3688 tbuffer, transport,
3689 DNS_OP_Name(msg->h.flags.b[0] & kDNSFlag0_OP_Mask),
3690 msg->h.flags.b[0] & kDNSFlag0_QR_Response ? "Response" : "Query",
3691 msg->h.flags.b[0], msg->h.flags.b[1],
3692 DNS_RC_Name(msg->h.flags.b[1] & kDNSFlag1_RC_Mask),
3693 msg->h.flags.b[1] & kDNSFlag1_RC_Mask,
3694 msg->h.flags.b[0] & kDNSFlag0_AA ? "AA " : "",
3695 msg->h.flags.b[0] & kDNSFlag0_TC ? "TC " : "",
3696 msg->h.flags.b[0] & kDNSFlag0_RD ? "RD " : "",
3697 msg->h.flags.b[1] & kDNSFlag1_RA ? "RA " : "",
3698 msg->h.flags.b[1] & kDNSFlag1_AD ? "AD " : "",
3699 msg->h.flags.b[1] & kDNSFlag1_CD ? "CD " : "",
3700 mDNSVal16(msg->h.id),
3701 end - msg->data,
3702 sbuffer, mDNSVal16(srcport), dbuffer,
3703 (msg->h.flags.b[0] & kDNSFlag0_TC) ? " (truncated)" : ""
3704 );
3705
3706 LogMsg("%2d %s", msg->h.numQuestions, IsUpdate ? "Zone" : "Questions");
3707 for (i = 0; i < msg->h.numQuestions && ptr; i++)
3708 {
3709 ptr = getQuestion(msg, ptr, end, mDNSInterface_Any, &q);
3710 if (ptr) LogMsg("%2d %##s %s", i, q.qname.c, DNSTypeName(q.qtype));
3711 }
3712 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAnswers, IsUpdate ? "Prerequisites" : "Answers");
3713 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAuthorities, IsUpdate ? "Updates" : "Authorities");
3714 ptr = DumpRecords(m, msg, ptr, end, msg->h.numAdditionals, "Additionals");
3715 LogMsg("--------------");
3716 }
3717
3718 // ***************************************************************************
3719 #if COMPILER_LIKES_PRAGMA_MARK
3720 #pragma mark -
3721 #pragma mark - Packet Sending Functions
3722 #endif
3723
3724 // Stub definition of TCPSocket_struct so we can access flags field. (Rest of TCPSocket_struct is platform-dependent.)
3725 struct TCPSocket_struct { TCPSocketFlags flags; /* ... */ };
3726
3727 struct UDPSocket_struct
3728 {
3729 mDNSIPPort port; // MUST BE FIRST FIELD -- mDNSCoreReceive expects every UDPSocket_struct to begin with mDNSIPPort port
3730 };
3731
3732 // Note: When we sign a DNS message using DNSDigest_SignMessage(), the current real-time clock value is used, which
3733 // is why we generally defer signing until we send the message, to ensure the signature is as fresh as possible.
3734 mDNSexport mStatus mDNSSendDNSMessage(mDNS *const m, DNSMessage *const msg, mDNSu8 *end,
3735 mDNSInterfaceID InterfaceID, UDPSocket *src, const mDNSAddr *dst,
3736 mDNSIPPort dstport, TCPSocket *sock, DomainAuthInfo *authInfo,
3737 mDNSBool useBackgroundTrafficClass)
3738 {
3739 mStatus status = mStatus_NoError;
3740 const mDNSu16 numAdditionals = msg->h.numAdditionals;
3741 mDNSu8 *newend;
3742 mDNSu8 *limit = msg->data + AbsoluteMaxDNSMessageData;
3743
3744 #if APPLE_OSX_mDNSResponder
3745 // maintain outbound packet statistics
3746 if (mDNSOpaque16IsZero(msg->h.id))
3747 m->MulticastPacketsSent++;
3748 else
3749 m->UnicastPacketsSent++;
3750 #endif // APPLE_OSX_mDNSResponder
3751
3752 // Zero-length message data is okay (e.g. for a DNS Update ack, where all we need is an ID and an error code
3753 if (end < msg->data || end - msg->data > AbsoluteMaxDNSMessageData)
3754 {
3755 LogMsg("mDNSSendDNSMessage: invalid message %p %p %d", msg->data, end, end - msg->data);
3756 return mStatus_BadParamErr;
3757 }
3758
3759 newend = putHINFO(m, msg, end, authInfo, limit);
3760 if (!newend) LogMsg("mDNSSendDNSMessage: putHINFO failed msg %p end %p, limit %p", msg->data, end, limit); // Not fatal
3761 else end = newend;
3762
3763 // Put all the integer values in IETF byte-order (MSB first, LSB second)
3764 SwapDNSHeaderBytes(msg);
3765
3766 if (authInfo) DNSDigest_SignMessage(msg, &end, authInfo, 0); // DNSDigest_SignMessage operates on message in network byte order
3767 if (!end) { LogMsg("mDNSSendDNSMessage: DNSDigest_SignMessage failed"); status = mStatus_NoMemoryErr; }
3768 else
3769 {
3770 // Send the packet on the wire
3771 if (!sock)
3772 status = mDNSPlatformSendUDP(m, msg, end, InterfaceID, src, dst, dstport, useBackgroundTrafficClass);
3773 else
3774 {
3775 mDNSu16 msglen = (mDNSu16)(end - (mDNSu8 *)msg);
3776 mDNSu8 lenbuf[2] = { (mDNSu8)(msglen >> 8), (mDNSu8)(msglen & 0xFF) };
3777 char *buf;
3778 long nsent;
3779
3780 // Try to send them in one packet if we can allocate enough memory
3781 buf = mDNSPlatformMemAllocate(msglen + 2);
3782 if (buf)
3783 {
3784 buf[0] = lenbuf[0];
3785 buf[1] = lenbuf[1];
3786 mDNSPlatformMemCopy(buf+2, msg, msglen);
3787 nsent = mDNSPlatformWriteTCP(sock, buf, msglen+2);
3788 if (nsent != (msglen + 2))
3789 {
3790 LogMsg("mDNSSendDNSMessage: write message failed %d/%d", nsent, msglen);
3791 status = mStatus_ConnFailed;
3792 }
3793 mDNSPlatformMemFree(buf);
3794 }
3795 else
3796 {
3797 nsent = mDNSPlatformWriteTCP(sock, (char*)lenbuf, 2);
3798 if (nsent != 2)
3799 {
3800 LogMsg("mDNSSendDNSMessage: write msg length failed %d/%d", nsent, 2);
3801 status = mStatus_ConnFailed;
3802 }
3803 else
3804 {
3805 nsent = mDNSPlatformWriteTCP(sock, (char *)msg, msglen);
3806 if (nsent != msglen)
3807 {
3808 LogMsg("mDNSSendDNSMessage: write msg body failed %d/%d", nsent, msglen);
3809 status = mStatus_ConnFailed;
3810 }
3811 }
3812 }
3813 }
3814 }
3815
3816 // Swap the integer values back the way they were (remember that numAdditionals may have been changed by putHINFO and/or SignMessage)
3817 SwapDNSHeaderBytes(msg);
3818
3819 // Dump the packet with the HINFO and TSIG
3820 if (mDNS_PacketLoggingEnabled && !mDNSOpaque16IsZero(msg->h.id))
3821 DumpPacket(m, status, mDNStrue, sock && (sock->flags & kTCPSocketFlags_UseTLS) ? "TLS" : sock ? "TCP" : "UDP", mDNSNULL, src ? src->port : MulticastDNSPort, dst, dstport, msg, end);
3822
3823 // put the number of additionals back the way it was
3824 msg->h.numAdditionals = numAdditionals;
3825
3826 return(status);
3827 }
3828
3829 // ***************************************************************************
3830 #if COMPILER_LIKES_PRAGMA_MARK
3831 #pragma mark -
3832 #pragma mark - RR List Management & Task Management
3833 #endif
3834
3835 mDNSexport void mDNS_Lock_(mDNS *const m, const char * const functionname)
3836 {
3837 // MUST grab the platform lock FIRST!
3838 mDNSPlatformLock(m);
3839
3840 // Normally, mDNS_reentrancy is zero and so is mDNS_busy
3841 // However, when we call a client callback mDNS_busy is one, and we increment mDNS_reentrancy too
3842 // If that client callback does mDNS API calls, mDNS_reentrancy and mDNS_busy will both be one
3843 // If mDNS_busy != mDNS_reentrancy that's a bad sign
3844 if (m->mDNS_busy != m->mDNS_reentrancy)
3845 {
3846 LogMsg("%s: mDNS_Lock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
3847 #if ForceAlerts
3848 *(long*)0 = 0;
3849 #endif
3850 }
3851
3852 // If this is an initial entry into the mDNSCore code, set m->timenow
3853 // else, if this is a re-entrant entry into the mDNSCore code, m->timenow should already be set
3854 if (m->mDNS_busy == 0)
3855 {
3856 if (m->timenow)
3857 LogMsg("%s: mDNS_Lock: m->timenow already set (%ld/%ld)", functionname, m->timenow, mDNS_TimeNow_NoLock(m));
3858 m->timenow = mDNS_TimeNow_NoLock(m);
3859 if (m->timenow == 0) m->timenow = 1;
3860 }
3861 else if (m->timenow == 0)
3862 {
3863 LogMsg("%s: mDNS_Lock: m->mDNS_busy is %ld but m->timenow not set", functionname, m->mDNS_busy);
3864 m->timenow = mDNS_TimeNow_NoLock(m);
3865 if (m->timenow == 0) m->timenow = 1;
3866 }
3867
3868 if (m->timenow_last - m->timenow > 0)
3869 {
3870 m->timenow_adjust += m->timenow_last - m->timenow;
3871 LogMsg("%s: mDNSPlatformRawTime went backwards by %ld ticks; setting correction factor to %ld", functionname, m->timenow_last - m->timenow, m->timenow_adjust);
3872 m->timenow = m->timenow_last;
3873 }
3874 m->timenow_last = m->timenow;
3875
3876 // Increment mDNS_busy so we'll recognise re-entrant calls
3877 m->mDNS_busy++;
3878 }
3879
3880 mDNSlocal AuthRecord *AnyLocalRecordReady(const mDNS *const m)
3881 {
3882 AuthRecord *rr;
3883 for (rr = m->NewLocalRecords; rr; rr = rr->next)
3884 if (LocalRecordReady(rr)) return rr;
3885 return mDNSNULL;
3886 }
3887
3888 mDNSlocal mDNSs32 GetNextScheduledEvent(const mDNS *const m)
3889 {
3890 mDNSs32 e = m->timenow + 0x78000000;
3891 if (m->mDNSPlatformStatus != mStatus_NoError) return(e);
3892 if (m->NewQuestions)
3893 {
3894 if (m->NewQuestions->DelayAnswering) e = m->NewQuestions->DelayAnswering;
3895 else return(m->timenow);
3896 }
3897 if (m->NewLocalOnlyQuestions) return(m->timenow);
3898 if (m->NewLocalRecords && AnyLocalRecordReady(m)) return(m->timenow);
3899 if (m->NewLocalOnlyRecords) return(m->timenow);
3900 if (m->SPSProxyListChanged) return(m->timenow);
3901 if (m->LocalRemoveEvents) return(m->timenow);
3902
3903 #ifndef UNICAST_DISABLED
3904 if (e - m->NextuDNSEvent > 0) e = m->NextuDNSEvent;
3905 if (e - m->NextScheduledNATOp > 0) e = m->NextScheduledNATOp;
3906 if (m->NextSRVUpdate && e - m->NextSRVUpdate > 0) e = m->NextSRVUpdate;
3907 #endif
3908
3909 if (e - m->NextCacheCheck > 0) e = m->NextCacheCheck;
3910 if (e - m->NextScheduledSPS > 0) e = m->NextScheduledSPS;
3911 if (e - m->NextScheduledKA > 0) e = m->NextScheduledKA;
3912
3913 // NextScheduledSPRetry only valid when DelaySleep not set
3914 if (!m->DelaySleep && m->SleepLimit && e - m->NextScheduledSPRetry > 0) e = m->NextScheduledSPRetry;
3915 if (m->DelaySleep && e - m->DelaySleep > 0) e = m->DelaySleep;
3916
3917 if (m->SuppressSending)
3918 {
3919 if (e - m->SuppressSending > 0) e = m->SuppressSending;
3920 }
3921 else
3922 {
3923 if (e - m->NextScheduledQuery > 0) e = m->NextScheduledQuery;
3924 if (e - m->NextScheduledProbe > 0) e = m->NextScheduledProbe;
3925 if (e - m->NextScheduledResponse > 0) e = m->NextScheduledResponse;
3926 }
3927 if (e - m->NextScheduledStopTime > 0) e = m->NextScheduledStopTime;
3928 return(e);
3929 }
3930
3931 mDNSexport void ShowTaskSchedulingError(mDNS *const m)
3932 {
3933 AuthRecord *rr;
3934 mDNS_Lock(m);
3935
3936 LogMsg("Task Scheduling Error: Continuously busy for more than a second");
3937
3938 // Note: To accurately diagnose *why* we're busy, the debugging code here needs to mirror the logic in GetNextScheduledEvent above
3939
3940 if (m->NewQuestions && (!m->NewQuestions->DelayAnswering || m->timenow - m->NewQuestions->DelayAnswering >= 0))
3941 LogMsg("Task Scheduling Error: NewQuestion %##s (%s)",
3942 m->NewQuestions->qname.c, DNSTypeName(m->NewQuestions->qtype));
3943
3944 if (m->NewLocalOnlyQuestions)
3945 LogMsg("Task Scheduling Error: NewLocalOnlyQuestions %##s (%s)",
3946 m->NewLocalOnlyQuestions->qname.c, DNSTypeName(m->NewLocalOnlyQuestions->qtype));
3947
3948 if (m->NewLocalRecords)
3949 {
3950 rr = AnyLocalRecordReady(m);
3951 if (rr) LogMsg("Task Scheduling Error: NewLocalRecords %s", ARDisplayString(m, rr));
3952 }
3953
3954 if (m->NewLocalOnlyRecords) LogMsg("Task Scheduling Error: NewLocalOnlyRecords");
3955
3956 if (m->SPSProxyListChanged) LogMsg("Task Scheduling Error: SPSProxyListChanged");
3957 if (m->LocalRemoveEvents) LogMsg("Task Scheduling Error: LocalRemoveEvents");
3958
3959 if (m->timenow - m->NextScheduledEvent >= 0)
3960 LogMsg("Task Scheduling Error: m->NextScheduledEvent %d", m->timenow - m->NextScheduledEvent);
3961
3962 #ifndef UNICAST_DISABLED
3963 if (m->timenow - m->NextuDNSEvent >= 0)
3964 LogMsg("Task Scheduling Error: m->NextuDNSEvent %d", m->timenow - m->NextuDNSEvent);
3965 if (m->timenow - m->NextScheduledNATOp >= 0)
3966 LogMsg("Task Scheduling Error: m->NextScheduledNATOp %d", m->timenow - m->NextScheduledNATOp);
3967 if (m->NextSRVUpdate && m->timenow - m->NextSRVUpdate >= 0)
3968 LogMsg("Task Scheduling Error: m->NextSRVUpdate %d", m->timenow - m->NextSRVUpdate);
3969 #endif
3970
3971 if (m->timenow - m->NextCacheCheck >= 0)
3972 LogMsg("Task Scheduling Error: m->NextCacheCheck %d", m->timenow - m->NextCacheCheck);
3973 if (m->timenow - m->NextScheduledSPS >= 0)
3974 LogMsg("Task Scheduling Error: m->NextScheduledSPS %d", m->timenow - m->NextScheduledSPS);
3975 if (m->timenow - m->NextScheduledKA >= 0)
3976 LogMsg("Task Scheduling Error: m->NextScheduledKA %d", m->timenow - m->NextScheduledKA);
3977 if (!m->DelaySleep && m->SleepLimit && m->timenow - m->NextScheduledSPRetry >= 0)
3978 LogMsg("Task Scheduling Error: m->NextScheduledSPRetry %d", m->timenow - m->NextScheduledSPRetry);
3979 if (m->DelaySleep && m->timenow - m->DelaySleep >= 0)
3980 LogMsg("Task Scheduling Error: m->DelaySleep %d", m->timenow - m->DelaySleep);
3981
3982 if (m->SuppressSending && m->timenow - m->SuppressSending >= 0)
3983 LogMsg("Task Scheduling Error: m->SuppressSending %d", m->timenow - m->SuppressSending);
3984 if (m->timenow - m->NextScheduledQuery >= 0)
3985 LogMsg("Task Scheduling Error: m->NextScheduledQuery %d", m->timenow - m->NextScheduledQuery);
3986 if (m->timenow - m->NextScheduledProbe >= 0)
3987 LogMsg("Task Scheduling Error: m->NextScheduledProbe %d", m->timenow - m->NextScheduledProbe);
3988 if (m->timenow - m->NextScheduledResponse >= 0)
3989 LogMsg("Task Scheduling Error: m->NextScheduledResponse %d", m->timenow - m->NextScheduledResponse);
3990
3991 mDNS_Unlock(m);
3992 }
3993
3994 mDNSexport void mDNS_Unlock_(mDNS *const m, const char * const functionname)
3995 {
3996 // Decrement mDNS_busy
3997 m->mDNS_busy--;
3998
3999 // Check for locking failures
4000 if (m->mDNS_busy != m->mDNS_reentrancy)
4001 {
4002 LogMsg("%s: mDNS_Unlock: Locking failure! mDNS_busy (%ld) != mDNS_reentrancy (%ld)", functionname, m->mDNS_busy, m->mDNS_reentrancy);
4003 #if ForceAlerts
4004 *(long*)0 = 0;
4005 #endif
4006 }
4007
4008 // If this is a final exit from the mDNSCore code, set m->NextScheduledEvent and clear m->timenow
4009 if (m->mDNS_busy == 0)
4010 {
4011 m->NextScheduledEvent = GetNextScheduledEvent(m);
4012 if (m->timenow == 0) LogMsg("%s: mDNS_Unlock: ERROR! m->timenow aready zero", functionname);
4013 m->timenow = 0;
4014 }
4015
4016 // MUST release the platform lock LAST!
4017 mDNSPlatformUnlock(m);
4018 }
4019
4020 // ***************************************************************************
4021 #if COMPILER_LIKES_PRAGMA_MARK
4022 #pragma mark -
4023 #pragma mark - Specialized mDNS version of vsnprintf
4024 #endif
4025
4026 static const struct mDNSprintf_format
4027 {
4028 unsigned leftJustify : 1;
4029 unsigned forceSign : 1;
4030 unsigned zeroPad : 1;
4031 unsigned havePrecision : 1;
4032 unsigned hSize : 1;
4033 unsigned lSize : 1;
4034 char altForm;
4035 char sign; // +, - or space
4036 unsigned int fieldWidth;
4037 unsigned int precision;
4038 } mDNSprintf_format_default = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
4039
4040 mDNSexport mDNSu32 mDNS_vsnprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, va_list arg)
4041 {
4042 mDNSu32 nwritten = 0;
4043 int c;
4044 if (buflen == 0) return(0);
4045 buflen--; // Pre-reserve one space in the buffer for the terminating null
4046 if (buflen == 0) goto exit;
4047
4048 for (c = *fmt; c != 0; c = *++fmt)
4049 {
4050 if (c != '%')
4051 {
4052 *sbuffer++ = (char)c;
4053 if (++nwritten >= buflen) goto exit;
4054 }
4055 else
4056 {
4057 unsigned int i=0, j;
4058 // The mDNS Vsprintf Argument Conversion Buffer is used as a temporary holding area for
4059 // generating decimal numbers, hexdecimal numbers, IP addresses, domain name strings, etc.
4060 // The size needs to be enough for a 256-byte domain name plus some error text.
4061 #define mDNS_VACB_Size 300
4062 char mDNS_VACB[mDNS_VACB_Size];
4063 #define mDNS_VACB_Lim (&mDNS_VACB[mDNS_VACB_Size])
4064 #define mDNS_VACB_Remain(s) ((mDNSu32)(mDNS_VACB_Lim - s))
4065 char *s = mDNS_VACB_Lim, *digits;
4066 struct mDNSprintf_format F = mDNSprintf_format_default;
4067
4068 while (1) // decode flags
4069 {
4070 c = *++fmt;
4071 if (c == '-') F.leftJustify = 1;
4072 else if (c == '+') F.forceSign = 1;
4073 else if (c == ' ') F.sign = ' ';
4074 else if (c == '#') F.altForm++;
4075 else if (c == '0') F.zeroPad = 1;
4076 else break;
4077 }
4078
4079 if (c == '*') // decode field width
4080 {
4081 int f = va_arg(arg, int);
4082 if (f < 0) { f = -f; F.leftJustify = 1; }
4083 F.fieldWidth = (unsigned int)f;
4084 c = *++fmt;
4085 }
4086 else
4087 {
4088 for (; c >= '0' && c <= '9'; c = *++fmt)
4089 F.fieldWidth = (10 * F.fieldWidth) + (c - '0');
4090 }
4091
4092 if (c == '.') // decode precision
4093 {
4094 if ((c = *++fmt) == '*')
4095 { F.precision = va_arg(arg, unsigned int); c = *++fmt; }
4096 else for (; c >= '0' && c <= '9'; c = *++fmt)
4097 F.precision = (10 * F.precision) + (c - '0');
4098 F.havePrecision = 1;
4099 }
4100
4101 if (F.leftJustify) F.zeroPad = 0;
4102
4103 conv:
4104 switch (c) // perform appropriate conversion
4105 {
4106 unsigned long n;
4107 case 'h': F.hSize = 1; c = *++fmt; goto conv;
4108 case 'l': // fall through
4109 case 'L': F.lSize = 1; c = *++fmt; goto conv;
4110 case 'd':
4111 case 'i': if (F.lSize) n = (unsigned long)va_arg(arg, long);
4112 else n = (unsigned long)va_arg(arg, int);
4113 if (F.hSize) n = (short) n;
4114 if ((long) n < 0) { n = (unsigned long)-(long)n; F.sign = '-'; }
4115 else if (F.forceSign) F.sign = '+';
4116 goto decimal;
4117 case 'u': if (F.lSize) n = va_arg(arg, unsigned long);
4118 else n = va_arg(arg, unsigned int);
4119 if (F.hSize) n = (unsigned short) n;
4120 F.sign = 0;
4121 goto decimal;
4122 decimal: if (!F.havePrecision)
4123 {
4124 if (F.zeroPad)
4125 {
4126 F.precision = F.fieldWidth;
4127 if (F.sign) --F.precision;
4128 }
4129 if (F.precision < 1) F.precision = 1;
4130 }
4131 if (F.precision > mDNS_VACB_Size - 1)
4132 F.precision = mDNS_VACB_Size - 1;
4133 for (i = 0; n; n /= 10, i++) *--s = (char)(n % 10 + '0');
4134 for (; i < F.precision; i++) *--s = '0';
4135 if (F.sign) { *--s = F.sign; i++; }
4136 break;
4137
4138 case 'o': if (F.lSize) n = va_arg(arg, unsigned long);
4139 else n = va_arg(arg, unsigned int);
4140 if (F.hSize) n = (unsigned short) n;
4141 if (!F.havePrecision)
4142 {
4143 if (F.zeroPad) F.precision = F.fieldWidth;
4144 if (F.precision < 1) F.precision = 1;
4145 }
4146 if (F.precision > mDNS_VACB_Size - 1)
4147 F.precision = mDNS_VACB_Size - 1;
4148 for (i = 0; n; n /= 8, i++) *--s = (char)(n % 8 + '0');
4149 if (F.altForm && i && *s != '0') { *--s = '0'; i++; }
4150 for (; i < F.precision; i++) *--s = '0';
4151 break;
4152
4153 case 'a': {
4154 unsigned char *a = va_arg(arg, unsigned char *);
4155 if (!a) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4156 else
4157 {
4158 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
4159 if (F.altForm)
4160 {
4161 mDNSAddr *ip = (mDNSAddr*)a;
4162 switch (ip->type)
4163 {
4164 case mDNSAddrType_IPv4: F.precision = 4; a = (unsigned char *)&ip->ip.v4; break;
4165 case mDNSAddrType_IPv6: F.precision = 16; a = (unsigned char *)&ip->ip.v6; break;
4166 default: F.precision = 0; break;
4167 }
4168 }
4169 if (F.altForm && !F.precision)
4170 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "«ZERO ADDRESS»");
4171 else switch (F.precision)
4172 {
4173 case 4: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%d.%d.%d.%d",
4174 a[0], a[1], a[2], a[3]); break;
4175 case 6: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%02X:%02X:%02X:%02X:%02X:%02X",
4176 a[0], a[1], a[2], a[3], a[4], a[5]); break;
4177 case 16: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB),
4178 "%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X:%02X%02X",
4179 a[0x0], a[0x1], a[0x2], a[0x3], a[0x4], a[0x5], a[0x6], a[0x7],
4180 a[0x8], a[0x9], a[0xA], a[0xB], a[0xC], a[0xD], a[0xE], a[0xF]); break;
4181 default: i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "%s", "<< ERROR: Must specify"
4182 " address size (i.e. %.4a=IPv4, %.6a=Ethernet, %.16a=IPv6) >>"); break;
4183 }
4184 }
4185 }
4186 break;
4187
4188 case 'p': F.havePrecision = F.lSize = 1;
4189 F.precision = sizeof(void*) * 2; // 8 characters on 32-bit; 16 characters on 64-bit
4190 case 'X': digits = "0123456789ABCDEF";
4191 goto hexadecimal;
4192 case 'x': digits = "0123456789abcdef";
4193 hexadecimal: if (F.lSize) n = va_arg(arg, unsigned long);
4194 else n = va_arg(arg, unsigned int);
4195 if (F.hSize) n = (unsigned short) n;
4196 if (!F.havePrecision)
4197 {
4198 if (F.zeroPad)
4199 {
4200 F.precision = F.fieldWidth;
4201 if (F.altForm) F.precision -= 2;
4202 }
4203 if (F.precision < 1) F.precision = 1;
4204 }
4205 if (F.precision > mDNS_VACB_Size - 1)
4206 F.precision = mDNS_VACB_Size - 1;
4207 for (i = 0; n; n /= 16, i++) *--s = digits[n % 16];
4208 for (; i < F.precision; i++) *--s = '0';
4209 if (F.altForm) { *--s = (char)c; *--s = '0'; i += 2; }
4210 break;
4211
4212 case 'c': *--s = (char)va_arg(arg, int); i = 1; break;
4213
4214 case 's': s = va_arg(arg, char *);
4215 if (!s) { static char emsg[] = "<<NULL>>"; s = emsg; i = sizeof(emsg)-1; }
4216 else switch (F.altForm)
4217 {
4218 case 0: i=0;
4219 if (!F.havePrecision) // C string
4220 while (s[i]) i++;
4221 else
4222 {
4223 while ((i < F.precision) && s[i]) i++;
4224 // Make sure we don't truncate in the middle of a UTF-8 character
4225 // If last character we got was any kind of UTF-8 multi-byte character,
4226 // then see if we have to back up.
4227 // This is not as easy as the similar checks below, because
4228 // here we can't assume it's safe to examine the *next* byte, so we
4229 // have to confine ourselves to working only backwards in the string.
4230 j = i; // Record where we got to
4231 // Now, back up until we find first non-continuation-char
4232 while (i>0 && (s[i-1] & 0xC0) == 0x80) i--;
4233 // Now s[i-1] is the first non-continuation-char
4234 // and (j-i) is the number of continuation-chars we found
4235 if (i>0 && (s[i-1] & 0xC0) == 0xC0) // If we found a start-char
4236 {
4237 i--; // Tentatively eliminate this start-char as well
4238 // Now (j-i) is the number of characters we're considering eliminating.
4239 // To be legal UTF-8, the start-char must contain (j-i) one-bits,
4240 // followed by a zero bit. If we shift it right by (7-(j-i)) bits
4241 // (with sign extension) then the result has to be 0xFE.
4242 // If this is right, then we reinstate the tentatively eliminated bytes.
4243 if (((j-i) < 7) && (((s[i] >> (7-(j-i))) & 0xFF) == 0xFE)) i = j;
4244 }
4245 }
4246 break;
4247 case 1: i = (unsigned char) *s++; break; // Pascal string
4248 case 2: { // DNS label-sequence name
4249 unsigned char *a = (unsigned char *)s;
4250 s = mDNS_VACB; // Adjust s to point to the start of the buffer, not the end
4251 if (*a == 0) *s++ = '.'; // Special case for root DNS name
4252 while (*a)
4253 {
4254 char buf[63*4+1];
4255 if (*a > 63)
4256 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<INVALID LABEL LENGTH %u>>", *a); break; }
4257 if (s + *a >= &mDNS_VACB[254])
4258 { s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "<<NAME TOO LONG>>"); break; }
4259 // Need to use ConvertDomainLabelToCString to do proper escaping here,
4260 // so it's clear what's a literal dot and what's a label separator
4261 ConvertDomainLabelToCString((domainlabel*)a, buf);
4262 s += mDNS_snprintf(s, mDNS_VACB_Remain(s), "%s.", buf);
4263 a += 1 + *a;
4264 }
4265 i = (mDNSu32)(s - mDNS_VACB);
4266 s = mDNS_VACB; // Reset s back to the start of the buffer
4267 break;
4268 }
4269 }
4270 // Make sure we don't truncate in the middle of a UTF-8 character (see similar comment below)
4271 if (F.havePrecision && i > F.precision)
4272 { i = F.precision; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4273 break;
4274
4275 case 'n': s = va_arg(arg, char *);
4276 if (F.hSize) *(short *) s = (short)nwritten;
4277 else if (F.lSize) *(long *) s = (long)nwritten;
4278 else *(int *) s = (int)nwritten;
4279 continue;
4280
4281 default: s = mDNS_VACB;
4282 i = mDNS_snprintf(mDNS_VACB, sizeof(mDNS_VACB), "<<UNKNOWN FORMAT CONVERSION CODE %%%c>>", c);
4283
4284 case '%': *sbuffer++ = (char)c;
4285 if (++nwritten >= buflen) goto exit;
4286 break;
4287 }
4288
4289 if (i < F.fieldWidth && !F.leftJustify) // Pad on the left
4290 do {
4291 *sbuffer++ = ' ';
4292 if (++nwritten >= buflen) goto exit;
4293 } while (i < --F.fieldWidth);
4294
4295 // Make sure we don't truncate in the middle of a UTF-8 character.
4296 // Note: s[i] is the first eliminated character; i.e. the next character *after* the last character of the
4297 // allowed output. If s[i] is a UTF-8 continuation character, then we've cut a unicode character in half,
4298 // so back up 'i' until s[i] is no longer a UTF-8 continuation character. (if the input was proprly
4299 // formed, s[i] will now be the UTF-8 start character of the multi-byte character we just eliminated).
4300 if (i > buflen - nwritten)
4301 { i = buflen - nwritten; while (i>0 && (s[i] & 0xC0) == 0x80) i--;}
4302 for (j=0; j<i; j++) *sbuffer++ = *s++; // Write the converted result
4303 nwritten += i;
4304 if (nwritten >= buflen) goto exit;
4305
4306 for (; i < F.fieldWidth; i++) // Pad on the right
4307 {
4308 *sbuffer++ = ' ';
4309 if (++nwritten >= buflen) goto exit;
4310 }
4311 }
4312 }
4313 exit:
4314 *sbuffer++ = 0;
4315 return(nwritten);
4316 }
4317
4318 mDNSexport mDNSu32 mDNS_snprintf(char *sbuffer, mDNSu32 buflen, const char *fmt, ...)
4319 {
4320 mDNSu32 length;
4321
4322 va_list ptr;
4323 va_start(ptr,fmt);
4324 length = mDNS_vsnprintf(sbuffer, buflen, fmt, ptr);
4325 va_end(ptr);
4326
4327 return(length);
4328 }