]> git.saurik.com Git - apple/mdnsresponder.git/blob - mDNSCore/DNSDigest.c
mDNSResponder-379.27.tar.gz
[apple/mdnsresponder.git] / mDNSCore / DNSDigest.c
1 /* -*- Mode: C; tab-width: 4 -*-
2 *
3 * Copyright (c) 2002-2011 Apple Computer, Inc. All rights reserved.
4 *
5 * Licensed under the Apache License, Version 2.0 (the "License");
6 * you may not use this file except in compliance with the License.
7 * You may obtain a copy of the License at
8 *
9 * http://www.apache.org/licenses/LICENSE-2.0
10 *
11 * Unless required by applicable law or agreed to in writing, software
12 * distributed under the License is distributed on an "AS IS" BASIS,
13 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 * See the License for the specific language governing permissions and
15 * limitations under the License.
16 */
17
18
19 #ifdef __cplusplus
20 extern "C" {
21 #endif
22
23 #include "mDNSEmbeddedAPI.h"
24 #include "DNSCommon.h"
25
26 // Disable certain benign warnings with Microsoft compilers
27 #if (defined(_MSC_VER))
28 // Disable "conditional expression is constant" warning for debug macros.
29 // Otherwise, this generates warnings for the perfectly natural construct "while(1)"
30 // If someone knows a variant way of writing "while(1)" that doesn't generate warning messages, please let us know
31 #pragma warning(disable:4127)
32 #endif
33
34
35 // ***************************************************************************
36 #if COMPILER_LIKES_PRAGMA_MARK
37 #pragma mark - Byte Swapping Functions
38 #endif
39
40 mDNSlocal mDNSu16 NToH16(mDNSu8 * bytes)
41 {
42 return (mDNSu16)((mDNSu16)bytes[0] << 8 | (mDNSu16)bytes[1]);
43 }
44
45 mDNSlocal mDNSu32 NToH32(mDNSu8 * bytes)
46 {
47 return (mDNSu32)((mDNSu32) bytes[0] << 24 | (mDNSu32) bytes[1] << 16 | (mDNSu32) bytes[2] << 8 | (mDNSu32)bytes[3]);
48 }
49
50 // ***************************************************************************
51 #if COMPILER_LIKES_PRAGMA_MARK
52 #pragma mark - MD5 Hash Functions
53 #endif
54
55
56 /* The source for the has is derived CommonCrypto files CommonDigest.h, md32_common.h, md5_locl.h, md5_locl.h, and openssl/md5.h.
57 * The following changes have been made to the original sources:
58 * replaced CC_LONG w/ mDNSu32
59 * replaced CC_MD5* with MD5*
60 * replaced CC_LONG w/ mDNSu32, removed conditional #defines from md5.h
61 * removed extern decls for MD5_Init/Update/Final from CommonDigest.h
62 * removed APPLE_COMMON_DIGEST specific #defines from md5_locl.h
63 *
64 * Note: machine archetecure specific conditionals from the original sources are turned off, but are left in the code
65 * to aid in platform-specific optimizations and debugging.
66 * Sources originally distributed under the following license headers:
67 * CommonDigest.h - APSL
68 *
69 * md32_Common.h
70 * ====================================================================
71 * Copyright (c) 1999-2002 The OpenSSL Project. All rights reserved.
72 *
73 * Redistribution and use in source and binary forms, with or without
74 * modification, are permitted provided that the following conditions
75 * are met:
76 *
77 * 1. Redistributions of source code must retain the above copyright
78 * notice, this list of conditions and the following disclaimer.
79 *
80 * 2. Redistributions in binary form must reproduce the above copyright
81 * notice, this list of conditions and the following disclaimer in
82 * the documentation and/or other materials provided with the
83 * distribution.
84 *
85 * 3. All advertising materials mentioning features or use of this
86 * software must display the following acknowledgment:
87 * "This product includes software developed by the OpenSSL Project
88 * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
89 *
90 * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
91 * endorse or promote products derived from this software without
92 * prior written permission. For written permission, please contact
93 * licensing@OpenSSL.org.
94 *
95 * 5. Products derived from this software may not be called "OpenSSL"
96 * nor may "OpenSSL" appear in their names without prior written
97 * permission of the OpenSSL Project.
98 *
99 * 6. Redistributions of any form whatsoever must retain the following
100 * acknowledgment:
101 * "This product includes software developed by the OpenSSL Project
102 * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
103 *
104 * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
105 * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
106 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
107 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
108 * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
109 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
110 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
111 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
112 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
113 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
114 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
115 * OF THE POSSIBILITY OF SUCH DAMAGE.
116 *
117 *
118 * md5_dgst.c, md5_locl.h
119 * ====================================================================
120 *
121 * This product includes cryptographic software written by Eric Young
122 * (eay@cryptsoft.com). This product includes software written by Tim
123 * Hudson (tjh@cryptsoft.com).
124 *
125 * Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
126 * All rights reserved.
127 *
128 * This package is an SSL implementation written
129 * by Eric Young (eay@cryptsoft.com).
130 * The implementation was written so as to conform with Netscapes SSL.
131 *
132 * This library is free for commercial and non-commercial use as long as
133 * the following conditions are aheared to. The following conditions
134 * apply to all code found in this distribution, be it the RC4, RSA,
135 * lhash, DES, etc., code; not just the SSL code. The SSL documentation
136 * included with this distribution is covered by the same copyright terms
137 * except that the holder is Tim Hudson (tjh@cryptsoft.com).
138 *
139 * Copyright remains Eric Young's, and as such any Copyright notices in
140 * the code are not to be removed.
141 * If this package is used in a product, Eric Young should be given attribution
142 * as the author of the parts of the library used.
143 * This can be in the form of a textual message at program startup or
144 * in documentation (online or textual) provided with the package.
145 *
146 * Redistribution and use in source and binary forms, with or without
147 * modification, are permitted provided that the following conditions
148 * are met:
149 * 1. Redistributions of source code must retain the copyright
150 * notice, this list of conditions and the following disclaimer.
151 * 2. Redistributions in binary form must reproduce the above copyright
152 * notice, this list of conditions and the following disclaimer in the
153 * documentation and/or other materials provided with the distribution.
154 * 3. All advertising materials mentioning features or use of this software
155 * must display the following acknowledgement:
156 * "This product includes cryptographic software written by
157 * Eric Young (eay@cryptsoft.com)"
158 * The word 'cryptographic' can be left out if the rouines from the library
159 * being used are not cryptographic related :-).
160 * 4. If you include any Windows specific code (or a derivative thereof) from
161 * the apps directory (application code) you must include an acknowledgement:
162 * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
163 *
164 * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
165 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
166 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
167 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
168 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
169 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
170 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
171 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
172 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
173 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
174 * SUCH DAMAGE.
175 *
176 * The licence and distribution terms for any publically available version or
177 * derivative of this code cannot be changed. i.e. this code cannot simply be
178 * copied and put under another distribution licence
179 * [including the GNU Public Licence.]
180 *
181 */
182
183 //from CommonDigest.h
184
185
186
187 // from openssl/md5.h
188
189 #define MD5_CBLOCK 64
190 #define MD5_LBLOCK (MD5_CBLOCK/4)
191 #define MD5_DIGEST_LENGTH 16
192
193 void MD5_Transform(MD5_CTX *c, const unsigned char *b);
194
195 // From md5_locl.h
196
197 #ifndef MD5_LONG_LOG2
198 #define MD5_LONG_LOG2 2 /* default to 32 bits */
199 #endif
200
201 #ifdef MD5_ASM
202 # if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
203 # define md5_block_host_order md5_block_asm_host_order
204 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
205 void md5_block_asm_data_order_aligned (MD5_CTX *c, const mDNSu32 *p,int num);
206 # define HASH_BLOCK_DATA_ORDER_ALIGNED md5_block_asm_data_order_aligned
207 # endif
208 #endif
209
210 void md5_block_host_order (MD5_CTX *c, const void *p,int num);
211 void md5_block_data_order (MD5_CTX *c, const void *p,int num);
212
213 #if defined(__i386) || defined(__i386__) || defined(_M_IX86) || defined(__INTEL__)
214 /*
215 * *_block_host_order is expected to handle aligned data while
216 * *_block_data_order - unaligned. As algorithm and host (x86)
217 * are in this case of the same "endianness" these two are
218 * otherwise indistinguishable. But normally you don't want to
219 * call the same function because unaligned access in places
220 * where alignment is expected is usually a "Bad Thing". Indeed,
221 * on RISCs you get punished with BUS ERROR signal or *severe*
222 * performance degradation. Intel CPUs are in turn perfectly
223 * capable of loading unaligned data without such drastic side
224 * effect. Yes, they say it's slower than aligned load, but no
225 * exception is generated and therefore performance degradation
226 * is *incomparable* with RISCs. What we should weight here is
227 * costs of unaligned access against costs of aligning data.
228 * According to my measurements allowing unaligned access results
229 * in ~9% performance improvement on Pentium II operating at
230 * 266MHz. I won't be surprised if the difference will be higher
231 * on faster systems:-)
232 *
233 * <appro@fy.chalmers.se>
234 */
235 #define md5_block_data_order md5_block_host_order
236 #endif
237
238 #define DATA_ORDER_IS_LITTLE_ENDIAN
239
240 #define HASH_LONG mDNSu32
241 #define HASH_LONG_LOG2 MD5_LONG_LOG2
242 #define HASH_CTX MD5_CTX
243 #define HASH_CBLOCK MD5_CBLOCK
244 #define HASH_LBLOCK MD5_LBLOCK
245
246 #define HASH_UPDATE MD5_Update
247 #define HASH_TRANSFORM MD5_Transform
248 #define HASH_FINAL MD5_Final
249
250 #define HASH_MAKE_STRING(c,s) do { \
251 unsigned long ll; \
252 ll=(c)->A; HOST_l2c(ll,(s)); \
253 ll=(c)->B; HOST_l2c(ll,(s)); \
254 ll=(c)->C; HOST_l2c(ll,(s)); \
255 ll=(c)->D; HOST_l2c(ll,(s)); \
256 } while (0)
257 #define HASH_BLOCK_HOST_ORDER md5_block_host_order
258 #if !defined(L_ENDIAN) || defined(md5_block_data_order)
259 #define HASH_BLOCK_DATA_ORDER md5_block_data_order
260 /*
261 * Little-endians (Intel and Alpha) feel better without this.
262 * It looks like memcpy does better job than generic
263 * md5_block_data_order on copying-n-aligning input data.
264 * But frankly speaking I didn't expect such result on Alpha.
265 * On the other hand I've got this with egcs-1.0.2 and if
266 * program is compiled with another (better?) compiler it
267 * might turn out other way around.
268 *
269 * <appro@fy.chalmers.se>
270 */
271 #endif
272
273
274 // from md32_common.h
275
276 /*
277 * This is a generic 32 bit "collector" for message digest algorithms.
278 * Whenever needed it collects input character stream into chunks of
279 * 32 bit values and invokes a block function that performs actual hash
280 * calculations.
281 *
282 * Porting guide.
283 *
284 * Obligatory macros:
285 *
286 * DATA_ORDER_IS_BIG_ENDIAN or DATA_ORDER_IS_LITTLE_ENDIAN
287 * this macro defines byte order of input stream.
288 * HASH_CBLOCK
289 * size of a unit chunk HASH_BLOCK operates on.
290 * HASH_LONG
291 * has to be at lest 32 bit wide, if it's wider, then
292 * HASH_LONG_LOG2 *has to* be defined along
293 * HASH_CTX
294 * context structure that at least contains following
295 * members:
296 * typedef struct {
297 * ...
298 * HASH_LONG Nl,Nh;
299 * HASH_LONG data[HASH_LBLOCK];
300 * int num;
301 * ...
302 * } HASH_CTX;
303 * HASH_UPDATE
304 * name of "Update" function, implemented here.
305 * HASH_TRANSFORM
306 * name of "Transform" function, implemented here.
307 * HASH_FINAL
308 * name of "Final" function, implemented here.
309 * HASH_BLOCK_HOST_ORDER
310 * name of "block" function treating *aligned* input message
311 * in host byte order, implemented externally.
312 * HASH_BLOCK_DATA_ORDER
313 * name of "block" function treating *unaligned* input message
314 * in original (data) byte order, implemented externally (it
315 * actually is optional if data and host are of the same
316 * "endianess").
317 * HASH_MAKE_STRING
318 * macro convering context variables to an ASCII hash string.
319 *
320 * Optional macros:
321 *
322 * B_ENDIAN or L_ENDIAN
323 * defines host byte-order.
324 * HASH_LONG_LOG2
325 * defaults to 2 if not states otherwise.
326 * HASH_LBLOCK
327 * assumed to be HASH_CBLOCK/4 if not stated otherwise.
328 * HASH_BLOCK_DATA_ORDER_ALIGNED
329 * alternative "block" function capable of treating
330 * aligned input message in original (data) order,
331 * implemented externally.
332 *
333 * MD5 example:
334 *
335 * #define DATA_ORDER_IS_LITTLE_ENDIAN
336 *
337 * #define HASH_LONG mDNSu32
338 * #define HASH_LONG_LOG2 mDNSu32_LOG2
339 * #define HASH_CTX MD5_CTX
340 * #define HASH_CBLOCK MD5_CBLOCK
341 * #define HASH_LBLOCK MD5_LBLOCK
342 * #define HASH_UPDATE MD5_Update
343 * #define HASH_TRANSFORM MD5_Transform
344 * #define HASH_FINAL MD5_Final
345 * #define HASH_BLOCK_HOST_ORDER md5_block_host_order
346 * #define HASH_BLOCK_DATA_ORDER md5_block_data_order
347 *
348 * <appro@fy.chalmers.se>
349 */
350
351 #if !defined(DATA_ORDER_IS_BIG_ENDIAN) && !defined(DATA_ORDER_IS_LITTLE_ENDIAN)
352 #error "DATA_ORDER must be defined!"
353 #endif
354
355 #ifndef HASH_CBLOCK
356 #error "HASH_CBLOCK must be defined!"
357 #endif
358 #ifndef HASH_LONG
359 #error "HASH_LONG must be defined!"
360 #endif
361 #ifndef HASH_CTX
362 #error "HASH_CTX must be defined!"
363 #endif
364
365 #ifndef HASH_UPDATE
366 #error "HASH_UPDATE must be defined!"
367 #endif
368 #ifndef HASH_TRANSFORM
369 #error "HASH_TRANSFORM must be defined!"
370 #endif
371 #ifndef HASH_FINAL
372 #error "HASH_FINAL must be defined!"
373 #endif
374
375 #ifndef HASH_BLOCK_HOST_ORDER
376 #error "HASH_BLOCK_HOST_ORDER must be defined!"
377 #endif
378
379 #if 0
380 /*
381 * Moved below as it's required only if HASH_BLOCK_DATA_ORDER_ALIGNED
382 * isn't defined.
383 */
384 #ifndef HASH_BLOCK_DATA_ORDER
385 #error "HASH_BLOCK_DATA_ORDER must be defined!"
386 #endif
387 #endif
388
389 #ifndef HASH_LBLOCK
390 #define HASH_LBLOCK (HASH_CBLOCK/4)
391 #endif
392
393 #ifndef HASH_LONG_LOG2
394 #define HASH_LONG_LOG2 2
395 #endif
396
397 /*
398 * Engage compiler specific rotate intrinsic function if available.
399 */
400 #undef ROTATE
401 #ifndef PEDANTIC
402 # if 0 /* defined(_MSC_VER) */
403 # define ROTATE(a,n) _lrotl(a,n)
404 # elif defined(__MWERKS__)
405 # if defined(__POWERPC__)
406 # define ROTATE(a,n) (unsigned MD32_REG_T)__rlwinm((int)a,n,0,31)
407 # elif defined(__MC68K__)
408 /* Motorola specific tweak. <appro@fy.chalmers.se> */
409 # define ROTATE(a,n) (n<24 ? __rol(a,n) : __ror(a,32-n))
410 # else
411 # define ROTATE(a,n) __rol(a,n)
412 # endif
413 # elif defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
414 /*
415 * Some GNU C inline assembler templates. Note that these are
416 * rotates by *constant* number of bits! But that's exactly
417 * what we need here...
418 *
419 * <appro@fy.chalmers.se>
420 */
421 /*
422 * LLVM is more strict about compatibility of types between input & output constraints,
423 * but we want these to be rotations of 32 bits, not 64, so we explicitly drop the
424 * most significant bytes by casting to an unsigned int.
425 */
426 # if defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)
427 # define ROTATE(a,n) ({ register unsigned int ret; \
428 asm ( \
429 "roll %1,%0" \
430 : "=r" (ret) \
431 : "I" (n), "0" ((unsigned int)a) \
432 : "cc"); \
433 ret; \
434 })
435 # elif defined(__powerpc) || defined(__ppc)
436 # define ROTATE(a,n) ({ register unsigned int ret; \
437 asm ( \
438 "rlwinm %0,%1,%2,0,31" \
439 : "=r" (ret) \
440 : "r" (a), "I" (n)); \
441 ret; \
442 })
443 # endif
444 # endif
445
446 /*
447 * Engage compiler specific "fetch in reverse byte order"
448 * intrinsic function if available.
449 */
450 # if defined(__GNUC__) && __GNUC__>=2 && !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM)
451 /* some GNU C inline assembler templates by <appro@fy.chalmers.se> */
452 # if (defined(__i386) || defined(__i386__) || defined(__x86_64) || defined(__x86_64__)) && !defined(I386_ONLY)
453 # define BE_FETCH32(a) ({ register unsigned int l=(a); \
454 asm ( \
455 "bswapl %0" \
456 : "=r" (l) : "0" (l)); \
457 l; \
458 })
459 # elif defined(__powerpc)
460 # define LE_FETCH32(a) ({ register unsigned int l; \
461 asm ( \
462 "lwbrx %0,0,%1" \
463 : "=r" (l) \
464 : "r" (a)); \
465 l; \
466 })
467
468 # elif defined(__sparc) && defined(OPENSSL_SYS_ULTRASPARC)
469 # define LE_FETCH32(a) ({ register unsigned int l; \
470 asm ( \
471 "lda [%1]#ASI_PRIMARY_LITTLE,%0" \
472 : "=r" (l) \
473 : "r" (a)); \
474 l; \
475 })
476 # endif
477 # endif
478 #endif /* PEDANTIC */
479
480 #if HASH_LONG_LOG2==2 /* Engage only if sizeof(HASH_LONG)== 4 */
481 /* A nice byte order reversal from Wei Dai <weidai@eskimo.com> */
482 #ifdef ROTATE
483 /* 5 instructions with rotate instruction, else 9 */
484 #define REVERSE_FETCH32(a,l) ( \
485 l=*(const HASH_LONG *)(a), \
486 ((ROTATE(l,8)&0x00FF00FF)|(ROTATE((l&0x00FF00FF),24))) \
487 )
488 #else
489 /* 6 instructions with rotate instruction, else 8 */
490 #define REVERSE_FETCH32(a,l) ( \
491 l=*(const HASH_LONG *)(a), \
492 l=(((l>>8)&0x00FF00FF)|((l&0x00FF00FF)<<8)), \
493 ROTATE(l,16) \
494 )
495 /*
496 * Originally the middle line started with l=(((l&0xFF00FF00)>>8)|...
497 * It's rewritten as above for two reasons:
498 * - RISCs aren't good at long constants and have to explicitely
499 * compose 'em with several (well, usually 2) instructions in a
500 * register before performing the actual operation and (as you
501 * already realized:-) having same constant should inspire the
502 * compiler to permanently allocate the only register for it;
503 * - most modern CPUs have two ALUs, but usually only one has
504 * circuitry for shifts:-( this minor tweak inspires compiler
505 * to schedule shift instructions in a better way...
506 *
507 * <appro@fy.chalmers.se>
508 */
509 #endif
510 #endif
511
512 #ifndef ROTATE
513 #define ROTATE(a,n) (((a)<<(n))|(((a)&0xffffffff)>>(32-(n))))
514 #endif
515
516 /*
517 * Make some obvious choices. E.g., HASH_BLOCK_DATA_ORDER_ALIGNED
518 * and HASH_BLOCK_HOST_ORDER ought to be the same if input data
519 * and host are of the same "endianess". It's possible to mask
520 * this with blank #define HASH_BLOCK_DATA_ORDER though...
521 *
522 * <appro@fy.chalmers.se>
523 */
524 #if defined(B_ENDIAN)
525 # if defined(DATA_ORDER_IS_BIG_ENDIAN)
526 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
527 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
528 # endif
529 # elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
530 # ifndef HOST_FETCH32
531 # ifdef LE_FETCH32
532 # define HOST_FETCH32(p,l) LE_FETCH32(p)
533 # elif defined(REVERSE_FETCH32)
534 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l)
535 # endif
536 # endif
537 # endif
538 #elif defined(L_ENDIAN)
539 # if defined(DATA_ORDER_IS_LITTLE_ENDIAN)
540 # if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED) && HASH_LONG_LOG2==2
541 # define HASH_BLOCK_DATA_ORDER_ALIGNED HASH_BLOCK_HOST_ORDER
542 # endif
543 # elif defined(DATA_ORDER_IS_BIG_ENDIAN)
544 # ifndef HOST_FETCH32
545 # ifdef BE_FETCH32
546 # define HOST_FETCH32(p,l) BE_FETCH32(p)
547 # elif defined(REVERSE_FETCH32)
548 # define HOST_FETCH32(p,l) REVERSE_FETCH32(p,l)
549 # endif
550 # endif
551 # endif
552 #endif
553
554 #if !defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
555 #ifndef HASH_BLOCK_DATA_ORDER
556 #error "HASH_BLOCK_DATA_ORDER must be defined!"
557 #endif
558 #endif
559
560 // None of the invocations of the following macros actually use the result,
561 // so cast them to void to avoid any compiler warnings/errors about not using
562 // the result (e.g. when using clang).
563 // If the resultant values need to be used at some point, these must be changed.
564 #define HOST_c2l(c,l) ((void)_HOST_c2l(c,l))
565 #define HOST_l2c(l,c) ((void)_HOST_l2c(l,c))
566
567 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
568
569 #define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++)))<<24), \
570 l|=(((unsigned long)(*((c)++)))<<16), \
571 l|=(((unsigned long)(*((c)++)))<< 8), \
572 l|=(((unsigned long)(*((c)++))) ), \
573 l)
574 #define HOST_p_c2l(c,l,n) { \
575 switch (n) { \
576 case 0: l =((unsigned long)(*((c)++)))<<24; \
577 case 1: l|=((unsigned long)(*((c)++)))<<16; \
578 case 2: l|=((unsigned long)(*((c)++)))<< 8; \
579 case 3: l|=((unsigned long)(*((c)++))); \
580 } }
581 #define HOST_p_c2l_p(c,l,sc,len) { \
582 switch (sc) { \
583 case 0: l =((unsigned long)(*((c)++)))<<24; \
584 if (--len == 0) break; \
585 case 1: l|=((unsigned long)(*((c)++)))<<16; \
586 if (--len == 0) break; \
587 case 2: l|=((unsigned long)(*((c)++)))<< 8; \
588 } }
589 /* NOTE the pointer is not incremented at the end of this */
590 #define HOST_c2l_p(c,l,n) { \
591 l=0; (c)+=n; \
592 switch (n) { \
593 case 3: l =((unsigned long)(*(--(c))))<< 8; \
594 case 2: l|=((unsigned long)(*(--(c))))<<16; \
595 case 1: l|=((unsigned long)(*(--(c))))<<24; \
596 } }
597 #define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l)>>24)&0xff), \
598 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
599 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
600 *((c)++)=(unsigned char)(((l) )&0xff), \
601 l)
602
603 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
604
605 #define _HOST_c2l(c,l) (l =(((unsigned long)(*((c)++))) ), \
606 l|=(((unsigned long)(*((c)++)))<< 8), \
607 l|=(((unsigned long)(*((c)++)))<<16), \
608 l|=(((unsigned long)(*((c)++)))<<24), \
609 l)
610 #define HOST_p_c2l(c,l,n) { \
611 switch (n) { \
612 case 0: l =((unsigned long)(*((c)++))); \
613 case 1: l|=((unsigned long)(*((c)++)))<< 8; \
614 case 2: l|=((unsigned long)(*((c)++)))<<16; \
615 case 3: l|=((unsigned long)(*((c)++)))<<24; \
616 } }
617 #define HOST_p_c2l_p(c,l,sc,len) { \
618 switch (sc) { \
619 case 0: l =((unsigned long)(*((c)++))); \
620 if (--len == 0) break; \
621 case 1: l|=((unsigned long)(*((c)++)))<< 8; \
622 if (--len == 0) break; \
623 case 2: l|=((unsigned long)(*((c)++)))<<16; \
624 } }
625 /* NOTE the pointer is not incremented at the end of this */
626 #define HOST_c2l_p(c,l,n) { \
627 l=0; (c)+=n; \
628 switch (n) { \
629 case 3: l =((unsigned long)(*(--(c))))<<16; \
630 case 2: l|=((unsigned long)(*(--(c))))<< 8; \
631 case 1: l|=((unsigned long)(*(--(c)))); \
632 } }
633 #define _HOST_l2c(l,c) (*((c)++)=(unsigned char)(((l) )&0xff), \
634 *((c)++)=(unsigned char)(((l)>> 8)&0xff), \
635 *((c)++)=(unsigned char)(((l)>>16)&0xff), \
636 *((c)++)=(unsigned char)(((l)>>24)&0xff), \
637 l)
638
639 #endif
640
641 /*
642 * Time for some action:-)
643 */
644
645 int HASH_UPDATE (HASH_CTX *c, const void *data_, unsigned long len)
646 {
647 const unsigned char *data=(const unsigned char *)data_;
648 register HASH_LONG * p;
649 register unsigned long l;
650 int sw,sc,ew,ec;
651
652 if (len==0) return 1;
653
654 l=(c->Nl+(len<<3))&0xffffffffL;
655 /* 95-05-24 eay Fixed a bug with the overflow handling, thanks to
656 * Wei Dai <weidai@eskimo.com> for pointing it out. */
657 if (l < c->Nl) /* overflow */
658 c->Nh++;
659 c->Nh+=(len>>29);
660 c->Nl=l;
661
662 if (c->num != 0)
663 {
664 p=c->data;
665 sw=c->num>>2;
666 sc=c->num&0x03;
667
668 if ((c->num+len) >= HASH_CBLOCK)
669 {
670 l=p[sw]; HOST_p_c2l(data,l,sc); p[sw++]=l;
671 for (; sw<HASH_LBLOCK; sw++)
672 {
673 HOST_c2l(data,l); p[sw]=l;
674 }
675 HASH_BLOCK_HOST_ORDER (c,p,1);
676 len-=(HASH_CBLOCK-c->num);
677 c->num=0;
678 /* drop through and do the rest */
679 }
680 else
681 {
682 c->num+=len;
683 if ((sc+len) < 4) /* ugly, add char's to a word */
684 {
685 l=p[sw]; HOST_p_c2l_p(data,l,sc,len); p[sw]=l;
686 }
687 else
688 {
689 ew=(c->num>>2);
690 ec=(c->num&0x03);
691 if (sc)
692 l=p[sw];
693 HOST_p_c2l(data,l,sc);
694 p[sw++]=l;
695 for (; sw < ew; sw++)
696 {
697 HOST_c2l(data,l); p[sw]=l;
698 }
699 if (ec)
700 {
701 HOST_c2l_p(data,l,ec); p[sw]=l;
702 }
703 }
704 return 1;
705 }
706 }
707
708 sw=(int)(len/HASH_CBLOCK);
709 if (sw > 0)
710 {
711 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
712 /*
713 * Note that HASH_BLOCK_DATA_ORDER_ALIGNED gets defined
714 * only if sizeof(HASH_LONG)==4.
715 */
716 if ((((unsigned long)data)%4) == 0)
717 {
718 /* data is properly aligned so that we can cast it: */
719 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,sw);
720 sw*=HASH_CBLOCK;
721 data+=sw;
722 len-=sw;
723 }
724 else
725 #if !defined(HASH_BLOCK_DATA_ORDER)
726 while (sw--)
727 {
728 mDNSPlatformMemCopy(p=c->data,data,HASH_CBLOCK);
729 HASH_BLOCK_DATA_ORDER_ALIGNED(c,p,1);
730 data+=HASH_CBLOCK;
731 len-=HASH_CBLOCK;
732 }
733 #endif
734 #endif
735 #if defined(HASH_BLOCK_DATA_ORDER)
736 {
737 HASH_BLOCK_DATA_ORDER(c,data,sw);
738 sw*=HASH_CBLOCK;
739 data+=sw;
740 len-=sw;
741 }
742 #endif
743 }
744
745 if (len!=0)
746 {
747 p = c->data;
748 c->num = (int)len;
749 ew=(int)(len>>2); /* words to copy */
750 ec=(int)(len&0x03);
751 for (; ew; ew--,p++)
752 {
753 HOST_c2l(data,l); *p=l;
754 }
755 HOST_c2l_p(data,l,ec);
756 *p=l;
757 }
758 return 1;
759 }
760
761
762 void HASH_TRANSFORM (HASH_CTX *c, const unsigned char *data)
763 {
764 #if defined(HASH_BLOCK_DATA_ORDER_ALIGNED)
765 if ((((unsigned long)data)%4) == 0)
766 /* data is properly aligned so that we can cast it: */
767 HASH_BLOCK_DATA_ORDER_ALIGNED (c,(HASH_LONG *)data,1);
768 else
769 #if !defined(HASH_BLOCK_DATA_ORDER)
770 {
771 mDNSPlatformMemCopy(c->data,data,HASH_CBLOCK);
772 HASH_BLOCK_DATA_ORDER_ALIGNED (c,c->data,1);
773 }
774 #endif
775 #endif
776 #if defined(HASH_BLOCK_DATA_ORDER)
777 HASH_BLOCK_DATA_ORDER (c,data,1);
778 #endif
779 }
780
781
782 int HASH_FINAL (unsigned char *md, HASH_CTX *c)
783 {
784 register HASH_LONG *p;
785 register unsigned long l;
786 register int i,j;
787 static const unsigned char end[4]={0x80,0x00,0x00,0x00};
788 const unsigned char *cp=end;
789
790 /* c->num should definitly have room for at least one more byte. */
791 p=c->data;
792 i=c->num>>2;
793 j=c->num&0x03;
794
795 #if 0
796 /* purify often complains about the following line as an
797 * Uninitialized Memory Read. While this can be true, the
798 * following p_c2l macro will reset l when that case is true.
799 * This is because j&0x03 contains the number of 'valid' bytes
800 * already in p[i]. If and only if j&0x03 == 0, the UMR will
801 * occur but this is also the only time p_c2l will do
802 * l= *(cp++) instead of l|= *(cp++)
803 * Many thanks to Alex Tang <altitude@cic.net> for pickup this
804 * 'potential bug' */
805 #ifdef PURIFY
806 if (j==0) p[i]=0; /* Yeah, but that's not the way to fix it:-) */
807 #endif
808 l=p[i];
809 #else
810 l = (j==0) ? 0 : p[i];
811 #endif
812 HOST_p_c2l(cp,l,j); p[i++]=l; /* i is the next 'undefined word' */
813
814 if (i>(HASH_LBLOCK-2)) /* save room for Nl and Nh */
815 {
816 if (i<HASH_LBLOCK) p[i]=0;
817 HASH_BLOCK_HOST_ORDER (c,p,1);
818 i=0;
819 }
820 for (; i<(HASH_LBLOCK-2); i++)
821 p[i]=0;
822
823 #if defined(DATA_ORDER_IS_BIG_ENDIAN)
824 p[HASH_LBLOCK-2]=c->Nh;
825 p[HASH_LBLOCK-1]=c->Nl;
826 #elif defined(DATA_ORDER_IS_LITTLE_ENDIAN)
827 p[HASH_LBLOCK-2]=c->Nl;
828 p[HASH_LBLOCK-1]=c->Nh;
829 #endif
830 HASH_BLOCK_HOST_ORDER (c,p,1);
831
832 #ifndef HASH_MAKE_STRING
833 #error "HASH_MAKE_STRING must be defined!"
834 #else
835 HASH_MAKE_STRING(c,md);
836 #endif
837
838 c->num=0;
839 /* clear stuff, HASH_BLOCK may be leaving some stuff on the stack
840 * but I'm not worried :-)
841 OPENSSL_cleanse((void *)c,sizeof(HASH_CTX));
842 */
843 return 1;
844 }
845
846 #ifndef MD32_REG_T
847 #define MD32_REG_T long
848 /*
849 * This comment was originaly written for MD5, which is why it
850 * discusses A-D. But it basically applies to all 32-bit digests,
851 * which is why it was moved to common header file.
852 *
853 * In case you wonder why A-D are declared as long and not
854 * as mDNSu32. Doing so results in slight performance
855 * boost on LP64 architectures. The catch is we don't
856 * really care if 32 MSBs of a 64-bit register get polluted
857 * with eventual overflows as we *save* only 32 LSBs in
858 * *either* case. Now declaring 'em long excuses the compiler
859 * from keeping 32 MSBs zeroed resulting in 13% performance
860 * improvement under SPARC Solaris7/64 and 5% under AlphaLinux.
861 * Well, to be honest it should say that this *prevents*
862 * performance degradation.
863 * <appro@fy.chalmers.se>
864 * Apparently there're LP64 compilers that generate better
865 * code if A-D are declared int. Most notably GCC-x86_64
866 * generates better code.
867 * <appro@fy.chalmers.se>
868 */
869 #endif
870
871
872 // from md5_locl.h (continued)
873
874 /*
875 #define F(x,y,z) (((x) & (y)) | ((~(x)) & (z)))
876 #define G(x,y,z) (((x) & (z)) | ((y) & (~(z))))
877 */
878
879 /* As pointed out by Wei Dai <weidai@eskimo.com>, the above can be
880 * simplified to the code below. Wei attributes these optimizations
881 * to Peter Gutmann's SHS code, and he attributes it to Rich Schroeppel.
882 */
883 #define F(b,c,d) ((((c) ^ (d)) & (b)) ^ (d))
884 #define G(b,c,d) ((((b) ^ (c)) & (d)) ^ (c))
885 #define H(b,c,d) ((b) ^ (c) ^ (d))
886 #define I(b,c,d) (((~(d)) | (b)) ^ (c))
887
888 #define R0(a,b,c,d,k,s,t) { \
889 a+=((k)+(t)+F((b),(c),(d))); \
890 a=ROTATE(a,s); \
891 a+=b; }; \
892
893 #define R1(a,b,c,d,k,s,t) { \
894 a+=((k)+(t)+G((b),(c),(d))); \
895 a=ROTATE(a,s); \
896 a+=b; };
897
898 #define R2(a,b,c,d,k,s,t) { \
899 a+=((k)+(t)+H((b),(c),(d))); \
900 a=ROTATE(a,s); \
901 a+=b; };
902
903 #define R3(a,b,c,d,k,s,t) { \
904 a+=((k)+(t)+I((b),(c),(d))); \
905 a=ROTATE(a,s); \
906 a+=b; };
907
908 // from md5_dgst.c
909
910
911 /* Implemented from RFC1321 The MD5 Message-Digest Algorithm
912 */
913
914 #define INIT_DATA_A (unsigned long)0x67452301L
915 #define INIT_DATA_B (unsigned long)0xefcdab89L
916 #define INIT_DATA_C (unsigned long)0x98badcfeL
917 #define INIT_DATA_D (unsigned long)0x10325476L
918
919 int MD5_Init(MD5_CTX *c)
920 {
921 c->A=INIT_DATA_A;
922 c->B=INIT_DATA_B;
923 c->C=INIT_DATA_C;
924 c->D=INIT_DATA_D;
925 c->Nl=0;
926 c->Nh=0;
927 c->num=0;
928 return 1;
929 }
930
931 #ifndef md5_block_host_order
932 void md5_block_host_order (MD5_CTX *c, const void *data, int num)
933 {
934 const mDNSu32 *X=(const mDNSu32 *)data;
935 register unsigned MD32_REG_T A,B,C,D;
936
937 A=c->A;
938 B=c->B;
939 C=c->C;
940 D=c->D;
941
942 for (; num--; X+=HASH_LBLOCK)
943 {
944 /* Round 0 */
945 R0(A,B,C,D,X[ 0], 7,0xd76aa478L);
946 R0(D,A,B,C,X[ 1],12,0xe8c7b756L);
947 R0(C,D,A,B,X[ 2],17,0x242070dbL);
948 R0(B,C,D,A,X[ 3],22,0xc1bdceeeL);
949 R0(A,B,C,D,X[ 4], 7,0xf57c0fafL);
950 R0(D,A,B,C,X[ 5],12,0x4787c62aL);
951 R0(C,D,A,B,X[ 6],17,0xa8304613L);
952 R0(B,C,D,A,X[ 7],22,0xfd469501L);
953 R0(A,B,C,D,X[ 8], 7,0x698098d8L);
954 R0(D,A,B,C,X[ 9],12,0x8b44f7afL);
955 R0(C,D,A,B,X[10],17,0xffff5bb1L);
956 R0(B,C,D,A,X[11],22,0x895cd7beL);
957 R0(A,B,C,D,X[12], 7,0x6b901122L);
958 R0(D,A,B,C,X[13],12,0xfd987193L);
959 R0(C,D,A,B,X[14],17,0xa679438eL);
960 R0(B,C,D,A,X[15],22,0x49b40821L);
961 /* Round 1 */
962 R1(A,B,C,D,X[ 1], 5,0xf61e2562L);
963 R1(D,A,B,C,X[ 6], 9,0xc040b340L);
964 R1(C,D,A,B,X[11],14,0x265e5a51L);
965 R1(B,C,D,A,X[ 0],20,0xe9b6c7aaL);
966 R1(A,B,C,D,X[ 5], 5,0xd62f105dL);
967 R1(D,A,B,C,X[10], 9,0x02441453L);
968 R1(C,D,A,B,X[15],14,0xd8a1e681L);
969 R1(B,C,D,A,X[ 4],20,0xe7d3fbc8L);
970 R1(A,B,C,D,X[ 9], 5,0x21e1cde6L);
971 R1(D,A,B,C,X[14], 9,0xc33707d6L);
972 R1(C,D,A,B,X[ 3],14,0xf4d50d87L);
973 R1(B,C,D,A,X[ 8],20,0x455a14edL);
974 R1(A,B,C,D,X[13], 5,0xa9e3e905L);
975 R1(D,A,B,C,X[ 2], 9,0xfcefa3f8L);
976 R1(C,D,A,B,X[ 7],14,0x676f02d9L);
977 R1(B,C,D,A,X[12],20,0x8d2a4c8aL);
978 /* Round 2 */
979 R2(A,B,C,D,X[ 5], 4,0xfffa3942L);
980 R2(D,A,B,C,X[ 8],11,0x8771f681L);
981 R2(C,D,A,B,X[11],16,0x6d9d6122L);
982 R2(B,C,D,A,X[14],23,0xfde5380cL);
983 R2(A,B,C,D,X[ 1], 4,0xa4beea44L);
984 R2(D,A,B,C,X[ 4],11,0x4bdecfa9L);
985 R2(C,D,A,B,X[ 7],16,0xf6bb4b60L);
986 R2(B,C,D,A,X[10],23,0xbebfbc70L);
987 R2(A,B,C,D,X[13], 4,0x289b7ec6L);
988 R2(D,A,B,C,X[ 0],11,0xeaa127faL);
989 R2(C,D,A,B,X[ 3],16,0xd4ef3085L);
990 R2(B,C,D,A,X[ 6],23,0x04881d05L);
991 R2(A,B,C,D,X[ 9], 4,0xd9d4d039L);
992 R2(D,A,B,C,X[12],11,0xe6db99e5L);
993 R2(C,D,A,B,X[15],16,0x1fa27cf8L);
994 R2(B,C,D,A,X[ 2],23,0xc4ac5665L);
995 /* Round 3 */
996 R3(A,B,C,D,X[ 0], 6,0xf4292244L);
997 R3(D,A,B,C,X[ 7],10,0x432aff97L);
998 R3(C,D,A,B,X[14],15,0xab9423a7L);
999 R3(B,C,D,A,X[ 5],21,0xfc93a039L);
1000 R3(A,B,C,D,X[12], 6,0x655b59c3L);
1001 R3(D,A,B,C,X[ 3],10,0x8f0ccc92L);
1002 R3(C,D,A,B,X[10],15,0xffeff47dL);
1003 R3(B,C,D,A,X[ 1],21,0x85845dd1L);
1004 R3(A,B,C,D,X[ 8], 6,0x6fa87e4fL);
1005 R3(D,A,B,C,X[15],10,0xfe2ce6e0L);
1006 R3(C,D,A,B,X[ 6],15,0xa3014314L);
1007 R3(B,C,D,A,X[13],21,0x4e0811a1L);
1008 R3(A,B,C,D,X[ 4], 6,0xf7537e82L);
1009 R3(D,A,B,C,X[11],10,0xbd3af235L);
1010 R3(C,D,A,B,X[ 2],15,0x2ad7d2bbL);
1011 R3(B,C,D,A,X[ 9],21,0xeb86d391L);
1012
1013 A = c->A += A;
1014 B = c->B += B;
1015 C = c->C += C;
1016 D = c->D += D;
1017 }
1018 }
1019 #endif
1020
1021 #ifndef md5_block_data_order
1022 #ifdef X
1023 #undef X
1024 #endif
1025 void md5_block_data_order (MD5_CTX *c, const void *data_, int num)
1026 {
1027 const unsigned char *data=data_;
1028 register unsigned MD32_REG_T A,B,C,D,l;
1029 #ifndef MD32_XARRAY
1030 /* See comment in crypto/sha/sha_locl.h for details. */
1031 unsigned MD32_REG_T XX0, XX1, XX2, XX3, XX4, XX5, XX6, XX7,
1032 XX8, XX9,XX10,XX11,XX12,XX13,XX14,XX15;
1033 # define X(i) XX ## i
1034 #else
1035 mDNSu32 XX[MD5_LBLOCK];
1036 # define X(i) XX[i]
1037 #endif
1038
1039 A=c->A;
1040 B=c->B;
1041 C=c->C;
1042 D=c->D;
1043
1044 for (; num--;)
1045 {
1046 HOST_c2l(data,l); X( 0)=l; HOST_c2l(data,l); X( 1)=l;
1047 /* Round 0 */
1048 R0(A,B,C,D,X( 0), 7,0xd76aa478L); HOST_c2l(data,l); X( 2)=l;
1049 R0(D,A,B,C,X( 1),12,0xe8c7b756L); HOST_c2l(data,l); X( 3)=l;
1050 R0(C,D,A,B,X( 2),17,0x242070dbL); HOST_c2l(data,l); X( 4)=l;
1051 R0(B,C,D,A,X( 3),22,0xc1bdceeeL); HOST_c2l(data,l); X( 5)=l;
1052 R0(A,B,C,D,X( 4), 7,0xf57c0fafL); HOST_c2l(data,l); X( 6)=l;
1053 R0(D,A,B,C,X( 5),12,0x4787c62aL); HOST_c2l(data,l); X( 7)=l;
1054 R0(C,D,A,B,X( 6),17,0xa8304613L); HOST_c2l(data,l); X( 8)=l;
1055 R0(B,C,D,A,X( 7),22,0xfd469501L); HOST_c2l(data,l); X( 9)=l;
1056 R0(A,B,C,D,X( 8), 7,0x698098d8L); HOST_c2l(data,l); X(10)=l;
1057 R0(D,A,B,C,X( 9),12,0x8b44f7afL); HOST_c2l(data,l); X(11)=l;
1058 R0(C,D,A,B,X(10),17,0xffff5bb1L); HOST_c2l(data,l); X(12)=l;
1059 R0(B,C,D,A,X(11),22,0x895cd7beL); HOST_c2l(data,l); X(13)=l;
1060 R0(A,B,C,D,X(12), 7,0x6b901122L); HOST_c2l(data,l); X(14)=l;
1061 R0(D,A,B,C,X(13),12,0xfd987193L); HOST_c2l(data,l); X(15)=l;
1062 R0(C,D,A,B,X(14),17,0xa679438eL);
1063 R0(B,C,D,A,X(15),22,0x49b40821L);
1064 /* Round 1 */
1065 R1(A,B,C,D,X( 1), 5,0xf61e2562L);
1066 R1(D,A,B,C,X( 6), 9,0xc040b340L);
1067 R1(C,D,A,B,X(11),14,0x265e5a51L);
1068 R1(B,C,D,A,X( 0),20,0xe9b6c7aaL);
1069 R1(A,B,C,D,X( 5), 5,0xd62f105dL);
1070 R1(D,A,B,C,X(10), 9,0x02441453L);
1071 R1(C,D,A,B,X(15),14,0xd8a1e681L);
1072 R1(B,C,D,A,X( 4),20,0xe7d3fbc8L);
1073 R1(A,B,C,D,X( 9), 5,0x21e1cde6L);
1074 R1(D,A,B,C,X(14), 9,0xc33707d6L);
1075 R1(C,D,A,B,X( 3),14,0xf4d50d87L);
1076 R1(B,C,D,A,X( 8),20,0x455a14edL);
1077 R1(A,B,C,D,X(13), 5,0xa9e3e905L);
1078 R1(D,A,B,C,X( 2), 9,0xfcefa3f8L);
1079 R1(C,D,A,B,X( 7),14,0x676f02d9L);
1080 R1(B,C,D,A,X(12),20,0x8d2a4c8aL);
1081 /* Round 2 */
1082 R2(A,B,C,D,X( 5), 4,0xfffa3942L);
1083 R2(D,A,B,C,X( 8),11,0x8771f681L);
1084 R2(C,D,A,B,X(11),16,0x6d9d6122L);
1085 R2(B,C,D,A,X(14),23,0xfde5380cL);
1086 R2(A,B,C,D,X( 1), 4,0xa4beea44L);
1087 R2(D,A,B,C,X( 4),11,0x4bdecfa9L);
1088 R2(C,D,A,B,X( 7),16,0xf6bb4b60L);
1089 R2(B,C,D,A,X(10),23,0xbebfbc70L);
1090 R2(A,B,C,D,X(13), 4,0x289b7ec6L);
1091 R2(D,A,B,C,X( 0),11,0xeaa127faL);
1092 R2(C,D,A,B,X( 3),16,0xd4ef3085L);
1093 R2(B,C,D,A,X( 6),23,0x04881d05L);
1094 R2(A,B,C,D,X( 9), 4,0xd9d4d039L);
1095 R2(D,A,B,C,X(12),11,0xe6db99e5L);
1096 R2(C,D,A,B,X(15),16,0x1fa27cf8L);
1097 R2(B,C,D,A,X( 2),23,0xc4ac5665L);
1098 /* Round 3 */
1099 R3(A,B,C,D,X( 0), 6,0xf4292244L);
1100 R3(D,A,B,C,X( 7),10,0x432aff97L);
1101 R3(C,D,A,B,X(14),15,0xab9423a7L);
1102 R3(B,C,D,A,X( 5),21,0xfc93a039L);
1103 R3(A,B,C,D,X(12), 6,0x655b59c3L);
1104 R3(D,A,B,C,X( 3),10,0x8f0ccc92L);
1105 R3(C,D,A,B,X(10),15,0xffeff47dL);
1106 R3(B,C,D,A,X( 1),21,0x85845dd1L);
1107 R3(A,B,C,D,X( 8), 6,0x6fa87e4fL);
1108 R3(D,A,B,C,X(15),10,0xfe2ce6e0L);
1109 R3(C,D,A,B,X( 6),15,0xa3014314L);
1110 R3(B,C,D,A,X(13),21,0x4e0811a1L);
1111 R3(A,B,C,D,X( 4), 6,0xf7537e82L);
1112 R3(D,A,B,C,X(11),10,0xbd3af235L);
1113 R3(C,D,A,B,X( 2),15,0x2ad7d2bbL);
1114 R3(B,C,D,A,X( 9),21,0xeb86d391L);
1115
1116 A = c->A += A;
1117 B = c->B += B;
1118 C = c->C += C;
1119 D = c->D += D;
1120 }
1121 }
1122 #endif
1123
1124
1125 // ***************************************************************************
1126 #if COMPILER_LIKES_PRAGMA_MARK
1127 #pragma mark - base64 -> binary conversion
1128 #endif
1129
1130 static const char Base64[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
1131 static const char Pad64 = '=';
1132
1133
1134 #define mDNSisspace(x) (x == '\t' || x == '\n' || x == '\v' || x == '\f' || x == '\r' || x == ' ')
1135
1136 mDNSlocal const char *mDNSstrchr(const char *s, int c)
1137 {
1138 while (1)
1139 {
1140 if (c == *s) return s;
1141 if (!*s) return mDNSNULL;
1142 s++;
1143 }
1144 }
1145
1146 // skips all whitespace anywhere.
1147 // converts characters, four at a time, starting at (or after)
1148 // src from base - 64 numbers into three 8 bit bytes in the target area.
1149 // it returns the number of data bytes stored at the target, or -1 on error.
1150 // adapted from BIND sources
1151
1152 mDNSlocal mDNSs32 DNSDigest_Base64ToBin(const char *src, mDNSu8 *target, mDNSu32 targsize)
1153 {
1154 int tarindex, state, ch;
1155 const char *pos;
1156
1157 state = 0;
1158 tarindex = 0;
1159
1160 while ((ch = *src++) != '\0') {
1161 if (mDNSisspace(ch)) /* Skip whitespace anywhere. */
1162 continue;
1163
1164 if (ch == Pad64)
1165 break;
1166
1167 pos = mDNSstrchr(Base64, ch);
1168 if (pos == 0) /* A non-base64 character. */
1169 return (-1);
1170
1171 switch (state) {
1172 case 0:
1173 if (target) {
1174 if ((mDNSu32)tarindex >= targsize)
1175 return (-1);
1176 target[tarindex] = (mDNSu8)((pos - Base64) << 2);
1177 }
1178 state = 1;
1179 break;
1180 case 1:
1181 if (target) {
1182 if ((mDNSu32)tarindex + 1 >= targsize)
1183 return (-1);
1184 target[tarindex] |= (pos - Base64) >> 4;
1185 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x0f) << 4);
1186 }
1187 tarindex++;
1188 state = 2;
1189 break;
1190 case 2:
1191 if (target) {
1192 if ((mDNSu32)tarindex + 1 >= targsize)
1193 return (-1);
1194 target[tarindex] |= (pos - Base64) >> 2;
1195 target[tarindex+1] = (mDNSu8)(((pos - Base64) & 0x03) << 6);
1196 }
1197 tarindex++;
1198 state = 3;
1199 break;
1200 case 3:
1201 if (target) {
1202 if ((mDNSu32)tarindex >= targsize)
1203 return (-1);
1204 target[tarindex] |= (pos - Base64);
1205 }
1206 tarindex++;
1207 state = 0;
1208 break;
1209 default:
1210 return -1;
1211 }
1212 }
1213
1214 /*
1215 * We are done decoding Base-64 chars. Let's see if we ended
1216 * on a byte boundary, and/or with erroneous trailing characters.
1217 */
1218
1219 if (ch == Pad64) { /* We got a pad char. */
1220 ch = *src++; /* Skip it, get next. */
1221 switch (state) {
1222 case 0: /* Invalid = in first position */
1223 case 1: /* Invalid = in second position */
1224 return (-1);
1225
1226 case 2: /* Valid, means one byte of info */
1227 /* Skip any number of spaces. */
1228 for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1229 if (!mDNSisspace(ch))
1230 break;
1231 /* Make sure there is another trailing = sign. */
1232 if (ch != Pad64)
1233 return (-1);
1234 ch = *src++; /* Skip the = */
1235 /* Fall through to "single trailing =" case. */
1236 /* FALLTHROUGH */
1237
1238 case 3: /* Valid, means two bytes of info */
1239 /*
1240 * We know this char is an =. Is there anything but
1241 * whitespace after it?
1242 */
1243 for ((void)mDNSNULL; ch != '\0'; ch = *src++)
1244 if (!mDNSisspace(ch))
1245 return (-1);
1246
1247 /*
1248 * Now make sure for cases 2 and 3 that the "extra"
1249 * bits that slopped past the last full byte were
1250 * zeros. If we don't check them, they become a
1251 * subliminal channel.
1252 */
1253 if (target && target[tarindex] != 0)
1254 return (-1);
1255 }
1256 } else {
1257 /*
1258 * We ended by seeing the end of the string. Make sure we
1259 * have no partial bytes lying around.
1260 */
1261 if (state != 0)
1262 return (-1);
1263 }
1264
1265 return (tarindex);
1266 }
1267
1268
1269 // ***************************************************************************
1270 #if COMPILER_LIKES_PRAGMA_MARK
1271 #pragma mark - API exported to mDNS Core
1272 #endif
1273
1274 // Constants
1275 #define HMAC_IPAD 0x36
1276 #define HMAC_OPAD 0x5c
1277 #define MD5_LEN 16
1278
1279 #define HMAC_MD5_AlgName (*(const domainname*) "\010" "hmac-md5" "\007" "sig-alg" "\003" "reg" "\003" "int")
1280
1281 // Adapted from Appendix, RFC 2104
1282 mDNSlocal void DNSDigest_ConstructHMACKey(DomainAuthInfo *info, const mDNSu8 *key, mDNSu32 len)
1283 {
1284 MD5_CTX k;
1285 mDNSu8 buf[MD5_LEN];
1286 int i;
1287
1288 // If key is longer than HMAC_LEN reset it to MD5(key)
1289 if (len > HMAC_LEN)
1290 {
1291 MD5_Init(&k);
1292 MD5_Update(&k, key, len);
1293 MD5_Final(buf, &k);
1294 key = buf;
1295 len = MD5_LEN;
1296 }
1297
1298 // store key in pads
1299 mDNSPlatformMemZero(info->keydata_ipad, HMAC_LEN);
1300 mDNSPlatformMemZero(info->keydata_opad, HMAC_LEN);
1301 mDNSPlatformMemCopy(info->keydata_ipad, key, len);
1302 mDNSPlatformMemCopy(info->keydata_opad, key, len);
1303
1304 // XOR key with ipad and opad values
1305 for (i = 0; i < HMAC_LEN; i++)
1306 {
1307 info->keydata_ipad[i] ^= HMAC_IPAD;
1308 info->keydata_opad[i] ^= HMAC_OPAD;
1309 }
1310
1311 }
1312
1313 mDNSexport mDNSs32 DNSDigest_ConstructHMACKeyfromBase64(DomainAuthInfo *info, const char *b64key)
1314 {
1315 mDNSu8 keybuf[1024];
1316 mDNSs32 keylen = DNSDigest_Base64ToBin(b64key, keybuf, sizeof(keybuf));
1317 if (keylen < 0) return(keylen);
1318 DNSDigest_ConstructHMACKey(info, keybuf, (mDNSu32)keylen);
1319 return(keylen);
1320 }
1321
1322 mDNSexport void DNSDigest_SignMessage(DNSMessage *msg, mDNSu8 **end, DomainAuthInfo *info, mDNSu16 tcode)
1323 {
1324 AuthRecord tsig;
1325 mDNSu8 *rdata, *const countPtr = (mDNSu8 *)&msg->h.numAdditionals; // Get existing numAdditionals value
1326 mDNSu32 utc32;
1327 mDNSu8 utc48[6];
1328 mDNSu8 digest[MD5_LEN];
1329 mDNSu8 *ptr = *end;
1330 mDNSu32 len;
1331 mDNSOpaque16 buf;
1332 MD5_CTX c;
1333 mDNSu16 numAdditionals = (mDNSu16)((mDNSu16)countPtr[0] << 8 | countPtr[1]);
1334
1335 // Init MD5 context, digest inner key pad and message
1336 MD5_Init(&c);
1337 MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1338 MD5_Update(&c, (mDNSu8 *)msg, (unsigned long)(*end - (mDNSu8 *)msg));
1339
1340 // Construct TSIG RR, digesting variables as apporpriate
1341 mDNS_SetupResourceRecord(&tsig, mDNSNULL, 0, kDNSType_TSIG, 0, kDNSRecordTypeKnownUnique, AuthRecordAny, mDNSNULL, mDNSNULL);
1342
1343 // key name
1344 AssignDomainName(&tsig.namestorage, &info->keyname);
1345 MD5_Update(&c, info->keyname.c, DomainNameLength(&info->keyname));
1346
1347 // class
1348 tsig.resrec.rrclass = kDNSQClass_ANY;
1349 buf = mDNSOpaque16fromIntVal(kDNSQClass_ANY);
1350 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1351
1352 // ttl
1353 tsig.resrec.rroriginalttl = 0;
1354 MD5_Update(&c, (mDNSu8 *)&tsig.resrec.rroriginalttl, sizeof(tsig.resrec.rroriginalttl));
1355
1356 // alg name
1357 AssignDomainName(&tsig.resrec.rdata->u.name, &HMAC_MD5_AlgName);
1358 len = DomainNameLength(&HMAC_MD5_AlgName);
1359 rdata = tsig.resrec.rdata->u.data + len;
1360 MD5_Update(&c, HMAC_MD5_AlgName.c, len);
1361
1362 // time
1363 // get UTC (universal time), convert to 48-bit unsigned in network byte order
1364 utc32 = (mDNSu32)mDNSPlatformUTC();
1365 if (utc32 == (unsigned)-1) { LogMsg("ERROR: DNSDigest_SignMessage - mDNSPlatformUTC returned bad time -1"); *end = mDNSNULL; }
1366 utc48[0] = 0;
1367 utc48[1] = 0;
1368 utc48[2] = (mDNSu8)((utc32 >> 24) & 0xff);
1369 utc48[3] = (mDNSu8)((utc32 >> 16) & 0xff);
1370 utc48[4] = (mDNSu8)((utc32 >> 8) & 0xff);
1371 utc48[5] = (mDNSu8)( utc32 & 0xff);
1372
1373 mDNSPlatformMemCopy(rdata, utc48, 6);
1374 rdata += 6;
1375 MD5_Update(&c, utc48, 6);
1376
1377 // 300 sec is fudge recommended in RFC 2485
1378 rdata[0] = (mDNSu8)((300 >> 8) & 0xff);
1379 rdata[1] = (mDNSu8)( 300 & 0xff);
1380 MD5_Update(&c, rdata, sizeof(mDNSOpaque16));
1381 rdata += sizeof(mDNSOpaque16);
1382
1383 // digest error (tcode) and other data len (zero) - we'll add them to the rdata later
1384 buf.b[0] = (mDNSu8)((tcode >> 8) & 0xff);
1385 buf.b[1] = (mDNSu8)( tcode & 0xff);
1386 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error
1387 buf.NotAnInteger = 0;
1388 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len
1389
1390 // finish the message & tsig var hash
1391 MD5_Final(digest, &c);
1392
1393 // perform outer MD5 (outer key pad, inner digest)
1394 MD5_Init(&c);
1395 MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1396 MD5_Update(&c, digest, MD5_LEN);
1397 MD5_Final(digest, &c);
1398
1399 // set remaining rdata fields
1400 rdata[0] = (mDNSu8)((MD5_LEN >> 8) & 0xff);
1401 rdata[1] = (mDNSu8)( MD5_LEN & 0xff);
1402 rdata += sizeof(mDNSOpaque16);
1403 mDNSPlatformMemCopy(rdata, digest, MD5_LEN); // MAC
1404 rdata += MD5_LEN;
1405 rdata[0] = msg->h.id.b[0]; // original ID
1406 rdata[1] = msg->h.id.b[1];
1407 rdata[2] = (mDNSu8)((tcode >> 8) & 0xff);
1408 rdata[3] = (mDNSu8)( tcode & 0xff);
1409 rdata[4] = 0; // other data len
1410 rdata[5] = 0;
1411 rdata += 6;
1412
1413 tsig.resrec.rdlength = (mDNSu16)(rdata - tsig.resrec.rdata->u.data);
1414 *end = PutResourceRecordTTLJumbo(msg, ptr, &numAdditionals, &tsig.resrec, 0);
1415 if (!*end) { LogMsg("ERROR: DNSDigest_SignMessage - could not put TSIG"); *end = mDNSNULL; return; }
1416
1417 // Write back updated numAdditionals value
1418 countPtr[0] = (mDNSu8)(numAdditionals >> 8);
1419 countPtr[1] = (mDNSu8)(numAdditionals & 0xFF);
1420 }
1421
1422 mDNSexport mDNSBool DNSDigest_VerifyMessage(DNSMessage *msg, mDNSu8 *end, LargeCacheRecord * lcr, DomainAuthInfo *info, mDNSu16 * rcode, mDNSu16 * tcode)
1423 {
1424 mDNSu8 * ptr = (mDNSu8*) &lcr->r.resrec.rdata->u.data;
1425 mDNSs32 now;
1426 mDNSs32 then;
1427 mDNSu8 thisDigest[MD5_LEN];
1428 mDNSu8 thatDigest[MD5_LEN];
1429 mDNSu32 macsize;
1430 mDNSOpaque16 buf;
1431 mDNSu8 utc48[6];
1432 mDNSs32 delta;
1433 mDNSu16 fudge;
1434 domainname * algo;
1435 MD5_CTX c;
1436 mDNSBool ok = mDNSfalse;
1437
1438 // We only support HMAC-MD5 for now
1439
1440 algo = (domainname*) ptr;
1441
1442 if (!SameDomainName(algo, &HMAC_MD5_AlgName))
1443 {
1444 LogMsg("ERROR: DNSDigest_VerifyMessage - TSIG algorithm not supported: %##s", algo->c);
1445 *rcode = kDNSFlag1_RC_NotAuth;
1446 *tcode = TSIG_ErrBadKey;
1447 ok = mDNSfalse;
1448 goto exit;
1449 }
1450
1451 ptr += DomainNameLength(algo);
1452
1453 // Check the times
1454
1455 now = mDNSPlatformUTC();
1456 if (now == -1)
1457 {
1458 LogMsg("ERROR: DNSDigest_VerifyMessage - mDNSPlatformUTC returned bad time -1");
1459 *rcode = kDNSFlag1_RC_NotAuth;
1460 *tcode = TSIG_ErrBadTime;
1461 ok = mDNSfalse;
1462 goto exit;
1463 }
1464
1465 // Get the 48 bit time field, skipping over the first word
1466
1467 utc48[0] = *ptr++;
1468 utc48[1] = *ptr++;
1469 utc48[2] = *ptr++;
1470 utc48[3] = *ptr++;
1471 utc48[4] = *ptr++;
1472 utc48[5] = *ptr++;
1473
1474 then = (mDNSs32)NToH32(utc48 + sizeof(mDNSu16));
1475
1476 fudge = NToH16(ptr);
1477
1478 ptr += sizeof(mDNSu16);
1479
1480 delta = (now > then) ? now - then : then - now;
1481
1482 if (delta > fudge)
1483 {
1484 LogMsg("ERROR: DNSDigest_VerifyMessage - time skew > %d", fudge);
1485 *rcode = kDNSFlag1_RC_NotAuth;
1486 *tcode = TSIG_ErrBadTime;
1487 ok = mDNSfalse;
1488 goto exit;
1489 }
1490
1491 // MAC size
1492
1493 macsize = (mDNSu32) NToH16(ptr);
1494
1495 ptr += sizeof(mDNSu16);
1496
1497 // MAC
1498
1499 mDNSPlatformMemCopy(thatDigest, ptr, MD5_LEN);
1500
1501 // Init MD5 context, digest inner key pad and message
1502
1503 MD5_Init(&c);
1504 MD5_Update(&c, info->keydata_ipad, HMAC_LEN);
1505 MD5_Update(&c, (mDNSu8*) msg, (unsigned long)(end - (mDNSu8*) msg));
1506
1507 // Key name
1508
1509 MD5_Update(&c, lcr->r.resrec.name->c, DomainNameLength(lcr->r.resrec.name));
1510
1511 // Class name
1512
1513 buf = mDNSOpaque16fromIntVal(lcr->r.resrec.rrclass);
1514 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1515
1516 // TTL
1517
1518 MD5_Update(&c, (mDNSu8*) &lcr->r.resrec.rroriginalttl, sizeof(lcr->r.resrec.rroriginalttl));
1519
1520 // Algorithm
1521
1522 MD5_Update(&c, algo->c, DomainNameLength(algo));
1523
1524 // Time
1525
1526 MD5_Update(&c, utc48, 6);
1527
1528 // Fudge
1529
1530 buf = mDNSOpaque16fromIntVal(fudge);
1531 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16));
1532
1533 // Digest error and other data len (both zero) - we'll add them to the rdata later
1534
1535 buf.NotAnInteger = 0;
1536 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // error
1537 MD5_Update(&c, buf.b, sizeof(mDNSOpaque16)); // other data len
1538
1539 // Finish the message & tsig var hash
1540
1541 MD5_Final(thisDigest, &c);
1542
1543 // perform outer MD5 (outer key pad, inner digest)
1544
1545 MD5_Init(&c);
1546 MD5_Update(&c, info->keydata_opad, HMAC_LEN);
1547 MD5_Update(&c, thisDigest, MD5_LEN);
1548 MD5_Final(thisDigest, &c);
1549
1550 if (!mDNSPlatformMemSame(thisDigest, thatDigest, MD5_LEN))
1551 {
1552 LogMsg("ERROR: DNSDigest_VerifyMessage - bad signature");
1553 *rcode = kDNSFlag1_RC_NotAuth;
1554 *tcode = TSIG_ErrBadSig;
1555 ok = mDNSfalse;
1556 goto exit;
1557 }
1558
1559 // set remaining rdata fields
1560 ok = mDNStrue;
1561
1562 exit:
1563
1564 return ok;
1565 }
1566
1567
1568 #ifdef __cplusplus
1569 }
1570 #endif