2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995-2005 Apple Computer, Inc. All Rights Reserved */
33 #include <sys/param.h>
34 #include <sys/queue.h>
35 #include <sys/resourcevar.h>
36 //#include <sys/proc_internal.h>
37 #include <sys/kauth.h>
38 #include <sys/systm.h>
39 #include <sys/timeb.h>
40 #include <sys/times.h>
43 #include <sys/kernel.h>
45 #include <sys/signalvar.h>
46 #include <sys/syslog.h>
49 #include <sys/kdebug.h>
50 //#include <sys/sysproto.h>
51 //#include <sys/pthread_internal.h>
55 #include <mach/mach_types.h>
56 #include <mach/vm_prot.h>
57 #include <mach/semaphore.h>
58 #include <mach/sync_policy.h>
59 #include <mach/task.h>
60 #include <kern/kern_types.h>
61 #include <kern/task.h>
62 #include <kern/clock.h>
63 #include <mach/kern_return.h>
64 #include <kern/thread.h>
65 #include <kern/sched_prim.h>
66 #include <kern/thread_call.h>
67 #include <kern/kalloc.h>
68 #include <kern/zalloc.h>
69 #include <kern/sched_prim.h>
70 #include <kern/processor.h>
71 #include <kern/block_hint.h>
72 #include <kern/turnstile.h>
73 //#include <kern/mach_param.h>
74 #include <mach/mach_vm.h>
75 #include <mach/mach_param.h>
76 #include <mach/thread_policy.h>
77 #include <mach/message.h>
78 #include <mach/port.h>
79 //#include <vm/vm_protos.h>
80 #include <vm/vm_map.h>
81 #include <mach/vm_region.h>
83 #include "kern/kern_internal.h"
84 #include "kern/synch_internal.h"
85 #include "kern/kern_trace.h"
87 typedef struct uthread
*uthread_t
;
89 //#define __FAILEDUSERTEST__(s) do { panic(s); } while (0)
90 #define __FAILEDUSERTEST__(s) do { printf("PSYNCH: pid[%d]: %s\n", proc_pid(current_proc()), s); } while (0)
91 #define __FAILEDUSERTEST2__(s, x...) do { printf("PSYNCH: pid[%d]: " s "\n", proc_pid(current_proc()), x); } while (0)
93 lck_mtx_t
*pthread_list_mlock
;
95 #define PTH_HASHSIZE 100
97 static LIST_HEAD(pthhashhead
, ksyn_wait_queue
) *pth_glob_hashtbl
;
98 static unsigned long pthhash
;
100 static LIST_HEAD(, ksyn_wait_queue
) pth_free_list
;
102 static zone_t kwq_zone
; /* zone for allocation of ksyn_queue */
103 static zone_t kwe_zone
; /* zone for allocation of ksyn_waitq_element */
109 TAILQ_HEAD(ksynq_kwelist_head
, ksyn_waitq_element
) ksynq_kwelist
;
110 uint32_t ksynq_count
; /* number of entries in queue */
111 uint32_t ksynq_firstnum
; /* lowest seq in queue */
112 uint32_t ksynq_lastnum
; /* highest seq in queue */
114 typedef struct ksyn_queue
*ksyn_queue_t
;
125 KWQ_INTR_WRITE
= 0x2,
128 struct ksyn_wait_queue
{
129 LIST_ENTRY(ksyn_wait_queue
) kw_hash
;
130 LIST_ENTRY(ksyn_wait_queue
) kw_list
;
132 thread_t kw_owner
; /* current owner or THREAD_NULL, has a +1 */
133 uint64_t kw_object
; /* object backing in shared mode */
134 uint64_t kw_offset
; /* offset inside the object in shared mode */
135 int kw_pflags
; /* flags under listlock protection */
136 struct timeval kw_ts
; /* timeval need for upkeep before free */
137 int kw_iocount
; /* inuse reference */
138 int kw_dropcount
; /* current users unlocking... */
140 int kw_type
; /* queue type like mutex, cvar, etc */
141 uint32_t kw_inqueue
; /* num of waiters held */
142 uint32_t kw_fakecount
; /* number of error/prepost fakes */
143 uint32_t kw_highseq
; /* highest seq in the queue */
144 uint32_t kw_lowseq
; /* lowest seq in the queue */
145 uint32_t kw_lword
; /* L value from userland */
146 uint32_t kw_uword
; /* U world value from userland */
147 uint32_t kw_sword
; /* S word value from userland */
148 uint32_t kw_lastunlockseq
; /* the last seq that unlocked */
149 /* for CV to be used as the seq kernel has seen so far */
150 #define kw_cvkernelseq kw_lastunlockseq
151 uint32_t kw_lastseqword
; /* the last seq that unlocked */
152 /* for mutex and cvar we need to track I bit values */
153 uint32_t kw_nextseqword
; /* the last seq that unlocked; with num of waiters */
155 uint32_t count
; /* prepost count */
156 uint32_t lseq
; /* prepost target seq */
157 uint32_t sseq
; /* prepost target sword, in cvar used for mutexowned */
160 kwq_intr_type_t type
; /* type of failed wakueps */
161 uint32_t count
; /* prepost of missed wakeup due to intrs */
162 uint32_t seq
; /* prepost of missed wakeup limit seq */
163 uint32_t returnbits
; /* return bits value for missed wakeup threads */
167 int kw_qos_override
; /* QoS of max waiter during contention period */
168 struct turnstile
*kw_turnstile
;
169 struct ksyn_queue kw_ksynqueues
[KSYN_QUEUE_MAX
]; /* queues to hold threads */
170 lck_spin_t kw_lock
; /* spinlock protecting this structure */
172 typedef struct ksyn_wait_queue
* ksyn_wait_queue_t
;
174 #define TID_ZERO (uint64_t)0
176 /* bits needed in handling the rwlock unlock */
177 #define PTH_RW_TYPE_READ 0x01
178 #define PTH_RW_TYPE_WRITE 0x04
179 #define PTH_RW_TYPE_MASK 0xff
180 #define PTH_RW_TYPE_SHIFT 8
182 #define PTH_RWSHFT_TYPE_READ 0x0100
183 #define PTH_RWSHFT_TYPE_WRITE 0x0400
184 #define PTH_RWSHFT_TYPE_MASK 0xff00
187 * Mutex pshared attributes
189 #define PTHREAD_PROCESS_SHARED _PTHREAD_MTX_OPT_PSHARED
190 #define PTHREAD_PROCESS_PRIVATE 0x20
191 #define PTHREAD_PSHARED_FLAGS_MASK 0x30
194 * Mutex policy attributes
196 #define _PTHREAD_MTX_OPT_POLICY_FAIRSHARE 0x040 /* 1 */
197 #define _PTHREAD_MTX_OPT_POLICY_FIRSTFIT 0x080 /* 2 */
198 #define _PTHREAD_MTX_OPT_POLICY_MASK 0x1c0
201 #define KSYN_WQ_INHASH 2
202 #define KSYN_WQ_SHARED 4
203 #define KSYN_WQ_WAITING 8 /* threads waiting for this wq to be available */
204 #define KSYN_WQ_FLIST 0X10 /* in free list to be freed after a short delay */
207 #define KSYN_KWF_INITCLEARED 0x1 /* the init status found and preposts cleared */
208 #define KSYN_KWF_ZEROEDOUT 0x2 /* the lword, etc are inited to 0 */
209 #define KSYN_KWF_QOS_APPLIED 0x4 /* QoS override applied to owner */
210 #define KSYN_KWF_OVERLAP_GUARD 0x8 /* overlap guard */
212 #define KSYN_CLEANUP_DEADLINE 10
213 static int psynch_cleanupset
;
214 thread_call_t psynch_thcall
;
216 #define KSYN_WQTYPE_INWAIT 0x1000
217 #define KSYN_WQTYPE_INDROP 0x2000
218 #define KSYN_WQTYPE_MTX 0x01
219 #define KSYN_WQTYPE_CVAR 0x02
220 #define KSYN_WQTYPE_RWLOCK 0x04
221 #define KSYN_WQTYPE_SEMA 0x08
222 #define KSYN_WQTYPE_MASK 0xff
224 #define KSYN_WQTYPE_MUTEXDROP (KSYN_WQTYPE_INDROP | KSYN_WQTYPE_MTX)
227 _kwq_type(ksyn_wait_queue_t kwq
)
229 return (kwq
->kw_type
& KSYN_WQTYPE_MASK
);
233 _kwq_use_turnstile(ksyn_wait_queue_t kwq
)
235 // <rdar://problem/15926625> If we had writer-owner information from the
236 // rwlock then we could use the turnstile to push on it. For now, only
237 // plain mutexes use it.
238 return (_kwq_type(kwq
) == KSYN_WQTYPE_MTX
);
241 #define KW_UNLOCK_PREPOST 0x01
242 #define KW_UNLOCK_PREPOST_READLOCK 0x08
243 #define KW_UNLOCK_PREPOST_WRLOCK 0x20
245 static int ksyn_wq_hash_lookup(user_addr_t uaddr
, proc_t p
, int flags
, ksyn_wait_queue_t
*kwq
, struct pthhashhead
**hashptr
, uint64_t object
, uint64_t offset
);
246 static int ksyn_wqfind(user_addr_t mutex
, uint32_t mgen
, uint32_t ugen
, uint32_t rw_wc
, int flags
, int wqtype
, ksyn_wait_queue_t
*wq
);
247 static void ksyn_wqrelease(ksyn_wait_queue_t mkwq
, int qfreenow
, int wqtype
);
248 static int ksyn_findobj(user_addr_t uaddr
, uint64_t *objectp
, uint64_t *offsetp
);
250 static int _wait_result_to_errno(wait_result_t result
);
252 static int ksyn_wait(ksyn_wait_queue_t
, kwq_queue_type_t
, uint32_t, int, uint64_t, uint16_t, thread_continue_t
, block_hint_t
);
253 static kern_return_t
ksyn_signal(ksyn_wait_queue_t
, kwq_queue_type_t
, ksyn_waitq_element_t
, uint32_t);
254 static void ksyn_freeallkwe(ksyn_queue_t kq
);
256 static kern_return_t
ksyn_mtxsignal(ksyn_wait_queue_t
, ksyn_waitq_element_t kwe
, uint32_t, thread_t
*);
258 static int kwq_handle_unlock(ksyn_wait_queue_t
, uint32_t mgen
, uint32_t rw_wc
, uint32_t *updatep
, int flags
, int *blockp
, uint32_t premgen
);
260 static void ksyn_queue_init(ksyn_queue_t kq
);
261 static int ksyn_queue_insert(ksyn_wait_queue_t kwq
, int kqi
, ksyn_waitq_element_t kwe
, uint32_t mgen
, int firstfit
);
262 static void ksyn_queue_remove_item(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, ksyn_waitq_element_t kwe
);
263 static void ksyn_queue_free_items(ksyn_wait_queue_t kwq
, int kqi
, uint32_t upto
, int all
);
265 static void update_low_high(ksyn_wait_queue_t kwq
, uint32_t lockseq
);
266 static uint32_t find_nextlowseq(ksyn_wait_queue_t kwq
);
267 static uint32_t find_nexthighseq(ksyn_wait_queue_t kwq
);
268 static int find_seq_till(ksyn_wait_queue_t kwq
, uint32_t upto
, uint32_t nwaiters
, uint32_t *countp
);
270 static uint32_t ksyn_queue_count_tolowest(ksyn_queue_t kq
, uint32_t upto
);
272 static ksyn_waitq_element_t
ksyn_queue_find_cvpreposeq(ksyn_queue_t kq
, uint32_t cgen
);
273 static void ksyn_handle_cvbroad(ksyn_wait_queue_t ckwq
, uint32_t upto
, uint32_t *updatep
);
274 static void ksyn_cvupdate_fixup(ksyn_wait_queue_t ckwq
, uint32_t *updatep
);
275 static ksyn_waitq_element_t
ksyn_queue_find_signalseq(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t toseq
, uint32_t lockseq
);
277 static void __dead2
psynch_cvcontinue(void *, wait_result_t
);
278 static void __dead2
psynch_mtxcontinue(void *, wait_result_t
);
279 static void __dead2
psynch_rw_rdcontinue(void *, wait_result_t
);
280 static void __dead2
psynch_rw_wrcontinue(void *, wait_result_t
);
282 static int ksyn_wakeupreaders(ksyn_wait_queue_t kwq
, uint32_t limitread
, int allreaders
, uint32_t updatebits
, int *wokenp
);
283 static int kwq_find_rw_lowest(ksyn_wait_queue_t kwq
, int flags
, uint32_t premgen
, int *type
, uint32_t lowest
[]);
284 static ksyn_waitq_element_t
ksyn_queue_find_seq(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t seq
);
287 UPDATE_CVKWQ(ksyn_wait_queue_t kwq
, uint32_t mgen
, uint32_t ugen
, uint32_t rw_wc
)
289 int sinit
= ((rw_wc
& PTH_RWS_CV_CBIT
) != 0);
291 // assert((kwq->kw_type & KSYN_WQTYPE_MASK) == KSYN_WQTYPE_CVAR);
293 if ((kwq
->kw_kflags
& KSYN_KWF_ZEROEDOUT
) != 0) {
294 /* the values of L,U and S are cleared out due to L==S in previous transition */
295 kwq
->kw_lword
= mgen
;
296 kwq
->kw_uword
= ugen
;
297 kwq
->kw_sword
= rw_wc
;
298 kwq
->kw_kflags
&= ~KSYN_KWF_ZEROEDOUT
;
300 if (is_seqhigher(mgen
, kwq
->kw_lword
)) {
301 kwq
->kw_lword
= mgen
;
303 if (is_seqhigher(ugen
, kwq
->kw_uword
)) {
304 kwq
->kw_uword
= ugen
;
306 if (sinit
&& is_seqhigher(rw_wc
, kwq
->kw_sword
)) {
307 kwq
->kw_sword
= rw_wc
;
310 if (sinit
&& is_seqlower(kwq
->kw_cvkernelseq
, rw_wc
)) {
311 kwq
->kw_cvkernelseq
= (rw_wc
& PTHRW_COUNT_MASK
);
316 _kwq_clear_preposted_wakeup(ksyn_wait_queue_t kwq
)
318 kwq
->kw_prepost
.lseq
= 0;
319 kwq
->kw_prepost
.sseq
= PTHRW_RWS_INIT
;
320 kwq
->kw_prepost
.count
= 0;
324 _kwq_mark_preposted_wakeup(ksyn_wait_queue_t kwq
, uint32_t count
,
325 uint32_t lseq
, uint32_t sseq
)
327 kwq
->kw_prepost
.count
= count
;
328 kwq
->kw_prepost
.lseq
= lseq
;
329 kwq
->kw_prepost
.sseq
= sseq
;
333 _kwq_clear_interrupted_wakeup(ksyn_wait_queue_t kwq
)
335 kwq
->kw_intr
.type
= KWQ_INTR_NONE
;
336 kwq
->kw_intr
.count
= 0;
337 kwq
->kw_intr
.seq
= 0;
338 kwq
->kw_intr
.returnbits
= 0;
342 _kwq_mark_interruped_wakeup(ksyn_wait_queue_t kwq
, kwq_intr_type_t type
,
343 uint32_t count
, uint32_t lseq
, uint32_t returnbits
)
345 kwq
->kw_intr
.count
= count
;
346 kwq
->kw_intr
.seq
= lseq
;
347 kwq
->kw_intr
.returnbits
= returnbits
;
348 kwq
->kw_intr
.type
= type
;
352 _kwq_destroy(ksyn_wait_queue_t kwq
)
355 thread_deallocate(kwq
->kw_owner
);
357 lck_spin_destroy(&kwq
->kw_lock
, pthread_lck_grp
);
358 zfree(kwq_zone
, kwq
);
361 #define KWQ_SET_OWNER_TRANSFER_REF 0x1
363 static inline thread_t
364 _kwq_set_owner(ksyn_wait_queue_t kwq
, thread_t new_owner
, int flags
)
366 thread_t old_owner
= kwq
->kw_owner
;
367 if (old_owner
== new_owner
) {
368 if (flags
& KWQ_SET_OWNER_TRANSFER_REF
) return new_owner
;
371 if ((flags
& KWQ_SET_OWNER_TRANSFER_REF
) == 0) {
372 thread_reference(new_owner
);
374 kwq
->kw_owner
= new_owner
;
378 static inline thread_t
379 _kwq_clear_owner(ksyn_wait_queue_t kwq
)
381 return _kwq_set_owner(kwq
, THREAD_NULL
, KWQ_SET_OWNER_TRANSFER_REF
);
385 _kwq_cleanup_old_owner(thread_t
*thread
)
388 thread_deallocate(*thread
);
389 *thread
= THREAD_NULL
;
394 CLEAR_REINIT_BITS(ksyn_wait_queue_t kwq
)
396 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
) {
397 if (kwq
->kw_inqueue
!= 0 && kwq
->kw_inqueue
!= kwq
->kw_fakecount
) {
398 panic("CV:entries in queue durinmg reinit %d:%d\n",kwq
->kw_inqueue
, kwq
->kw_fakecount
);
401 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_RWLOCK
) {
402 kwq
->kw_nextseqword
= PTHRW_RWS_INIT
;
403 kwq
->kw_kflags
&= ~KSYN_KWF_OVERLAP_GUARD
;
405 _kwq_clear_preposted_wakeup(kwq
);
406 kwq
->kw_lastunlockseq
= PTHRW_RWL_INIT
;
407 kwq
->kw_lastseqword
= PTHRW_RWS_INIT
;
408 _kwq_clear_interrupted_wakeup(kwq
);
411 kwq
->kw_sword
= PTHRW_RWS_INIT
;
415 _kwq_handle_preposted_wakeup(ksyn_wait_queue_t kwq
, uint32_t type
,
416 uint32_t lseq
, uint32_t *retval
)
418 if (kwq
->kw_prepost
.count
== 0 ||
419 !is_seqlower_eq(lseq
, kwq
->kw_prepost
.lseq
)) {
423 kwq
->kw_prepost
.count
--;
424 if (kwq
->kw_prepost
.count
> 0) {
428 int error
, should_block
= 0;
429 uint32_t updatebits
= 0;
430 uint32_t pp_lseq
= kwq
->kw_prepost
.lseq
;
431 uint32_t pp_sseq
= kwq
->kw_prepost
.sseq
;
432 _kwq_clear_preposted_wakeup(kwq
);
434 kwq
->kw_kflags
&= ~KSYN_KWF_INITCLEARED
;
436 error
= kwq_handle_unlock(kwq
, pp_lseq
, pp_sseq
, &updatebits
,
437 (type
| KW_UNLOCK_PREPOST
), &should_block
, lseq
);
439 panic("_kwq_handle_preposted_wakeup: kwq_handle_unlock failed %d",
446 *retval
= updatebits
;
451 _kwq_handle_overlap(ksyn_wait_queue_t kwq
, uint32_t type
, uint32_t lgenval
,
452 uint32_t rw_wc
, uint32_t *retval
)
456 // overlaps only occur on read lockers
457 if (type
!= PTH_RW_TYPE_READ
) {
461 // check for overlap and no pending W bit (indicates writers)
462 if ((kwq
->kw_kflags
& KSYN_KWF_OVERLAP_GUARD
) &&
463 !is_rws_savemask_set(rw_wc
) && !is_rwl_wbit_set(lgenval
)) {
464 /* overlap is set, so no need to check for valid state for overlap */
466 if (is_seqlower_eq(rw_wc
, kwq
->kw_nextseqword
) || is_seqhigher_eq(kwq
->kw_lastseqword
, rw_wc
)) {
467 /* increase the next expected seq by one */
468 kwq
->kw_nextseqword
+= PTHRW_INC
;
469 /* set count by one & bits from the nextseq and add M bit */
470 *retval
= PTHRW_INC
| ((kwq
->kw_nextseqword
& PTHRW_BIT_MASK
) | PTH_RWL_MBIT
);
478 _kwq_is_used(ksyn_wait_queue_t kwq
)
480 return (kwq
->kw_inqueue
!= 0 || kwq
->kw_prepost
.count
!= 0 ||
481 kwq
->kw_intr
.count
!= 0);
485 * consumes a pending interrupted waiter, returns true if the current
486 * thread should return back to userspace because it was previously
490 _kwq_handle_interrupted_wakeup(ksyn_wait_queue_t kwq
, kwq_intr_type_t type
,
491 uint32_t lseq
, uint32_t *retval
)
493 if (kwq
->kw_intr
.count
!= 0 && kwq
->kw_intr
.type
== type
&&
494 (!kwq
->kw_intr
.seq
|| is_seqlower_eq(lseq
, kwq
->kw_intr
.seq
))) {
495 kwq
->kw_intr
.count
--;
496 *retval
= kwq
->kw_intr
.returnbits
;
497 if (kwq
->kw_intr
.returnbits
== 0) {
498 _kwq_clear_interrupted_wakeup(kwq
);
506 pthread_list_lock(void)
508 lck_mtx_lock_spin(pthread_list_mlock
);
512 pthread_list_unlock(void)
514 lck_mtx_unlock(pthread_list_mlock
);
518 ksyn_wqlock(ksyn_wait_queue_t kwq
)
520 lck_spin_lock(&kwq
->kw_lock
);
524 ksyn_wqunlock(ksyn_wait_queue_t kwq
)
526 lck_spin_unlock(&kwq
->kw_lock
);
529 /* routine to drop the mutex unlocks , used both for mutexunlock system call and drop during cond wait */
531 _psynch_mutexdrop_internal(ksyn_wait_queue_t kwq
, uint32_t mgen
, uint32_t ugen
,
535 uint32_t returnbits
= 0;
536 uint32_t updatebits
= 0;
537 int firstfit
= (flags
& _PTHREAD_MTX_OPT_POLICY_MASK
) ==
538 _PTHREAD_MTX_OPT_POLICY_FIRSTFIT
;
539 uint32_t nextgen
= (ugen
+ PTHRW_INC
);
540 thread_t old_owner
= THREAD_NULL
;
543 kwq
->kw_lastunlockseq
= (ugen
& PTHRW_COUNT_MASK
);
546 updatebits
= (kwq
->kw_highseq
& PTHRW_COUNT_MASK
) |
547 (PTH_RWL_EBIT
| PTH_RWL_KBIT
);
550 if (kwq
->kw_inqueue
== 0) {
551 uint32_t count
= kwq
->kw_prepost
.count
+ 1;
552 // Increment the number of preposters we have waiting
553 _kwq_mark_preposted_wakeup(kwq
, count
, mgen
& PTHRW_COUNT_MASK
, 0);
554 // We don't know the current owner as we've determined this mutex
555 // drop should have a preposted locker inbound into the kernel but
556 // we have no way of knowing who it is. When it arrives, the lock
557 // path will update the turnstile owner and return it to userspace.
558 old_owner
= _kwq_clear_owner(kwq
);
559 pthread_kern
->psynch_wait_update_owner(kwq
, THREAD_NULL
,
561 PTHREAD_TRACE(psynch_mutex_kwqprepost
, kwq
->kw_addr
,
562 kwq
->kw_prepost
.lseq
, count
, 0);
564 // signal first waiter
565 ret
= ksyn_mtxsignal(kwq
, NULL
, updatebits
, &old_owner
);
566 if (ret
== KERN_NOT_WAITING
) {
567 // <rdar://problem/39093536> ksyn_mtxsignal attempts to signal
568 // the thread but it sets up the turnstile inheritor first.
569 // That means we can't redrive the mutex in a loop without
570 // dropping the wq lock and cleaning up the turnstile state.
572 pthread_kern
->psynch_wait_cleanup();
573 _kwq_cleanup_old_owner(&old_owner
);
579 bool prepost
= false;
580 if (kwq
->kw_inqueue
== 0) {
581 // No waiters in the queue.
584 uint32_t low_writer
= (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_firstnum
& PTHRW_COUNT_MASK
);
585 if (low_writer
== nextgen
) {
586 /* next seq to be granted found */
587 /* since the grant could be cv, make sure mutex wait is set incase the thread interrupted out */
588 ret
= ksyn_mtxsignal(kwq
, NULL
,
589 updatebits
| PTH_RWL_MTX_WAIT
, &old_owner
);
590 if (ret
== KERN_NOT_WAITING
) {
592 _kwq_mark_interruped_wakeup(kwq
, KWQ_INTR_WRITE
, 1,
593 nextgen
, updatebits
);
595 } else if (is_seqhigher(low_writer
, nextgen
)) {
598 //__FAILEDUSERTEST__("psynch_mutexdrop_internal: FS mutex unlock sequence higher than the lowest one is queue\n");
599 ksyn_waitq_element_t kwe
;
600 kwe
= ksyn_queue_find_seq(kwq
,
601 &kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
], nextgen
);
603 /* next seq to be granted found */
604 /* since the grant could be cv, make sure mutex wait is set incase the thread interrupted out */
605 ret
= ksyn_mtxsignal(kwq
, kwe
,
606 updatebits
| PTH_RWL_MTX_WAIT
, &old_owner
);
607 if (ret
== KERN_NOT_WAITING
) {
616 if (kwq
->kw_prepost
.count
!= 0) {
617 __FAILEDUSERTEST__("_psynch_mutexdrop_internal: multiple preposts\n");
619 _kwq_mark_preposted_wakeup(kwq
, 1, nextgen
& PTHRW_COUNT_MASK
,
622 old_owner
= _kwq_clear_owner(kwq
);
623 pthread_kern
->psynch_wait_update_owner(kwq
, THREAD_NULL
,
629 pthread_kern
->psynch_wait_cleanup();
630 _kwq_cleanup_old_owner(&old_owner
);
631 ksyn_wqrelease(kwq
, 1, KSYN_WQTYPE_MUTEXDROP
);
636 _ksyn_check_init(ksyn_wait_queue_t kwq
, uint32_t lgenval
)
638 int res
= (lgenval
& PTHRW_RWL_INIT
) != 0;
640 if ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) == 0) {
641 /* first to notice the reset of the lock, clear preposts */
642 CLEAR_REINIT_BITS(kwq
);
643 kwq
->kw_kflags
|= KSYN_KWF_INITCLEARED
;
650 * psynch_mutexwait: This system call is used for contended psynch mutexes to
654 _psynch_mutexwait(__unused proc_t p
, user_addr_t mutex
, uint32_t mgen
,
655 uint32_t ugen
, uint64_t tid
, uint32_t flags
, uint32_t *retval
)
657 ksyn_wait_queue_t kwq
;
659 int firstfit
= (flags
& _PTHREAD_MTX_OPT_POLICY_MASK
)
660 == _PTHREAD_MTX_OPT_POLICY_FIRSTFIT
;
661 int ins_flags
= SEQFIT
;
662 uint32_t lseq
= (mgen
& PTHRW_COUNT_MASK
);
663 uint32_t updatebits
= 0;
664 thread_t tid_th
= THREAD_NULL
, old_owner
= THREAD_NULL
;
668 ins_flags
= FIRSTFIT
;
671 error
= ksyn_wqfind(mutex
, mgen
, ugen
, 0, flags
,
672 (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_MTX
), &kwq
);
680 if (_kwq_handle_interrupted_wakeup(kwq
, KWQ_INTR_WRITE
, lseq
, retval
)) {
681 old_owner
= _kwq_set_owner(kwq
, current_thread(), 0);
682 pthread_kern
->psynch_wait_update_owner(kwq
, kwq
->kw_owner
,
688 if (kwq
->kw_prepost
.count
&& (firstfit
|| (lseq
== kwq
->kw_prepost
.lseq
))) {
689 /* got preposted lock */
690 kwq
->kw_prepost
.count
--;
693 if (kwq
->kw_prepost
.count
> 0) {
694 __FAILEDUSERTEST__("psynch_mutexwait: more than one prepost\n");
695 kwq
->kw_prepost
.lseq
+= PTHRW_INC
; /* look for next one */
700 _kwq_clear_preposted_wakeup(kwq
);
703 if (kwq
->kw_inqueue
== 0) {
704 updatebits
= lseq
| (PTH_RWL_KBIT
| PTH_RWL_EBIT
);
706 updatebits
= (kwq
->kw_highseq
& PTHRW_COUNT_MASK
) |
707 (PTH_RWL_KBIT
| PTH_RWL_EBIT
);
709 updatebits
&= ~PTH_RWL_MTX_WAIT
;
711 if (updatebits
== 0) {
712 __FAILEDUSERTEST__("psynch_mutexwait(prepost): returning 0 lseq in mutexwait with no EBIT \n");
715 PTHREAD_TRACE(psynch_mutex_kwqprepost
, kwq
->kw_addr
,
716 kwq
->kw_prepost
.lseq
, kwq
->kw_prepost
.count
, 1);
718 old_owner
= _kwq_set_owner(kwq
, current_thread(), 0);
719 pthread_kern
->psynch_wait_update_owner(kwq
, kwq
->kw_owner
,
723 *retval
= updatebits
;
727 // mutexwait passes in an owner hint at the time userspace contended for
728 // the mutex, however, the owner tid in the userspace data structure may be
729 // unset or SWITCHING (-1), or it may correspond to a stale snapshot after
730 // the lock has subsequently been unlocked by another thread.
731 if (tid
== thread_tid(kwq
->kw_owner
)) {
732 // userspace and kernel agree
733 } else if (tid
== 0) {
734 // contender came in before owner could write TID
735 // let's assume that what the kernel knows is accurate
736 // for all we know this waiter came in late in the kernel
737 } else if (kwq
->kw_lastunlockseq
!= PTHRW_RWL_INIT
&&
738 is_seqlower(ugen
, kwq
->kw_lastunlockseq
)) {
739 // owner is stale, someone has come in and unlocked since this
740 // contended read the TID, so assume what is known in the kernel is
742 } else if (tid
== PTHREAD_MTX_TID_SWITCHING
) {
743 // userspace didn't know the owner because it was being unlocked, but
744 // that unlocker hasn't reached the kernel yet. So assume what is known
745 // in the kernel is accurate
747 // hint is being passed in for a specific thread, and we have no reason
748 // not to trust it (like the kernel unlock sequence being higher)
750 // So resolve the hint to a thread_t if we haven't done so yet
751 // and redrive as we dropped the lock
752 if (tid_th
== THREAD_NULL
) {
754 tid_th
= pthread_kern
->task_findtid(current_task(), tid
);
755 if (tid_th
== THREAD_NULL
) tid
= 0;
758 tid_th
= _kwq_set_owner(kwq
, tid_th
, KWQ_SET_OWNER_TRANSFER_REF
);
762 // We are on our way to block, and can't drop the spinlock anymore
763 pthread_kern
->thread_deallocate_safe(tid_th
);
764 tid_th
= THREAD_NULL
;
766 assert(old_owner
== THREAD_NULL
);
767 error
= ksyn_wait(kwq
, KSYN_QUEUE_WRITE
, mgen
, ins_flags
, 0, 0,
768 psynch_mtxcontinue
, kThreadWaitPThreadMutex
);
769 // ksyn_wait drops wait queue lock
771 pthread_kern
->psynch_wait_cleanup();
772 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_MTX
));
774 thread_deallocate(tid_th
);
777 thread_deallocate(old_owner
);
783 psynch_mtxcontinue(void *parameter
, wait_result_t result
)
785 uthread_t uth
= current_uthread();
786 ksyn_wait_queue_t kwq
= parameter
;
787 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
791 int error
= _wait_result_to_errno(result
);
793 if (kwe
->kwe_kwqqueue
) {
794 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
], kwe
);
797 uint32_t updatebits
= kwe
->kwe_psynchretval
& ~PTH_RWL_MTX_WAIT
;
798 pthread_kern
->uthread_set_returnval(uth
, updatebits
);
800 if (updatebits
== 0) {
801 __FAILEDUSERTEST__("psynch_mutexwait: returning 0 lseq in mutexwait with no EBIT \n");
805 pthread_kern
->psynch_wait_complete(kwq
, &kwq
->kw_turnstile
);
808 pthread_kern
->psynch_wait_cleanup();
809 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_MTX
));
810 pthread_kern
->unix_syscall_return(error
);
811 __builtin_unreachable();
815 _psynch_rw_continue(ksyn_wait_queue_t kwq
, kwq_queue_type_t kqi
,
816 wait_result_t result
)
818 uthread_t uth
= current_uthread();
819 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
823 int error
= _wait_result_to_errno(result
);
825 if (kwe
->kwe_kwqqueue
) {
826 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[kqi
], kwe
);
829 pthread_kern
->uthread_set_returnval(uth
, kwe
->kwe_psynchretval
);
833 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_RWLOCK
));
835 pthread_kern
->unix_syscall_return(error
);
836 __builtin_unreachable();
840 psynch_rw_rdcontinue(void *parameter
, wait_result_t result
)
842 _psynch_rw_continue(parameter
, KSYN_QUEUE_READ
, result
);
846 psynch_rw_wrcontinue(void *parameter
, wait_result_t result
)
848 _psynch_rw_continue(parameter
, KSYN_QUEUE_WRITE
, result
);
852 * psynch_mutexdrop: This system call is used for unlock postings on contended psynch mutexes.
855 _psynch_mutexdrop(__unused proc_t p
, user_addr_t mutex
, uint32_t mgen
,
856 uint32_t ugen
, uint64_t tid __unused
, uint32_t flags
, uint32_t *retval
)
859 ksyn_wait_queue_t kwq
;
861 res
= ksyn_wqfind(mutex
, mgen
, ugen
, 0, flags
, KSYN_WQTYPE_MUTEXDROP
, &kwq
);
863 uint32_t updateval
= _psynch_mutexdrop_internal(kwq
, mgen
, ugen
, flags
);
864 /* drops the kwq reference */
874 ksyn_mtxsignal(ksyn_wait_queue_t kwq
, ksyn_waitq_element_t kwe
,
875 uint32_t updateval
, thread_t
*old_owner
)
880 kwe
= TAILQ_FIRST(&kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_kwelist
);
882 panic("ksyn_mtxsignal: panic signaling empty queue");
886 PTHREAD_TRACE(psynch_mutex_kwqsignal
| DBG_FUNC_START
, kwq
->kw_addr
, kwe
,
887 thread_tid(kwe
->kwe_thread
), kwq
->kw_inqueue
);
889 ret
= ksyn_signal(kwq
, KSYN_QUEUE_WRITE
, kwe
, updateval
);
890 if (ret
== KERN_SUCCESS
) {
891 *old_owner
= _kwq_set_owner(kwq
, kwe
->kwe_thread
, 0);
893 *old_owner
= _kwq_clear_owner(kwq
);
895 PTHREAD_TRACE(psynch_mutex_kwqsignal
| DBG_FUNC_END
, kwq
->kw_addr
, kwe
,
902 ksyn_prepost(ksyn_wait_queue_t kwq
, ksyn_waitq_element_t kwe
, uint32_t state
,
905 bzero(kwe
, sizeof(*kwe
));
906 kwe
->kwe_state
= state
;
907 kwe
->kwe_lockseq
= lockseq
;
910 (void)ksyn_queue_insert(kwq
, KSYN_QUEUE_WRITE
, kwe
, lockseq
, SEQFIT
);
915 ksyn_cvsignal(ksyn_wait_queue_t ckwq
, thread_t th
, uint32_t uptoseq
,
916 uint32_t signalseq
, uint32_t *updatebits
, int *broadcast
,
917 ksyn_waitq_element_t
*nkwep
)
919 ksyn_waitq_element_t kwe
= NULL
;
920 ksyn_waitq_element_t nkwe
= NULL
;
921 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
];
923 uptoseq
&= PTHRW_COUNT_MASK
;
925 // Find the specified thread to wake.
926 if (th
!= THREAD_NULL
) {
927 uthread_t uth
= pthread_kern
->get_bsdthread_info(th
);
928 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
929 if (kwe
->kwe_kwqqueue
!= ckwq
||
930 is_seqhigher(kwe
->kwe_lockseq
, uptoseq
)) {
931 // Unless it's no longer waiting on this CV...
933 // ...in which case we post a broadcast instead.
939 // If no thread was specified, find any thread to wake (with the right
941 while (th
== THREAD_NULL
) {
943 kwe
= ksyn_queue_find_signalseq(ckwq
, kq
, uptoseq
, signalseq
);
945 if (kwe
== NULL
&& nkwe
== NULL
) {
946 // No eligible entries; need to allocate a new
947 // entry to prepost. Loop to rescan after
948 // reacquiring the lock after allocation in
949 // case anything new shows up.
951 nkwe
= (ksyn_waitq_element_t
)zalloc(kwe_zone
);
959 // If we found a thread to wake...
960 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
961 if (is_seqlower(kwe
->kwe_lockseq
, signalseq
)) {
963 * A valid thread in our range, but lower than our signal.
964 * Matching it may leave our match with nobody to wake it if/when
965 * it arrives (the signal originally meant for this thread might
966 * not successfully wake it).
968 * Convert to broadcast - may cause some spurious wakeups
969 * (allowed by spec), but avoids starvation (better choice).
973 (void)ksyn_signal(ckwq
, KSYN_QUEUE_WRITE
, kwe
, PTH_RWL_MTX_WAIT
);
974 *updatebits
+= PTHRW_INC
;
976 } else if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
977 // Merge with existing prepost at same uptoseq.
979 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
980 // Existing broadcasts subsume this signal.
982 panic("unknown kwe state\n");
986 * If we allocated a new kwe above but then found a different kwe to
987 * use then we need to deallocate the spare one.
989 zfree(kwe_zone
, nkwe
);
992 } else if (nkwe
!= NULL
) {
993 // ... otherwise, insert the newly allocated prepost.
994 ksyn_prepost(ckwq
, nkwe
, KWE_THREAD_PREPOST
, uptoseq
);
997 panic("failed to allocate kwe\n");
1004 __psynch_cvsignal(user_addr_t cv
, uint32_t cgen
, uint32_t cugen
,
1005 uint32_t csgen
, uint32_t flags
, int broadcast
,
1006 mach_port_name_t threadport
, uint32_t *retval
)
1009 thread_t th
= THREAD_NULL
;
1010 ksyn_wait_queue_t kwq
;
1012 uint32_t uptoseq
= cgen
& PTHRW_COUNT_MASK
;
1013 uint32_t fromseq
= (cugen
& PTHRW_COUNT_MASK
) + PTHRW_INC
;
1015 // validate sane L, U, and S values
1016 if ((threadport
== 0 && is_seqhigher(fromseq
, uptoseq
)) || is_seqhigher(csgen
, uptoseq
)) {
1017 __FAILEDUSERTEST__("cvbroad: invalid L, U and S values\n");
1021 if (threadport
!= 0) {
1022 th
= port_name_to_thread((mach_port_name_t
)threadport
);
1023 if (th
== THREAD_NULL
) {
1028 error
= ksyn_wqfind(cv
, cgen
, cugen
, csgen
, flags
, (KSYN_WQTYPE_CVAR
| KSYN_WQTYPE_INDROP
), &kwq
);
1030 uint32_t updatebits
= 0;
1031 ksyn_waitq_element_t nkwe
= NULL
;
1035 // update L, U and S...
1036 UPDATE_CVKWQ(kwq
, cgen
, cugen
, csgen
);
1038 PTHREAD_TRACE(psynch_cvar_signal
| DBG_FUNC_START
, kwq
->kw_addr
,
1039 fromseq
, uptoseq
, broadcast
);
1042 // No need to signal if the CV is already balanced.
1043 if (diff_genseq(kwq
->kw_lword
, kwq
->kw_sword
)) {
1044 ksyn_cvsignal(kwq
, th
, uptoseq
, fromseq
, &updatebits
,
1046 PTHREAD_TRACE(psynch_cvar_signal
, kwq
->kw_addr
, broadcast
, 0,0);
1051 ksyn_handle_cvbroad(kwq
, uptoseq
, &updatebits
);
1054 kwq
->kw_sword
+= (updatebits
& PTHRW_COUNT_MASK
);
1055 // set C or P bits and free if needed
1056 ksyn_cvupdate_fixup(kwq
, &updatebits
);
1057 *retval
= updatebits
;
1059 PTHREAD_TRACE(psynch_cvar_signal
| DBG_FUNC_END
, kwq
->kw_addr
,
1064 pthread_kern
->psynch_wait_cleanup();
1067 zfree(kwe_zone
, nkwe
);
1070 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_CVAR
));
1074 thread_deallocate(th
);
1081 * psynch_cvbroad: This system call is used for broadcast posting on blocked waiters of psynch cvars.
1084 _psynch_cvbroad(__unused proc_t p
, user_addr_t cv
, uint64_t cvlsgen
,
1085 uint64_t cvudgen
, uint32_t flags
, __unused user_addr_t mutex
,
1086 __unused
uint64_t mugen
, __unused
uint64_t tid
, uint32_t *retval
)
1088 uint32_t diffgen
= cvudgen
& 0xffffffff;
1089 uint32_t count
= diffgen
>> PTHRW_COUNT_SHIFT
;
1090 if (count
> pthread_kern
->get_task_threadmax()) {
1091 __FAILEDUSERTEST__("cvbroad: difference greater than maximum possible thread count\n");
1095 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1096 uint32_t cgen
= cvlsgen
& 0xffffffff;
1097 uint32_t cugen
= (cvudgen
>> 32) & 0xffffffff;
1099 return __psynch_cvsignal(cv
, cgen
, cugen
, csgen
, flags
, 1, 0, retval
);
1103 * psynch_cvsignal: This system call is used for signalling the blocked waiters of psynch cvars.
1106 _psynch_cvsignal(__unused proc_t p
, user_addr_t cv
, uint64_t cvlsgen
,
1107 uint32_t cvugen
, int threadport
, __unused user_addr_t mutex
,
1108 __unused
uint64_t mugen
, __unused
uint64_t tid
, uint32_t flags
,
1111 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1112 uint32_t cgen
= cvlsgen
& 0xffffffff;
1114 return __psynch_cvsignal(cv
, cgen
, cvugen
, csgen
, flags
, 0, threadport
, retval
);
1118 * psynch_cvwait: This system call is used for psynch cvar waiters to block in kernel.
1121 _psynch_cvwait(__unused proc_t p
, user_addr_t cv
, uint64_t cvlsgen
,
1122 uint32_t cvugen
, user_addr_t mutex
, uint64_t mugen
, uint32_t flags
,
1123 int64_t sec
, uint32_t nsec
, uint32_t *retval
)
1126 uint32_t updatebits
= 0;
1127 ksyn_wait_queue_t ckwq
= NULL
;
1128 ksyn_waitq_element_t kwe
, nkwe
= NULL
;
1130 /* for conformance reasons */
1131 pthread_kern
->__pthread_testcancel(0);
1133 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1134 uint32_t cgen
= cvlsgen
& 0xffffffff;
1135 uint32_t ugen
= (mugen
>> 32) & 0xffffffff;
1136 uint32_t mgen
= mugen
& 0xffffffff;
1138 uint32_t lockseq
= (cgen
& PTHRW_COUNT_MASK
);
1141 * In cvwait U word can be out of range as cv could be used only for
1142 * timeouts. However S word needs to be within bounds and validated at
1143 * user level as well.
1145 if (is_seqhigher_eq(csgen
, lockseq
) != 0) {
1146 __FAILEDUSERTEST__("psync_cvwait; invalid sequence numbers\n");
1150 PTHREAD_TRACE(psynch_cvar_kwait
| DBG_FUNC_START
, cv
, mutex
, cgen
, 0);
1152 error
= ksyn_wqfind(cv
, cgen
, cvugen
, csgen
, flags
, KSYN_WQTYPE_CVAR
| KSYN_WQTYPE_INWAIT
, &ckwq
);
1158 uint32_t mutexrv
= 0;
1159 error
= _psynch_mutexdrop(NULL
, mutex
, mgen
, ugen
, 0, flags
, &mutexrv
);
1167 // update L, U and S...
1168 UPDATE_CVKWQ(ckwq
, cgen
, cvugen
, csgen
);
1170 /* Look for the sequence for prepost (or conflicting thread */
1171 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
];
1172 kwe
= ksyn_queue_find_cvpreposeq(kq
, lockseq
);
1174 if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
1175 if ((kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) == lockseq
) {
1176 /* we can safely consume a reference, so do so */
1177 if (--kwe
->kwe_count
== 0) {
1178 ksyn_queue_remove_item(ckwq
, kq
, kwe
);
1179 ckwq
->kw_fakecount
--;
1184 * consuming a prepost higher than our lock sequence is valid, but
1185 * can leave the higher thread without a match. Convert the entry
1186 * to a broadcast to compensate for this.
1188 ksyn_handle_cvbroad(ckwq
, kwe
->kwe_lockseq
, &updatebits
);
1190 if (updatebits
!= 0)
1191 panic("psync_cvwait: convert pre-post to broadcast: woke up %d threads that shouldn't be there\n", updatebits
);
1192 #endif /* __TESTPANICS__ */
1194 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
1197 } else if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
1198 __FAILEDUSERTEST__("cvwait: thread entry with same sequence already present\n");
1201 panic("psync_cvwait: unexpected wait queue element type\n");
1205 updatebits
|= PTHRW_INC
;
1206 ckwq
->kw_sword
+= PTHRW_INC
;
1208 /* set C or P bits and free if needed */
1209 ksyn_cvupdate_fixup(ckwq
, &updatebits
);
1210 *retval
= updatebits
;
1213 uint64_t abstime
= 0;
1214 uint16_t kwe_flags
= 0;
1216 if (sec
!= 0 || (nsec
& 0x3fffffff) != 0) {
1218 ts
.tv_sec
= (__darwin_time_t
)sec
;
1219 ts
.tv_nsec
= (nsec
& 0x3fffffff);
1220 nanoseconds_to_absolutetime(
1221 (uint64_t)ts
.tv_sec
* NSEC_PER_SEC
+ ts
.tv_nsec
, &abstime
);
1222 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
1225 PTHREAD_TRACE(psynch_cvar_kwait
, cv
, mutex
, kwe_flags
, 1);
1227 error
= ksyn_wait(ckwq
, KSYN_QUEUE_WRITE
, cgen
, SEQFIT
, abstime
,
1228 kwe_flags
, psynch_cvcontinue
, kThreadWaitPThreadCondVar
);
1229 // ksyn_wait drops wait queue lock
1232 ksyn_wqunlock(ckwq
);
1235 zfree(kwe_zone
, nkwe
);
1239 PTHREAD_TRACE(psynch_cvar_kwait
| DBG_FUNC_END
, cv
, error
, updatebits
, 2);
1241 ksyn_wqrelease(ckwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_CVAR
));
1247 psynch_cvcontinue(void *parameter
, wait_result_t result
)
1249 uthread_t uth
= current_uthread();
1250 ksyn_wait_queue_t ckwq
= parameter
;
1251 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1253 int error
= _wait_result_to_errno(result
);
1256 /* just in case it got woken up as we were granting */
1257 int retval
= kwe
->kwe_psynchretval
;
1258 pthread_kern
->uthread_set_returnval(uth
, retval
);
1260 if (kwe
->kwe_kwqqueue
) {
1261 ksyn_queue_remove_item(ckwq
, &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
], kwe
);
1263 if ((kwe
->kwe_psynchretval
& PTH_RWL_MTX_WAIT
) != 0) {
1264 /* the condition var granted.
1265 * reset the error so that the thread returns back.
1268 /* no need to set any bits just return as cvsig/broad covers this */
1270 ckwq
->kw_sword
+= PTHRW_INC
;
1272 /* set C and P bits, in the local error */
1273 if ((ckwq
->kw_lword
& PTHRW_COUNT_MASK
) == (ckwq
->kw_sword
& PTHRW_COUNT_MASK
)) {
1274 PTHREAD_TRACE(psynch_cvar_zeroed
, ckwq
->kw_addr
,
1275 ckwq
->kw_lword
, ckwq
->kw_sword
, ckwq
->kw_inqueue
);
1276 error
|= ECVCLEARED
;
1277 if (ckwq
->kw_inqueue
!= 0) {
1278 ksyn_queue_free_items(ckwq
, KSYN_QUEUE_WRITE
, ckwq
->kw_lword
, 1);
1280 ckwq
->kw_lword
= ckwq
->kw_uword
= ckwq
->kw_sword
= 0;
1281 ckwq
->kw_kflags
|= KSYN_KWF_ZEROEDOUT
;
1283 /* everythig in the queue is a fake entry ? */
1284 if (ckwq
->kw_inqueue
!= 0 && ckwq
->kw_fakecount
== ckwq
->kw_inqueue
) {
1285 error
|= ECVPREPOST
;
1289 ksyn_wqunlock(ckwq
);
1291 PTHREAD_TRACE(psynch_cvar_kwait
| DBG_FUNC_END
, ckwq
->kw_addr
,
1295 // PTH_RWL_MTX_WAIT is removed
1296 if ((kwe
->kwe_psynchretval
& PTH_RWS_CV_MBIT
) != 0) {
1297 val
= PTHRW_INC
| PTH_RWS_CV_CBIT
;
1299 PTHREAD_TRACE(psynch_cvar_kwait
| DBG_FUNC_END
, ckwq
->kw_addr
,
1301 pthread_kern
->uthread_set_returnval(uth
, val
);
1304 ksyn_wqrelease(ckwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_CVAR
));
1305 pthread_kern
->unix_syscall_return(error
);
1306 __builtin_unreachable();
1310 * psynch_cvclrprepost: This system call clears pending prepost if present.
1313 _psynch_cvclrprepost(__unused proc_t p
, user_addr_t cv
, uint32_t cvgen
,
1314 uint32_t cvugen
, uint32_t cvsgen
, __unused
uint32_t prepocnt
,
1315 uint32_t preposeq
, uint32_t flags
, int *retval
)
1318 int mutex
= (flags
& _PTHREAD_MTX_OPT_MUTEX
);
1319 int wqtype
= (mutex
? KSYN_WQTYPE_MTX
: KSYN_WQTYPE_CVAR
) | KSYN_WQTYPE_INDROP
;
1320 ksyn_wait_queue_t kwq
= NULL
;
1324 error
= ksyn_wqfind(cv
, cvgen
, cvugen
, mutex
? 0 : cvsgen
, flags
, wqtype
,
1333 int firstfit
= (flags
& _PTHREAD_MTX_OPT_POLICY_MASK
)
1334 == _PTHREAD_MTX_OPT_POLICY_FIRSTFIT
;
1335 if (firstfit
&& kwq
->kw_prepost
.count
) {
1336 if (is_seqlower_eq(kwq
->kw_prepost
.lseq
, cvgen
)) {
1337 PTHREAD_TRACE(psynch_mutex_kwqprepost
, kwq
->kw_addr
,
1338 kwq
->kw_prepost
.lseq
, 0, 2);
1339 _kwq_clear_preposted_wakeup(kwq
);
1343 PTHREAD_TRACE(psynch_cvar_clrprepost
, kwq
->kw_addr
, wqtype
,
1345 ksyn_queue_free_items(kwq
, KSYN_QUEUE_WRITE
, preposeq
, 0);
1349 ksyn_wqrelease(kwq
, 1, wqtype
);
1353 /* ***************** pthread_rwlock ************************ */
1356 __psynch_rw_lock(int type
, user_addr_t rwlock
, uint32_t lgenval
,
1357 uint32_t ugenval
, uint32_t rw_wc
, int flags
, uint32_t *retval
)
1359 uint32_t lockseq
= lgenval
& PTHRW_COUNT_MASK
;
1360 ksyn_wait_queue_t kwq
;
1361 int error
, prepost_type
, kqi
;
1362 thread_continue_t tc
;
1364 if (type
== PTH_RW_TYPE_READ
) {
1365 prepost_type
= KW_UNLOCK_PREPOST_READLOCK
;
1366 kqi
= KSYN_QUEUE_READ
;
1367 tc
= psynch_rw_rdcontinue
;
1369 prepost_type
= KW_UNLOCK_PREPOST_WRLOCK
;
1370 kqi
= KSYN_QUEUE_WRITE
;
1371 tc
= psynch_rw_wrcontinue
;
1374 error
= ksyn_wqfind(rwlock
, lgenval
, ugenval
, rw_wc
, flags
,
1375 (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_RWLOCK
), &kwq
);
1381 _ksyn_check_init(kwq
, lgenval
);
1382 if (_kwq_handle_interrupted_wakeup(kwq
, type
, lockseq
, retval
) ||
1383 // handle overlap first as they are not counted against pre_rwwc
1384 // handle_overlap uses the flags in lgenval (vs. lockseq)
1385 _kwq_handle_overlap(kwq
, type
, lgenval
, rw_wc
, retval
) ||
1386 _kwq_handle_preposted_wakeup(kwq
, prepost_type
, lockseq
, retval
)) {
1391 block_hint_t block_hint
= type
== PTH_RW_TYPE_READ
?
1392 kThreadWaitPThreadRWLockRead
: kThreadWaitPThreadRWLockWrite
;
1393 error
= ksyn_wait(kwq
, kqi
, lgenval
, SEQFIT
, 0, 0, tc
, block_hint
);
1394 // ksyn_wait drops wait queue lock
1396 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_RWLOCK
));
1401 * psynch_rw_rdlock: This system call is used for psync rwlock readers to block.
1404 _psynch_rw_rdlock(__unused proc_t p
, user_addr_t rwlock
, uint32_t lgenval
,
1405 uint32_t ugenval
, uint32_t rw_wc
, int flags
, uint32_t *retval
)
1407 return __psynch_rw_lock(PTH_RW_TYPE_READ
, rwlock
, lgenval
, ugenval
, rw_wc
,
1412 * psynch_rw_longrdlock: This system call is used for psync rwlock long readers to block.
1415 _psynch_rw_longrdlock(__unused proc_t p
, __unused user_addr_t rwlock
,
1416 __unused
uint32_t lgenval
, __unused
uint32_t ugenval
,
1417 __unused
uint32_t rw_wc
, __unused
int flags
, __unused
uint32_t *retval
)
1424 * psynch_rw_wrlock: This system call is used for psync rwlock writers to block.
1427 _psynch_rw_wrlock(__unused proc_t p
, user_addr_t rwlock
, uint32_t lgenval
,
1428 uint32_t ugenval
, uint32_t rw_wc
, int flags
, uint32_t *retval
)
1430 return __psynch_rw_lock(PTH_RW_TYPE_WRITE
, rwlock
, lgenval
, ugenval
,
1431 rw_wc
, flags
, retval
);
1435 * psynch_rw_yieldwrlock: This system call is used for psync rwlock yielding writers to block.
1438 _psynch_rw_yieldwrlock(__unused proc_t p
, __unused user_addr_t rwlock
,
1439 __unused
uint32_t lgenval
, __unused
uint32_t ugenval
,
1440 __unused
uint32_t rw_wc
, __unused
int flags
, __unused
uint32_t *retval
)
1446 * psynch_rw_unlock: This system call is used for unlock state postings. This will grant appropriate
1447 * reader/writer variety lock.
1450 _psynch_rw_unlock(__unused proc_t p
, user_addr_t rwlock
, uint32_t lgenval
,
1451 uint32_t ugenval
, uint32_t rw_wc
, int flags
, uint32_t *retval
)
1454 ksyn_wait_queue_t kwq
;
1455 uint32_t updatebits
= 0;
1458 uint32_t curgen
= lgenval
& PTHRW_COUNT_MASK
;
1459 int clearedkflags
= 0;
1461 error
= ksyn_wqfind(rwlock
, lgenval
, ugenval
, rw_wc
, flags
,
1462 (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_RWLOCK
), &kwq
);
1468 int isinit
= _ksyn_check_init(kwq
, lgenval
);
1470 /* if lastunlock seq is set, ensure the current one is not lower than that, as it would be spurious */
1471 if ((kwq
->kw_lastunlockseq
!= PTHRW_RWL_INIT
) &&
1472 (is_seqlower(ugenval
, kwq
->kw_lastunlockseq
)!= 0)) {
1477 /* If L-U != num of waiters, then it needs to be preposted or spr */
1478 diff
= find_diff(lgenval
, ugenval
);
1480 if (find_seq_till(kwq
, curgen
, diff
, &count
) == 0) {
1481 if ((count
== 0) || (count
< (uint32_t)diff
))
1485 /* no prepost and all threads are in place, reset the bit */
1486 if ((isinit
!= 0) && ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) != 0)){
1487 kwq
->kw_kflags
&= ~KSYN_KWF_INITCLEARED
;
1491 /* can handle unlock now */
1493 _kwq_clear_preposted_wakeup(kwq
);
1495 error
= kwq_handle_unlock(kwq
, lgenval
, rw_wc
, &updatebits
, 0, NULL
, 0);
1498 panic("psynch_rw_unlock: kwq_handle_unlock failed %d\n",error
);
1499 #endif /* __TESTPANICS__ */
1503 *retval
= updatebits
;
1506 // <rdar://problem/22244050> If any of the wakeups failed because they
1507 // already returned to userspace because of a signal then we need to ensure
1508 // that the reset state is not cleared when that thread returns. Otherwise,
1509 // _pthread_rwlock_lock will clear the interrupted state before it is read.
1510 if (clearedkflags
!= 0 && kwq
->kw_intr
.count
> 0) {
1511 kwq
->kw_kflags
|= KSYN_KWF_INITCLEARED
;
1515 pthread_kern
->psynch_wait_cleanup();
1516 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_RWLOCK
));
1521 /* update if the new seq is higher than prev prepost, or first set */
1522 if (is_rws_sbit_set(kwq
->kw_prepost
.sseq
) ||
1523 is_seqhigher_eq(rw_wc
, kwq
->kw_prepost
.sseq
)) {
1524 _kwq_mark_preposted_wakeup(kwq
, diff
- count
, curgen
, rw_wc
);
1525 updatebits
= lgenval
; /* let this not do unlock handling */
1532 /* ************************************************************************** */
1534 pth_global_hashinit(void)
1536 pth_glob_hashtbl
= hashinit(PTH_HASHSIZE
* 4, M_PROC
, &pthhash
);
1540 _pth_proc_hashinit(proc_t p
)
1542 void *ptr
= hashinit(PTH_HASHSIZE
, M_PCB
, &pthhash
);
1544 panic("pth_proc_hashinit: hash init returned 0\n");
1547 pthread_kern
->proc_set_pthhash(p
, ptr
);
1552 ksyn_wq_hash_lookup(user_addr_t uaddr
, proc_t p
, int flags
,
1553 ksyn_wait_queue_t
*out_kwq
, struct pthhashhead
**out_hashptr
,
1554 uint64_t object
, uint64_t offset
)
1557 ksyn_wait_queue_t kwq
;
1558 struct pthhashhead
*hashptr
;
1559 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1560 hashptr
= pth_glob_hashtbl
;
1561 LIST_FOREACH(kwq
, &hashptr
[object
& pthhash
], kw_hash
) {
1562 if (kwq
->kw_object
== object
&& kwq
->kw_offset
== offset
) {
1567 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1568 LIST_FOREACH(kwq
, &hashptr
[uaddr
& pthhash
], kw_hash
) {
1569 if (kwq
->kw_addr
== uaddr
) {
1575 *out_hashptr
= hashptr
;
1580 _pth_proc_hashdelete(proc_t p
)
1582 struct pthhashhead
* hashptr
;
1583 ksyn_wait_queue_t kwq
;
1584 unsigned long hashsize
= pthhash
+ 1;
1587 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1588 pthread_kern
->proc_set_pthhash(p
, NULL
);
1589 if (hashptr
== NULL
) {
1593 pthread_list_lock();
1594 for(i
= 0; i
< hashsize
; i
++) {
1595 while ((kwq
= LIST_FIRST(&hashptr
[i
])) != NULL
) {
1596 if ((kwq
->kw_pflags
& KSYN_WQ_INHASH
) != 0) {
1597 kwq
->kw_pflags
&= ~KSYN_WQ_INHASH
;
1598 LIST_REMOVE(kwq
, kw_hash
);
1600 if ((kwq
->kw_pflags
& KSYN_WQ_FLIST
) != 0) {
1601 kwq
->kw_pflags
&= ~KSYN_WQ_FLIST
;
1602 LIST_REMOVE(kwq
, kw_list
);
1604 pthread_list_unlock();
1605 /* release fake entries if present for cvars */
1606 if (((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
) && (kwq
->kw_inqueue
!= 0))
1607 ksyn_freeallkwe(&kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
]);
1609 pthread_list_lock();
1612 pthread_list_unlock();
1613 FREE(hashptr
, M_PROC
);
1616 /* no lock held for this as the waitqueue is getting freed */
1618 ksyn_freeallkwe(ksyn_queue_t kq
)
1620 ksyn_waitq_element_t kwe
;
1621 while ((kwe
= TAILQ_FIRST(&kq
->ksynq_kwelist
)) != NULL
) {
1622 TAILQ_REMOVE(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
1623 if (kwe
->kwe_state
!= KWE_THREAD_INWAIT
) {
1624 zfree(kwe_zone
, kwe
);
1630 _kwq_report_inuse(ksyn_wait_queue_t kwq
)
1632 if (kwq
->kw_prepost
.count
!= 0) {
1633 __FAILEDUSERTEST2__("uaddr 0x%llx busy for synch type 0x%x [pre %d:0x%x:0x%x]",
1634 (uint64_t)kwq
->kw_addr
, kwq
->kw_type
, kwq
->kw_prepost
.count
,
1635 kwq
->kw_prepost
.lseq
, kwq
->kw_prepost
.sseq
);
1636 PTHREAD_TRACE(psynch_mutex_kwqcollision
, kwq
->kw_addr
,
1637 kwq
->kw_type
, 1, 0);
1639 if (kwq
->kw_intr
.count
!= 0) {
1640 __FAILEDUSERTEST2__("uaddr 0x%llx busy for synch type 0x%x [intr %d:0x%x:0x%x:0x%x]",
1641 (uint64_t)kwq
->kw_addr
, kwq
->kw_type
, kwq
->kw_intr
.count
,
1642 kwq
->kw_intr
.type
, kwq
->kw_intr
.seq
,
1643 kwq
->kw_intr
.returnbits
);
1644 PTHREAD_TRACE(psynch_mutex_kwqcollision
, kwq
->kw_addr
,
1645 kwq
->kw_type
, 2, 0);
1647 if (kwq
->kw_iocount
) {
1648 __FAILEDUSERTEST2__("uaddr 0x%llx busy for synch type 0x%x [ioc %d:%d]",
1649 (uint64_t)kwq
->kw_addr
, kwq
->kw_type
, kwq
->kw_iocount
,
1651 PTHREAD_TRACE(psynch_mutex_kwqcollision
, kwq
->kw_addr
,
1652 kwq
->kw_type
, 3, 0);
1654 if (kwq
->kw_inqueue
) {
1655 __FAILEDUSERTEST2__("uaddr 0x%llx busy for synch type 0x%x [inq %d:%d]",
1656 (uint64_t)kwq
->kw_addr
, kwq
->kw_type
, kwq
->kw_inqueue
,
1658 PTHREAD_TRACE(psynch_mutex_kwqcollision
, kwq
->kw_addr
, kwq
->kw_type
,
1663 /* find kernel waitqueue, if not present create one. Grants a reference */
1665 ksyn_wqfind(user_addr_t uaddr
, uint32_t mgen
, uint32_t ugen
, uint32_t sgen
,
1666 int flags
, int wqtype
, ksyn_wait_queue_t
*kwqp
)
1669 ksyn_wait_queue_t kwq
= NULL
;
1670 ksyn_wait_queue_t nkwq
= NULL
;
1671 struct pthhashhead
*hashptr
;
1672 proc_t p
= current_proc();
1674 uint64_t object
= 0, offset
= 0;
1675 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1676 res
= ksyn_findobj(uaddr
, &object
, &offset
);
1677 hashptr
= pth_glob_hashtbl
;
1679 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1683 pthread_list_lock();
1684 res
= ksyn_wq_hash_lookup(uaddr
, current_proc(), flags
, &kwq
, &hashptr
,
1687 pthread_list_unlock();
1690 if (kwq
== NULL
&& nkwq
== NULL
) {
1691 // Drop the lock to allocate a new kwq and retry.
1692 pthread_list_unlock();
1694 nkwq
= (ksyn_wait_queue_t
)zalloc(kwq_zone
);
1695 bzero(nkwq
, sizeof(struct ksyn_wait_queue
));
1697 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
1698 ksyn_queue_init(&nkwq
->kw_ksynqueues
[i
]);
1700 lck_spin_init(&nkwq
->kw_lock
, pthread_lck_grp
, pthread_lck_attr
);
1702 } else if (kwq
== NULL
&& nkwq
!= NULL
) {
1703 // Still not found, add the new kwq to the hash.
1705 nkwq
= NULL
; // Don't free.
1706 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1707 kwq
->kw_pflags
|= KSYN_WQ_SHARED
;
1708 LIST_INSERT_HEAD(&hashptr
[object
& pthhash
], kwq
, kw_hash
);
1710 LIST_INSERT_HEAD(&hashptr
[uaddr
& pthhash
], kwq
, kw_hash
);
1712 kwq
->kw_pflags
|= KSYN_WQ_INHASH
;
1713 } else if (kwq
!= NULL
) {
1714 // Found an existing kwq, use it.
1715 if ((kwq
->kw_pflags
& KSYN_WQ_FLIST
) != 0) {
1716 LIST_REMOVE(kwq
, kw_list
);
1717 kwq
->kw_pflags
&= ~KSYN_WQ_FLIST
;
1719 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) != (wqtype
& KSYN_WQTYPE_MASK
)) {
1720 if (!_kwq_is_used(kwq
)) {
1721 if (kwq
->kw_iocount
== 0) {
1722 kwq
->kw_type
= 0; // mark for reinitialization
1723 } else if (kwq
->kw_iocount
== 1 &&
1724 kwq
->kw_dropcount
== kwq
->kw_iocount
) {
1725 /* if all users are unlockers then wait for it to finish */
1726 kwq
->kw_pflags
|= KSYN_WQ_WAITING
;
1727 // Drop the lock and wait for the kwq to be free.
1728 (void)msleep(&kwq
->kw_pflags
, pthread_list_mlock
,
1729 PDROP
, "ksyn_wqfind", 0);
1732 _kwq_report_inuse(kwq
);
1736 _kwq_report_inuse(kwq
);
1742 if (kwq
->kw_type
== 0) {
1743 kwq
->kw_addr
= uaddr
;
1744 kwq
->kw_object
= object
;
1745 kwq
->kw_offset
= offset
;
1746 kwq
->kw_type
= (wqtype
& KSYN_WQTYPE_MASK
);
1747 CLEAR_REINIT_BITS(kwq
);
1748 kwq
->kw_lword
= mgen
;
1749 kwq
->kw_uword
= ugen
;
1750 kwq
->kw_sword
= sgen
;
1751 kwq
->kw_owner
= THREAD_NULL
;
1753 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
1754 PTHREAD_TRACE(psynch_mutex_kwqallocate
| DBG_FUNC_START
, uaddr
,
1755 kwq
->kw_type
, kwq
, 0);
1756 PTHREAD_TRACE(psynch_mutex_kwqallocate
| DBG_FUNC_END
, uaddr
,
1760 if (wqtype
== KSYN_WQTYPE_MUTEXDROP
) {
1761 kwq
->kw_dropcount
++;
1764 pthread_list_unlock();
1776 /* Reference from find is dropped here. Starts the free process if needed */
1778 ksyn_wqrelease(ksyn_wait_queue_t kwq
, int qfreenow
, int wqtype
)
1781 ksyn_wait_queue_t free_elem
= NULL
;
1783 pthread_list_lock();
1784 if (wqtype
== KSYN_WQTYPE_MUTEXDROP
) {
1785 kwq
->kw_dropcount
--;
1787 if (--kwq
->kw_iocount
== 0) {
1788 if ((kwq
->kw_pflags
& KSYN_WQ_WAITING
) != 0) {
1789 /* some one is waiting for the waitqueue, wake them up */
1790 kwq
->kw_pflags
&= ~KSYN_WQ_WAITING
;
1791 wakeup(&kwq
->kw_pflags
);
1794 if (!_kwq_is_used(kwq
)) {
1795 if (kwq
->kw_turnstile
) {
1796 panic("kw_turnstile still non-null upon release");
1799 PTHREAD_TRACE(psynch_mutex_kwqdeallocate
| DBG_FUNC_START
,
1800 kwq
->kw_addr
, kwq
->kw_type
, qfreenow
, 0);
1801 PTHREAD_TRACE(psynch_mutex_kwqdeallocate
| DBG_FUNC_END
,
1802 kwq
->kw_addr
, kwq
->kw_lword
, kwq
->kw_uword
, kwq
->kw_sword
);
1804 if (qfreenow
== 0) {
1805 microuptime(&kwq
->kw_ts
);
1806 LIST_INSERT_HEAD(&pth_free_list
, kwq
, kw_list
);
1807 kwq
->kw_pflags
|= KSYN_WQ_FLIST
;
1808 if (psynch_cleanupset
== 0) {
1811 t
.tv_sec
+= KSYN_CLEANUP_DEADLINE
;
1812 deadline
= tvtoabstime(&t
);
1813 thread_call_enter_delayed(psynch_thcall
, deadline
);
1814 psynch_cleanupset
= 1;
1817 kwq
->kw_pflags
&= ~KSYN_WQ_INHASH
;
1818 LIST_REMOVE(kwq
, kw_hash
);
1823 pthread_list_unlock();
1824 if (free_elem
!= NULL
) {
1825 _kwq_destroy(free_elem
);
1829 /* responsible to free the waitqueues */
1831 psynch_wq_cleanup(__unused
void *param
, __unused
void * param1
)
1833 ksyn_wait_queue_t kwq
, tmp
;
1836 uint64_t deadline
= 0;
1837 LIST_HEAD(, ksyn_wait_queue
) freelist
;
1838 LIST_INIT(&freelist
);
1840 pthread_list_lock();
1844 LIST_FOREACH(kwq
, &pth_free_list
, kw_list
) {
1845 if (_kwq_is_used(kwq
) || kwq
->kw_iocount
!= 0) {
1849 __darwin_time_t diff
= t
.tv_sec
- kwq
->kw_ts
.tv_sec
;
1852 if (diff
>= KSYN_CLEANUP_DEADLINE
) {
1853 kwq
->kw_pflags
&= ~(KSYN_WQ_FLIST
| KSYN_WQ_INHASH
);
1854 LIST_REMOVE(kwq
, kw_hash
);
1855 LIST_REMOVE(kwq
, kw_list
);
1856 LIST_INSERT_HEAD(&freelist
, kwq
, kw_list
);
1862 if (reschedule
!= 0) {
1863 t
.tv_sec
+= KSYN_CLEANUP_DEADLINE
;
1864 deadline
= tvtoabstime(&t
);
1865 thread_call_enter_delayed(psynch_thcall
, deadline
);
1866 psynch_cleanupset
= 1;
1868 psynch_cleanupset
= 0;
1870 pthread_list_unlock();
1872 LIST_FOREACH_SAFE(kwq
, &freelist
, kw_list
, tmp
) {
1878 _wait_result_to_errno(wait_result_t result
)
1882 case THREAD_TIMED_OUT
:
1885 case THREAD_INTERRUPTED
:
1893 ksyn_wait(ksyn_wait_queue_t kwq
, kwq_queue_type_t kqi
, uint32_t lockseq
,
1894 int fit
, uint64_t abstime
, uint16_t kwe_flags
,
1895 thread_continue_t continuation
, block_hint_t block_hint
)
1897 thread_t th
= current_thread();
1898 uthread_t uth
= pthread_kern
->get_bsdthread_info(th
);
1899 struct turnstile
**tstore
= NULL
;
1902 assert(continuation
!= THREAD_CONTINUE_NULL
);
1904 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1905 bzero(kwe
, sizeof(*kwe
));
1907 kwe
->kwe_lockseq
= lockseq
& PTHRW_COUNT_MASK
;
1908 kwe
->kwe_state
= KWE_THREAD_INWAIT
;
1910 kwe
->kwe_thread
= th
;
1911 kwe
->kwe_flags
= kwe_flags
;
1913 res
= ksyn_queue_insert(kwq
, kqi
, kwe
, lockseq
, fit
);
1915 //panic("psynch_rw_wrlock: failed to enqueue\n"); // XXX
1920 PTHREAD_TRACE(psynch_mutex_kwqwait
, kwq
->kw_addr
, kwq
->kw_inqueue
,
1921 kwq
->kw_prepost
.count
, kwq
->kw_intr
.count
);
1923 if (_kwq_use_turnstile(kwq
)) {
1924 // pthread mutexes and rwlocks both (at least sometimes) know their
1925 // owner and can use turnstiles. Otherwise, we pass NULL as the
1926 // tstore to the shims so they wait on the global waitq.
1927 tstore
= &kwq
->kw_turnstile
;
1930 pthread_kern
->psynch_wait_prepare((uintptr_t)kwq
, tstore
, kwq
->kw_owner
,
1931 block_hint
, abstime
);
1936 pthread_kern
->psynch_wait_update_complete(kwq
->kw_turnstile
);
1939 thread_block_parameter(continuation
, kwq
);
1942 panic("ksyn_wait continuation returned");
1943 __builtin_unreachable();
1947 ksyn_signal(ksyn_wait_queue_t kwq
, kwq_queue_type_t kqi
,
1948 ksyn_waitq_element_t kwe
, uint32_t updateval
)
1951 struct turnstile
**tstore
= NULL
;
1953 // If no wait element was specified, wake the first.
1955 kwe
= TAILQ_FIRST(&kwq
->kw_ksynqueues
[kqi
].ksynq_kwelist
);
1957 panic("ksyn_signal: panic signaling empty queue");
1961 if (kwe
->kwe_state
!= KWE_THREAD_INWAIT
) {
1962 panic("ksyn_signal: panic signaling non-waiting element");
1965 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[kqi
], kwe
);
1966 kwe
->kwe_psynchretval
= updateval
;
1968 if (_kwq_use_turnstile(kwq
)) {
1969 tstore
= &kwq
->kw_turnstile
;
1972 ret
= pthread_kern
->psynch_wait_wakeup(kwq
, kwe
, tstore
);
1974 if (ret
!= KERN_SUCCESS
&& ret
!= KERN_NOT_WAITING
) {
1975 panic("ksyn_signal: panic waking up thread %x\n", ret
);
1981 ksyn_findobj(user_addr_t uaddr
, uint64_t *objectp
, uint64_t *offsetp
)
1984 vm_page_info_basic_data_t info
;
1985 mach_msg_type_number_t count
= VM_PAGE_INFO_BASIC_COUNT
;
1986 ret
= pthread_kern
->vm_map_page_info(pthread_kern
->current_map(), uaddr
,
1987 VM_PAGE_INFO_BASIC
, (vm_page_info_t
)&info
, &count
);
1988 if (ret
!= KERN_SUCCESS
) {
1992 if (objectp
!= NULL
) {
1993 *objectp
= (uint64_t)info
.object_id
;
1995 if (offsetp
!= NULL
) {
1996 *offsetp
= (uint64_t)info
.offset
;
2003 /* lowest of kw_fr, kw_flr, kw_fwr, kw_fywr */
2005 kwq_find_rw_lowest(ksyn_wait_queue_t kwq
, int flags
, uint32_t premgen
,
2006 int *typep
, uint32_t lowest
[])
2008 uint32_t kw_fr
, kw_fwr
, low
;
2009 int type
= 0, lowtype
, typenum
[2] = { 0 };
2010 uint32_t numbers
[2] = { 0 };
2013 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
!= 0) ||
2014 ((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0)) {
2015 type
|= PTH_RWSHFT_TYPE_READ
;
2016 /* read entries are present */
2017 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
!= 0) {
2018 kw_fr
= kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_firstnum
;
2019 if (((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) &&
2020 (is_seqlower(premgen
, kw_fr
) != 0))
2025 lowest
[KSYN_QUEUE_READ
] = kw_fr
;
2026 numbers
[count
]= kw_fr
;
2027 typenum
[count
] = PTH_RW_TYPE_READ
;
2030 lowest
[KSYN_QUEUE_READ
] = 0;
2032 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_count
!= 0) ||
2033 ((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0)) {
2034 type
|= PTH_RWSHFT_TYPE_WRITE
;
2035 /* read entries are present */
2036 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_count
!= 0) {
2037 kw_fwr
= kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_firstnum
;
2038 if (((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) &&
2039 (is_seqlower(premgen
, kw_fwr
) != 0))
2044 lowest
[KSYN_QUEUE_WRITE
] = kw_fwr
;
2045 numbers
[count
]= kw_fwr
;
2046 typenum
[count
] = PTH_RW_TYPE_WRITE
;
2049 lowest
[KSYN_QUEUE_WRITE
] = 0;
2053 panic("nothing in the queue???\n");
2054 #endif /* __TESTPANICS__ */
2057 lowtype
= typenum
[0];
2059 for (i
= 1; i
< count
; i
++) {
2060 if (is_seqlower(numbers
[i
] , low
) != 0) {
2062 lowtype
= typenum
[i
];
2073 /* wakeup readers to upto the writer limits */
2075 ksyn_wakeupreaders(ksyn_wait_queue_t kwq
, uint32_t limitread
, int allreaders
,
2076 uint32_t updatebits
, int *wokenp
)
2079 int failedwakeup
= 0;
2081 kern_return_t kret
= KERN_SUCCESS
;
2086 kq
= &kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
];
2087 while ((kq
->ksynq_count
!= 0) &&
2088 (allreaders
|| (is_seqlower(kq
->ksynq_firstnum
, limitread
) != 0))) {
2089 kret
= ksyn_signal(kwq
, KSYN_QUEUE_READ
, NULL
, lbits
);
2090 if (kret
== KERN_NOT_WAITING
) {
2098 return(failedwakeup
);
2103 * This handles the unlock grants for next set on rw_unlock() or on arrival
2104 * of all preposted waiters.
2107 kwq_handle_unlock(ksyn_wait_queue_t kwq
, __unused
uint32_t mgen
, uint32_t rw_wc
,
2108 uint32_t *updatep
, int flags
, int *blockp
, uint32_t premgen
)
2110 uint32_t low_writer
, limitrdnum
;
2111 int rwtype
, error
=0;
2112 int allreaders
, nfailed
;
2113 uint32_t updatebits
=0, numneeded
= 0;;
2114 int prepost
= flags
& KW_UNLOCK_PREPOST
;
2115 thread_t preth
= THREAD_NULL
;
2116 ksyn_waitq_element_t kwe
;
2121 uint32_t lowest
[KSYN_QUEUE_MAX
]; /* np need for upgrade as it is handled separately */
2122 kern_return_t kret
= KERN_SUCCESS
;
2124 int curthreturns
= 0;
2127 preth
= current_thread();
2130 kq
= &kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
];
2131 kwq
->kw_lastseqword
= rw_wc
;
2132 kwq
->kw_lastunlockseq
= (rw_wc
& PTHRW_COUNT_MASK
);
2133 kwq
->kw_kflags
&= ~KSYN_KWF_OVERLAP_GUARD
;
2135 error
= kwq_find_rw_lowest(kwq
, flags
, premgen
, &rwtype
, lowest
);
2138 panic("rwunlock: cannot fails to slot next round of threads");
2139 #endif /* __TESTPANICS__ */
2141 low_writer
= lowest
[KSYN_QUEUE_WRITE
];
2146 switch (rwtype
& PTH_RW_TYPE_MASK
) {
2147 case PTH_RW_TYPE_READ
: {
2149 /* what about the preflight which is LREAD or READ ?? */
2150 if ((rwtype
& PTH_RWSHFT_TYPE_MASK
) != 0) {
2151 if (rwtype
& PTH_RWSHFT_TYPE_WRITE
) {
2152 updatebits
|= (PTH_RWL_WBIT
| PTH_RWL_KBIT
);
2156 if ((rwtype
& PTH_RWSHFT_TYPE_WRITE
) != 0) {
2157 limitrdnum
= low_writer
;
2164 if ((rwtype
& PTH_RWSHFT_TYPE_WRITE
) != 0) {
2165 limitrdnum
= low_writer
;
2166 numneeded
= ksyn_queue_count_tolowest(kq
, limitrdnum
);
2167 if (((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) && (is_seqlower(premgen
, limitrdnum
) != 0)) {
2172 // no writers at all
2173 // no other waiters only readers
2174 kwq
->kw_kflags
|= KSYN_KWF_OVERLAP_GUARD
;
2175 numneeded
+= kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
;
2176 if ((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) {
2182 updatebits
+= (numneeded
<< PTHRW_COUNT_SHIFT
);
2184 kwq
->kw_nextseqword
= (rw_wc
& PTHRW_COUNT_MASK
) + updatebits
;
2186 if (curthreturns
!= 0) {
2188 uth
= current_uthread();
2189 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
2190 kwe
->kwe_psynchretval
= updatebits
;
2194 nfailed
= ksyn_wakeupreaders(kwq
, limitrdnum
, allreaders
,
2195 updatebits
, &woken
);
2197 _kwq_mark_interruped_wakeup(kwq
, KWQ_INTR_READ
, nfailed
,
2198 limitrdnum
, updatebits
);
2203 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_count
!= 0) &&
2204 ((updatebits
& PTH_RWL_WBIT
) == 0)) {
2205 panic("kwq_handle_unlock: writer pending but no writebit set %x\n", updatebits
);
2210 case PTH_RW_TYPE_WRITE
: {
2212 /* only one thread is goin to be granted */
2213 updatebits
|= (PTHRW_INC
);
2214 updatebits
|= PTH_RWL_KBIT
| PTH_RWL_EBIT
;
2216 if (((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) && (low_writer
== premgen
)) {
2218 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_count
!= 0) {
2219 updatebits
|= PTH_RWL_WBIT
;
2222 uth
= pthread_kern
->get_bsdthread_info(th
);
2223 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
2224 kwe
->kwe_psynchretval
= updatebits
;
2226 /* we are not granting writelock to the preposting thread */
2227 /* if there are writers present or the preposting write thread then W bit is to be set */
2228 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
].ksynq_count
> 1 ||
2229 (flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) {
2230 updatebits
|= PTH_RWL_WBIT
;
2232 /* setup next in the queue */
2233 kret
= ksyn_signal(kwq
, KSYN_QUEUE_WRITE
, NULL
, updatebits
);
2234 if (kret
== KERN_NOT_WAITING
) {
2235 _kwq_mark_interruped_wakeup(kwq
, KWQ_INTR_WRITE
, 1,
2236 low_writer
, updatebits
);
2240 kwq
->kw_nextseqword
= (rw_wc
& PTHRW_COUNT_MASK
) + updatebits
;
2241 if ((updatebits
& (PTH_RWL_KBIT
| PTH_RWL_EBIT
)) !=
2242 (PTH_RWL_KBIT
| PTH_RWL_EBIT
)) {
2243 panic("kwq_handle_unlock: writer lock granted but no ke set %x\n", updatebits
);
2249 panic("rwunlock: invalid type for lock grants");
2253 if (updatep
!= NULL
)
2254 *updatep
= updatebits
;
2260 /************* Indiv queue support routines ************************/
2262 ksyn_queue_init(ksyn_queue_t kq
)
2264 TAILQ_INIT(&kq
->ksynq_kwelist
);
2265 kq
->ksynq_count
= 0;
2266 kq
->ksynq_firstnum
= 0;
2267 kq
->ksynq_lastnum
= 0;
2271 ksyn_queue_insert(ksyn_wait_queue_t kwq
, int kqi
, ksyn_waitq_element_t kwe
,
2272 uint32_t mgen
, int fit
)
2274 ksyn_queue_t kq
= &kwq
->kw_ksynqueues
[kqi
];
2275 uint32_t lockseq
= mgen
& PTHRW_COUNT_MASK
;
2278 if (kwe
->kwe_kwqqueue
!= NULL
) {
2279 panic("adding enqueued item to another queue");
2282 if (kq
->ksynq_count
== 0) {
2283 TAILQ_INSERT_HEAD(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2284 kq
->ksynq_firstnum
= lockseq
;
2285 kq
->ksynq_lastnum
= lockseq
;
2286 } else if (fit
== FIRSTFIT
) {
2287 /* TBD: if retry bit is set for mutex, add it to the head */
2288 /* firstfit, arriving order */
2289 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2290 if (is_seqlower(lockseq
, kq
->ksynq_firstnum
)) {
2291 kq
->ksynq_firstnum
= lockseq
;
2293 if (is_seqhigher(lockseq
, kq
->ksynq_lastnum
)) {
2294 kq
->ksynq_lastnum
= lockseq
;
2296 } else if (lockseq
== kq
->ksynq_firstnum
|| lockseq
== kq
->ksynq_lastnum
) {
2297 /* During prepost when a thread is getting cancelled, we could have
2298 * two with same seq */
2300 if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2301 ksyn_waitq_element_t tmp
= ksyn_queue_find_seq(kwq
, kq
, lockseq
);
2302 if (tmp
!= NULL
&& tmp
->kwe_uth
!= NULL
&&
2303 pthread_kern
->uthread_is_cancelled(tmp
->kwe_uth
)) {
2304 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2308 } else if (is_seqlower(kq
->ksynq_lastnum
, lockseq
)) { // XXX is_seqhigher
2309 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2310 kq
->ksynq_lastnum
= lockseq
;
2311 } else if (is_seqlower(lockseq
, kq
->ksynq_firstnum
)) {
2312 TAILQ_INSERT_HEAD(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2313 kq
->ksynq_firstnum
= lockseq
;
2315 ksyn_waitq_element_t q_kwe
, r_kwe
;
2318 TAILQ_FOREACH_SAFE(q_kwe
, &kq
->ksynq_kwelist
, kwe_list
, r_kwe
) {
2319 if (is_seqhigher(q_kwe
->kwe_lockseq
, lockseq
)) {
2320 TAILQ_INSERT_BEFORE(q_kwe
, kwe
, kwe_list
);
2328 kwe
->kwe_kwqqueue
= kwq
;
2331 update_low_high(kwq
, lockseq
);
2337 ksyn_queue_remove_item(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
,
2338 ksyn_waitq_element_t kwe
)
2340 if (kq
->ksynq_count
== 0) {
2341 panic("removing item from empty queue");
2344 if (kwe
->kwe_kwqqueue
!= kwq
) {
2345 panic("removing item from wrong queue");
2348 TAILQ_REMOVE(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2349 kwe
->kwe_list
.tqe_next
= NULL
;
2350 kwe
->kwe_list
.tqe_prev
= NULL
;
2351 kwe
->kwe_kwqqueue
= NULL
;
2353 if (--kq
->ksynq_count
> 0) {
2354 ksyn_waitq_element_t tmp
;
2355 tmp
= TAILQ_FIRST(&kq
->ksynq_kwelist
);
2356 kq
->ksynq_firstnum
= tmp
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2357 tmp
= TAILQ_LAST(&kq
->ksynq_kwelist
, ksynq_kwelist_head
);
2358 kq
->ksynq_lastnum
= tmp
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2360 kq
->ksynq_firstnum
= 0;
2361 kq
->ksynq_lastnum
= 0;
2364 if (--kwq
->kw_inqueue
> 0) {
2365 uint32_t curseq
= kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2366 if (kwq
->kw_lowseq
== curseq
) {
2367 kwq
->kw_lowseq
= find_nextlowseq(kwq
);
2369 if (kwq
->kw_highseq
== curseq
) {
2370 kwq
->kw_highseq
= find_nexthighseq(kwq
);
2374 kwq
->kw_highseq
= 0;
2378 ksyn_waitq_element_t
2379 ksyn_queue_find_seq(__unused ksyn_wait_queue_t kwq
, ksyn_queue_t kq
,
2382 ksyn_waitq_element_t kwe
;
2384 // XXX: should stop searching when higher sequence number is seen
2385 TAILQ_FOREACH(kwe
, &kq
->ksynq_kwelist
, kwe_list
) {
2386 if ((kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) == seq
) {
2393 /* find the thread at the target sequence (or a broadcast/prepost at or above) */
2394 ksyn_waitq_element_t
2395 ksyn_queue_find_cvpreposeq(ksyn_queue_t kq
, uint32_t cgen
)
2397 ksyn_waitq_element_t result
= NULL
;
2398 ksyn_waitq_element_t kwe
;
2399 uint32_t lgen
= (cgen
& PTHRW_COUNT_MASK
);
2401 TAILQ_FOREACH(kwe
, &kq
->ksynq_kwelist
, kwe_list
) {
2402 if (is_seqhigher_eq(kwe
->kwe_lockseq
, cgen
)) {
2405 // KWE_THREAD_INWAIT must be strictly equal
2406 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
&&
2407 (kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) != lgen
) {
2416 /* look for a thread at lockseq, a */
2417 ksyn_waitq_element_t
2418 ksyn_queue_find_signalseq(__unused ksyn_wait_queue_t kwq
, ksyn_queue_t kq
,
2419 uint32_t uptoseq
, uint32_t signalseq
)
2421 ksyn_waitq_element_t result
= NULL
;
2422 ksyn_waitq_element_t q_kwe
, r_kwe
;
2425 /* case where wrap in the tail of the queue exists */
2426 TAILQ_FOREACH_SAFE(q_kwe
, &kq
->ksynq_kwelist
, kwe_list
, r_kwe
) {
2427 if (q_kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2428 if (is_seqhigher(q_kwe
->kwe_lockseq
, uptoseq
)) {
2432 if (q_kwe
->kwe_state
== KWE_THREAD_PREPOST
|
2433 q_kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
2434 /* match any prepost at our same uptoseq or any broadcast above */
2435 if (is_seqlower(q_kwe
->kwe_lockseq
, uptoseq
)) {
2439 } else if (q_kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2441 * Match any (non-cancelled) thread at or below our upto sequence -
2442 * but prefer an exact match to our signal sequence (if present) to
2443 * keep exact matches happening.
2445 if (is_seqhigher(q_kwe
->kwe_lockseq
, uptoseq
)) {
2448 if (q_kwe
->kwe_kwqqueue
== kwq
) {
2449 if (!pthread_kern
->uthread_is_cancelled(q_kwe
->kwe_uth
)) {
2450 /* if equal or higher than our signal sequence, return this one */
2451 if (is_seqhigher_eq(q_kwe
->kwe_lockseq
, signalseq
)) {
2455 /* otherwise, just remember this eligible thread and move on */
2456 if (result
== NULL
) {
2462 panic("ksyn_queue_find_signalseq(): unknown wait queue element type (%d)\n", q_kwe
->kwe_state
);
2469 ksyn_queue_free_items(ksyn_wait_queue_t kwq
, int kqi
, uint32_t upto
, int all
)
2471 ksyn_waitq_element_t kwe
;
2472 uint32_t tseq
= upto
& PTHRW_COUNT_MASK
;
2473 ksyn_queue_t kq
= &kwq
->kw_ksynqueues
[kqi
];
2474 uint32_t freed
= 0, signaled
= 0;
2476 PTHREAD_TRACE(psynch_cvar_freeitems
| DBG_FUNC_START
, kwq
->kw_addr
,
2479 while ((kwe
= TAILQ_FIRST(&kq
->ksynq_kwelist
)) != NULL
) {
2480 if (all
== 0 && is_seqhigher(kwe
->kwe_lockseq
, tseq
)) {
2483 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2485 * This scenario is typically noticed when the cvar is
2486 * reinited and the new waiters are waiting. We can
2487 * return them as spurious wait so the cvar state gets
2491 PTHREAD_TRACE(psynch_cvar_freeitems
, kwq
->kw_addr
, kwe
,
2492 kwq
->kw_inqueue
, 1);
2494 /* skip canceled ones */
2496 /* set M bit to indicate to waking CV to retun Inc val */
2497 (void)ksyn_signal(kwq
, kqi
, kwe
,
2498 PTHRW_INC
| PTH_RWS_CV_MBIT
| PTH_RWL_MTX_WAIT
);
2501 PTHREAD_TRACE(psynch_cvar_freeitems
, kwq
->kw_addr
, kwe
,
2502 kwq
->kw_inqueue
, 2);
2503 ksyn_queue_remove_item(kwq
, kq
, kwe
);
2504 zfree(kwe_zone
, kwe
);
2505 kwq
->kw_fakecount
--;
2510 PTHREAD_TRACE(psynch_cvar_freeitems
| DBG_FUNC_END
, kwq
->kw_addr
, freed
,
2511 signaled
, kwq
->kw_inqueue
);
2514 /*************************************************************************/
2517 update_low_high(ksyn_wait_queue_t kwq
, uint32_t lockseq
)
2519 if (kwq
->kw_inqueue
== 1) {
2520 kwq
->kw_lowseq
= lockseq
;
2521 kwq
->kw_highseq
= lockseq
;
2523 if (is_seqlower(lockseq
, kwq
->kw_lowseq
)) {
2524 kwq
->kw_lowseq
= lockseq
;
2526 if (is_seqhigher(lockseq
, kwq
->kw_highseq
)) {
2527 kwq
->kw_highseq
= lockseq
;
2533 find_nextlowseq(ksyn_wait_queue_t kwq
)
2535 uint32_t lowest
= 0;
2539 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2540 if (kwq
->kw_ksynqueues
[i
].ksynq_count
> 0) {
2541 uint32_t current
= kwq
->kw_ksynqueues
[i
].ksynq_firstnum
;
2542 if (first
|| is_seqlower(current
, lowest
)) {
2553 find_nexthighseq(ksyn_wait_queue_t kwq
)
2555 uint32_t highest
= 0;
2559 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2560 if (kwq
->kw_ksynqueues
[i
].ksynq_count
> 0) {
2561 uint32_t current
= kwq
->kw_ksynqueues
[i
].ksynq_lastnum
;
2562 if (first
|| is_seqhigher(current
, highest
)) {
2573 find_seq_till(ksyn_wait_queue_t kwq
, uint32_t upto
, uint32_t nwaiters
,
2579 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2580 count
+= ksyn_queue_count_tolowest(&kwq
->kw_ksynqueues
[i
], upto
);
2581 if (count
>= nwaiters
) {
2586 if (countp
!= NULL
) {
2592 } else if (count
>= nwaiters
) {
2601 ksyn_queue_count_tolowest(ksyn_queue_t kq
, uint32_t upto
)
2604 ksyn_waitq_element_t kwe
, newkwe
;
2606 if (kq
->ksynq_count
== 0 || is_seqhigher(kq
->ksynq_firstnum
, upto
)) {
2609 if (upto
== kq
->ksynq_firstnum
) {
2612 TAILQ_FOREACH_SAFE(kwe
, &kq
->ksynq_kwelist
, kwe_list
, newkwe
) {
2613 uint32_t curval
= (kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
);
2614 if (is_seqhigher(curval
, upto
)) {
2618 if (upto
== curval
) {
2625 /* handles the cond broadcast of cvar and returns number of woken threads and bits for syscall return */
2627 ksyn_handle_cvbroad(ksyn_wait_queue_t ckwq
, uint32_t upto
, uint32_t *updatep
)
2629 ksyn_waitq_element_t kwe
, newkwe
;
2630 uint32_t updatebits
= 0;
2631 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITE
];
2633 struct ksyn_queue kfreeq
;
2634 ksyn_queue_init(&kfreeq
);
2636 PTHREAD_TRACE(psynch_cvar_broadcast
| DBG_FUNC_START
, ckwq
->kw_addr
, upto
,
2637 ckwq
->kw_inqueue
, 0);
2640 TAILQ_FOREACH_SAFE(kwe
, &kq
->ksynq_kwelist
, kwe_list
, newkwe
) {
2641 if (is_seqhigher(kwe
->kwe_lockseq
, upto
)) {
2642 // outside our range
2646 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2647 // Wake only non-canceled threads waiting on this CV.
2648 if (!pthread_kern
->uthread_is_cancelled(kwe
->kwe_uth
)) {
2649 PTHREAD_TRACE(psynch_cvar_broadcast
, ckwq
->kw_addr
, kwe
, 0, 1);
2650 (void)ksyn_signal(ckwq
, KSYN_QUEUE_WRITE
, kwe
, PTH_RWL_MTX_WAIT
);
2651 updatebits
+= PTHRW_INC
;
2653 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
||
2654 kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2655 PTHREAD_TRACE(psynch_cvar_broadcast
, ckwq
->kw_addr
, kwe
,
2657 ksyn_queue_remove_item(ckwq
, kq
, kwe
);
2658 TAILQ_INSERT_TAIL(&kfreeq
.ksynq_kwelist
, kwe
, kwe_list
);
2659 ckwq
->kw_fakecount
--;
2661 panic("unknown kwe state\n");
2665 /* Need to enter a broadcast in the queue (if not already at L == S) */
2667 if (diff_genseq(ckwq
->kw_lword
, ckwq
->kw_sword
)) {
2668 PTHREAD_TRACE(psynch_cvar_broadcast
, ckwq
->kw_addr
, ckwq
->kw_lword
,
2671 newkwe
= TAILQ_FIRST(&kfreeq
.ksynq_kwelist
);
2672 if (newkwe
== NULL
) {
2673 ksyn_wqunlock(ckwq
);
2674 newkwe
= (ksyn_waitq_element_t
)zalloc(kwe_zone
);
2675 TAILQ_INSERT_TAIL(&kfreeq
.ksynq_kwelist
, newkwe
, kwe_list
);
2679 TAILQ_REMOVE(&kfreeq
.ksynq_kwelist
, newkwe
, kwe_list
);
2680 ksyn_prepost(ckwq
, newkwe
, KWE_THREAD_BROADCAST
, upto
);
2681 PTHREAD_TRACE(psynch_cvar_broadcast
, ckwq
->kw_addr
, newkwe
, 0, 4);
2685 // free up any remaining things stumbled across above
2686 while ((kwe
= TAILQ_FIRST(&kfreeq
.ksynq_kwelist
)) != NULL
) {
2687 TAILQ_REMOVE(&kfreeq
.ksynq_kwelist
, kwe
, kwe_list
);
2688 zfree(kwe_zone
, kwe
);
2691 PTHREAD_TRACE(psynch_cvar_broadcast
| DBG_FUNC_END
, ckwq
->kw_addr
,
2694 if (updatep
!= NULL
) {
2695 *updatep
|= updatebits
;
2700 ksyn_cvupdate_fixup(ksyn_wait_queue_t ckwq
, uint32_t *updatebits
)
2702 if ((ckwq
->kw_lword
& PTHRW_COUNT_MASK
) == (ckwq
->kw_sword
& PTHRW_COUNT_MASK
)) {
2703 if (ckwq
->kw_inqueue
!= 0) {
2704 /* FREE THE QUEUE */
2705 ksyn_queue_free_items(ckwq
, KSYN_QUEUE_WRITE
, ckwq
->kw_lword
, 0);
2707 if (ckwq
->kw_inqueue
!= 0)
2708 panic("ksyn_cvupdate_fixup: L == S, but entries in queue beyond S");
2709 #endif /* __TESTPANICS__ */
2711 ckwq
->kw_lword
= ckwq
->kw_uword
= ckwq
->kw_sword
= 0;
2712 ckwq
->kw_kflags
|= KSYN_KWF_ZEROEDOUT
;
2713 *updatebits
|= PTH_RWS_CV_CBIT
;
2714 } else if (ckwq
->kw_inqueue
!= 0 && ckwq
->kw_fakecount
== ckwq
->kw_inqueue
) {
2715 // only fake entries are present in the queue
2716 *updatebits
|= PTH_RWS_CV_PBIT
;
2721 psynch_zoneinit(void)
2723 kwq_zone
= zinit(sizeof(struct ksyn_wait_queue
),
2724 8192 * sizeof(struct ksyn_wait_queue
), 4096, "ksyn_wait_queue");
2725 kwe_zone
= zinit(sizeof(struct ksyn_waitq_element
),
2726 8192 * sizeof(struct ksyn_waitq_element
), 4096, "ksyn_waitq_element");
2730 _pthread_get_thread_kwq(thread_t thread
)
2733 struct uthread
* uthread
= pthread_kern
->get_bsdthread_info(thread
);
2735 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uthread
);
2737 ksyn_wait_queue_t kwq
= kwe
->kwe_kwqqueue
;
2741 /* This function is used by stackshot to determine why a thread is blocked, and report
2742 * who owns the object that the thread is blocked on. It should *only* be called if the
2743 * `block_hint' field in the relevant thread's struct is populated with something related
2744 * to pthread sync objects.
2747 _pthread_find_owner(thread_t thread
,
2748 struct stackshot_thread_waitinfo
* waitinfo
)
2750 ksyn_wait_queue_t kwq
= _pthread_get_thread_kwq(thread
);
2751 switch (waitinfo
->wait_type
) {
2752 case kThreadWaitPThreadMutex
:
2753 assert((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_MTX
);
2754 waitinfo
->owner
= thread_tid(kwq
->kw_owner
);
2755 waitinfo
->context
= kwq
->kw_addr
;
2757 /* Owner of rwlock not stored in kernel space due to races. Punt
2758 * and hope that the userspace address is helpful enough. */
2759 case kThreadWaitPThreadRWLockRead
:
2760 case kThreadWaitPThreadRWLockWrite
:
2761 assert((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_RWLOCK
);
2762 waitinfo
->owner
= 0;
2763 waitinfo
->context
= kwq
->kw_addr
;
2765 /* Condvars don't have owners, so just give the userspace address. */
2766 case kThreadWaitPThreadCondVar
:
2767 assert((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
);
2768 waitinfo
->owner
= 0;
2769 waitinfo
->context
= kwq
->kw_addr
;
2771 case kThreadWaitNone
:
2773 waitinfo
->owner
= 0;
2774 waitinfo
->context
= 0;