2 * Copyright (c) 2000-2012 Apple Inc. All rights reserved.
4 * @APPLE_OSREFERENCE_LICENSE_HEADER_START@
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. The rights granted to you under the License
10 * may not be used to create, or enable the creation or redistribution of,
11 * unlawful or unlicensed copies of an Apple operating system, or to
12 * circumvent, violate, or enable the circumvention or violation of, any
13 * terms of an Apple operating system software license agreement.
15 * Please obtain a copy of the License at
16 * http://www.opensource.apple.com/apsl/ and read it before using this file.
18 * The Original Code and all software distributed under the License are
19 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
20 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
21 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
22 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
23 * Please see the License for the specific language governing rights and
24 * limitations under the License.
26 * @APPLE_OSREFERENCE_LICENSE_HEADER_END@
28 /* Copyright (c) 1995-2005 Apple Computer, Inc. All Rights Reserved */
33 #include <sys/param.h>
34 #include <sys/queue.h>
35 #include <sys/resourcevar.h>
36 //#include <sys/proc_internal.h>
37 #include <sys/kauth.h>
38 #include <sys/systm.h>
39 #include <sys/timeb.h>
40 #include <sys/times.h>
43 #include <sys/kernel.h>
45 #include <sys/signalvar.h>
46 #include <sys/syslog.h>
49 #include <sys/kdebug.h>
50 //#include <sys/sysproto.h>
51 //#include <sys/pthread_internal.h>
55 #include <mach/mach_types.h>
56 #include <mach/vm_prot.h>
57 #include <mach/semaphore.h>
58 #include <mach/sync_policy.h>
59 #include <mach/task.h>
60 #include <kern/kern_types.h>
61 #include <kern/task.h>
62 #include <kern/clock.h>
63 #include <mach/kern_return.h>
64 #include <kern/thread.h>
65 #include <kern/sched_prim.h>
66 #include <kern/thread_call.h>
67 #include <kern/kalloc.h>
68 #include <kern/zalloc.h>
69 #include <kern/sched_prim.h>
70 #include <kern/processor.h>
71 //#include <kern/mach_param.h>
72 #include <mach/mach_vm.h>
73 #include <mach/mach_param.h>
74 #include <mach/thread_policy.h>
75 #include <mach/message.h>
76 #include <mach/port.h>
77 //#include <vm/vm_protos.h>
78 #include <vm/vm_map.h>
79 #include <mach/vm_region.h>
81 #include <libkern/OSAtomic.h>
83 #include <pexpert/pexpert.h>
84 #include <sys/pthread_shims.h>
86 #include "kern_internal.h"
87 #include "synch_internal.h"
88 #include "kern_trace.h"
90 typedef struct uthread
*uthread_t
;
92 //#define __FAILEDUSERTEST__(s) do { panic(s); } while (0)
93 #define __FAILEDUSERTEST__(s) do { printf("PSYNCH: pid[%d]: %s\n", proc_pid(current_proc()), s); } while (0)
98 lck_mtx_t
*pthread_list_mlock
;
100 #define PTH_HASHSIZE 100
102 static LIST_HEAD(pthhashhead
, ksyn_wait_queue
) *pth_glob_hashtbl
;
103 static unsigned long pthhash
;
105 static LIST_HEAD(, ksyn_wait_queue
) pth_free_list
;
107 static zone_t kwq_zone
; /* zone for allocation of ksyn_queue */
108 static zone_t kwe_zone
; /* zone for allocation of ksyn_waitq_element */
114 TAILQ_HEAD(ksynq_kwelist_head
, ksyn_waitq_element
) ksynq_kwelist
;
115 uint32_t ksynq_count
; /* number of entries in queue */
116 uint32_t ksynq_firstnum
; /* lowest seq in queue */
117 uint32_t ksynq_lastnum
; /* highest seq in queue */
119 typedef struct ksyn_queue
*ksyn_queue_t
;
127 struct ksyn_wait_queue
{
128 LIST_ENTRY(ksyn_wait_queue
) kw_hash
;
129 LIST_ENTRY(ksyn_wait_queue
) kw_list
;
132 uint64_t kw_object
; /* object backing in shared mode */
133 uint64_t kw_offset
; /* offset inside the object in shared mode */
134 int kw_pflags
; /* flags under listlock protection */
135 struct timeval kw_ts
; /* timeval need for upkeep before free */
136 int kw_iocount
; /* inuse reference */
137 int kw_dropcount
; /* current users unlocking... */
139 int kw_type
; /* queue type like mutex, cvar, etc */
140 uint32_t kw_inqueue
; /* num of waiters held */
141 uint32_t kw_fakecount
; /* number of error/prepost fakes */
142 uint32_t kw_highseq
; /* highest seq in the queue */
143 uint32_t kw_lowseq
; /* lowest seq in the queue */
144 uint32_t kw_lword
; /* L value from userland */
145 uint32_t kw_uword
; /* U world value from userland */
146 uint32_t kw_sword
; /* S word value from userland */
147 uint32_t kw_lastunlockseq
; /* the last seq that unlocked */
148 /* for CV to be used as the seq kernel has seen so far */
149 #define kw_cvkernelseq kw_lastunlockseq
150 uint32_t kw_lastseqword
; /* the last seq that unlocked */
151 /* for mutex and cvar we need to track I bit values */
152 uint32_t kw_nextseqword
; /* the last seq that unlocked; with num of waiters */
153 uint32_t kw_overlapwatch
; /* chance for overlaps */
154 uint32_t kw_pre_rwwc
; /* prepost count */
155 uint32_t kw_pre_lockseq
; /* prepost target seq */
156 uint32_t kw_pre_sseq
; /* prepost target sword, in cvar used for mutexowned */
157 uint32_t kw_pre_intrcount
; /* prepost of missed wakeup due to intrs */
158 uint32_t kw_pre_intrseq
; /* prepost of missed wakeup limit seq */
159 uint32_t kw_pre_intrretbits
; /* return bits value for missed wakeup threads */
160 uint32_t kw_pre_intrtype
; /* type of failed wakueps*/
163 int kw_qos_override
; /* QoS of max waiter during contention period */
164 struct ksyn_queue kw_ksynqueues
[KSYN_QUEUE_MAX
]; /* queues to hold threads */
165 lck_mtx_t kw_lock
; /* mutex lock protecting this structure */
167 typedef struct ksyn_wait_queue
* ksyn_wait_queue_t
;
169 #define TID_ZERO (uint64_t)0
171 /* bits needed in handling the rwlock unlock */
172 #define PTH_RW_TYPE_READ 0x01
173 #define PTH_RW_TYPE_WRITE 0x04
174 #define PTH_RW_TYPE_MASK 0xff
175 #define PTH_RW_TYPE_SHIFT 8
177 #define PTH_RWSHFT_TYPE_READ 0x0100
178 #define PTH_RWSHFT_TYPE_WRITE 0x0400
179 #define PTH_RWSHFT_TYPE_MASK 0xff00
182 * Mutex pshared attributes
184 #define PTHREAD_PROCESS_SHARED _PTHREAD_MTX_OPT_PSHARED
185 #define PTHREAD_PROCESS_PRIVATE 0x20
186 #define PTHREAD_PSHARED_FLAGS_MASK 0x30
189 * Mutex policy attributes
191 #define _PTHREAD_MUTEX_POLICY_NONE 0
192 #define _PTHREAD_MUTEX_POLICY_FAIRSHARE 0x040 /* 1 */
193 #define _PTHREAD_MUTEX_POLICY_FIRSTFIT 0x080 /* 2 */
194 #define _PTHREAD_MUTEX_POLICY_REALTIME 0x0c0 /* 3 */
195 #define _PTHREAD_MUTEX_POLICY_ADAPTIVE 0x100 /* 4 */
196 #define _PTHREAD_MUTEX_POLICY_PRIPROTECT 0x140 /* 5 */
197 #define _PTHREAD_MUTEX_POLICY_PRIINHERIT 0x180 /* 6 */
198 #define PTHREAD_POLICY_FLAGS_MASK 0x1c0
201 #define KSYN_WQ_INHASH 2
202 #define KSYN_WQ_SHARED 4
203 #define KSYN_WQ_WAITING 8 /* threads waiting for this wq to be available */
204 #define KSYN_WQ_FLIST 0X10 /* in free list to be freed after a short delay */
207 #define KSYN_KWF_INITCLEARED 1 /* the init status found and preposts cleared */
208 #define KSYN_KWF_ZEROEDOUT 2 /* the lword, etc are inited to 0 */
209 #define KSYN_KWF_QOS_APPLIED 4 /* QoS override applied to owner */
211 #define KSYN_CLEANUP_DEADLINE 10
212 static int psynch_cleanupset
;
213 thread_call_t psynch_thcall
;
215 #define KSYN_WQTYPE_INWAIT 0x1000
216 #define KSYN_WQTYPE_INDROP 0x2000
217 #define KSYN_WQTYPE_MTX 0x01
218 #define KSYN_WQTYPE_CVAR 0x02
219 #define KSYN_WQTYPE_RWLOCK 0x04
220 #define KSYN_WQTYPE_SEMA 0x08
221 #define KSYN_WQTYPE_MASK 0xff
223 #define KSYN_WQTYPE_MUTEXDROP (KSYN_WQTYPE_INDROP | KSYN_WQTYPE_MTX)
225 #define KW_UNLOCK_PREPOST 0x01
226 #define KW_UNLOCK_PREPOST_READLOCK 0x08
227 #define KW_UNLOCK_PREPOST_WRLOCK 0x20
230 CLEAR_PREPOST_BITS(ksyn_wait_queue_t kwq
)
232 kwq
->kw_pre_lockseq
= 0;
233 kwq
->kw_pre_sseq
= PTHRW_RWS_INIT
;
234 kwq
->kw_pre_rwwc
= 0;
238 CLEAR_INTR_PREPOST_BITS(ksyn_wait_queue_t kwq
)
240 kwq
->kw_pre_intrcount
= 0;
241 kwq
->kw_pre_intrseq
= 0;
242 kwq
->kw_pre_intrretbits
= 0;
243 kwq
->kw_pre_intrtype
= 0;
247 CLEAR_REINIT_BITS(ksyn_wait_queue_t kwq
)
249 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
) {
250 if (kwq
->kw_inqueue
!= 0 && kwq
->kw_inqueue
!= kwq
->kw_fakecount
) {
251 panic("CV:entries in queue durinmg reinit %d:%d\n",kwq
->kw_inqueue
, kwq
->kw_fakecount
);
254 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_RWLOCK
) {
255 kwq
->kw_nextseqword
= PTHRW_RWS_INIT
;
256 kwq
->kw_overlapwatch
= 0;
258 CLEAR_PREPOST_BITS(kwq
);
259 kwq
->kw_lastunlockseq
= PTHRW_RWL_INIT
;
260 kwq
->kw_lastseqword
= PTHRW_RWS_INIT
;
261 CLEAR_INTR_PREPOST_BITS(kwq
);
264 kwq
->kw_sword
= PTHRW_RWS_INIT
;
267 static int ksyn_wq_hash_lookup(user_addr_t uaddr
, proc_t p
, int flags
, ksyn_wait_queue_t
*kwq
, struct pthhashhead
**hashptr
, uint64_t *object
, uint64_t *offset
);
268 static int ksyn_wqfind(user_addr_t mutex
, uint32_t mgen
, uint32_t ugen
, uint32_t rw_wc
, int flags
, int wqtype
, ksyn_wait_queue_t
*wq
);
269 static void ksyn_wqrelease(ksyn_wait_queue_t mkwq
, int qfreenow
, int wqtype
);
270 static int ksyn_findobj(user_addr_t uaddr
, uint64_t *objectp
, uint64_t *offsetp
);
272 static int _wait_result_to_errno(wait_result_t result
);
274 static int ksyn_wait(ksyn_wait_queue_t
, int, uint32_t, int, uint64_t, thread_continue_t
);
275 static kern_return_t
ksyn_signal(ksyn_wait_queue_t
, int, ksyn_waitq_element_t
, uint32_t);
276 static void ksyn_freeallkwe(ksyn_queue_t kq
);
278 static kern_return_t
ksyn_mtxsignal(ksyn_wait_queue_t
, ksyn_waitq_element_t kwe
, uint32_t);
279 static void ksyn_mtx_update_owner_qos_override(ksyn_wait_queue_t
, uint64_t tid
, boolean_t prepost
);
280 static void ksyn_mtx_transfer_qos_override(ksyn_wait_queue_t
, ksyn_waitq_element_t
);
281 static void ksyn_mtx_drop_qos_override(ksyn_wait_queue_t
);
283 static int kwq_handle_unlock(ksyn_wait_queue_t
, uint32_t mgen
, uint32_t rw_wc
, uint32_t *updatep
, int flags
, int *blockp
, uint32_t premgen
);
285 static void ksyn_queue_init(ksyn_queue_t kq
);
286 static int ksyn_queue_insert(ksyn_wait_queue_t kwq
, int kqi
, ksyn_waitq_element_t kwe
, uint32_t mgen
, int firstfit
);
287 static void ksyn_queue_remove_item(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, ksyn_waitq_element_t kwe
);
288 static void ksyn_queue_free_items(ksyn_wait_queue_t kwq
, int kqi
, uint32_t upto
, int all
);
290 static void update_low_high(ksyn_wait_queue_t kwq
, uint32_t lockseq
);
291 static uint32_t find_nextlowseq(ksyn_wait_queue_t kwq
);
292 static uint32_t find_nexthighseq(ksyn_wait_queue_t kwq
);
293 static int find_seq_till(ksyn_wait_queue_t kwq
, uint32_t upto
, uint32_t nwaiters
, uint32_t *countp
);
295 static uint32_t ksyn_queue_count_tolowest(ksyn_queue_t kq
, uint32_t upto
);
297 static ksyn_waitq_element_t
ksyn_queue_find_cvpreposeq(ksyn_queue_t kq
, uint32_t cgen
);
298 static void ksyn_handle_cvbroad(ksyn_wait_queue_t ckwq
, uint32_t upto
, uint32_t *updatep
);
299 static void ksyn_cvupdate_fixup(ksyn_wait_queue_t ckwq
, uint32_t *updatep
);
300 static ksyn_waitq_element_t
ksyn_queue_find_signalseq(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t toseq
, uint32_t lockseq
);
302 static void psynch_cvcontinue(void *, wait_result_t
);
303 static void psynch_mtxcontinue(void *, wait_result_t
);
305 static int ksyn_wakeupreaders(ksyn_wait_queue_t kwq
, uint32_t limitread
, int allreaders
, uint32_t updatebits
, int *wokenp
);
306 static int kwq_find_rw_lowest(ksyn_wait_queue_t kwq
, int flags
, uint32_t premgen
, int *type
, uint32_t lowest
[]);
307 static ksyn_waitq_element_t
ksyn_queue_find_seq(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t seq
);
310 UPDATE_CVKWQ(ksyn_wait_queue_t kwq
, uint32_t mgen
, uint32_t ugen
, uint32_t rw_wc
)
312 int sinit
= ((rw_wc
& PTH_RWS_CV_CBIT
) != 0);
314 // assert((kwq->kw_type & KSYN_WQTYPE_MASK) == KSYN_WQTYPE_CVAR);
316 if ((kwq
->kw_kflags
& KSYN_KWF_ZEROEDOUT
) != 0) {
317 /* the values of L,U and S are cleared out due to L==S in previous transition */
318 kwq
->kw_lword
= mgen
;
319 kwq
->kw_uword
= ugen
;
320 kwq
->kw_sword
= rw_wc
;
321 kwq
->kw_kflags
&= ~KSYN_KWF_ZEROEDOUT
;
323 if (is_seqhigher(mgen
, kwq
->kw_lword
)) {
324 kwq
->kw_lword
= mgen
;
326 if (is_seqhigher(ugen
, kwq
->kw_uword
)) {
327 kwq
->kw_uword
= ugen
;
329 if (sinit
&& is_seqhigher(rw_wc
, kwq
->kw_sword
)) {
330 kwq
->kw_sword
= rw_wc
;
333 if (sinit
&& is_seqlower(kwq
->kw_cvkernelseq
, rw_wc
)) {
334 kwq
->kw_cvkernelseq
= (rw_wc
& PTHRW_COUNT_MASK
);
339 pthread_list_lock(void)
341 lck_mtx_lock(pthread_list_mlock
);
345 pthread_list_unlock(void)
347 lck_mtx_unlock(pthread_list_mlock
);
351 ksyn_wqlock(ksyn_wait_queue_t kwq
)
354 lck_mtx_lock(&kwq
->kw_lock
);
358 ksyn_wqunlock(ksyn_wait_queue_t kwq
)
360 lck_mtx_unlock(&kwq
->kw_lock
);
364 /* routine to drop the mutex unlocks , used both for mutexunlock system call and drop during cond wait */
366 _psynch_mutexdrop_internal(ksyn_wait_queue_t kwq
, uint32_t mgen
, uint32_t ugen
, int flags
)
369 uint32_t returnbits
= 0;
370 int firstfit
= (flags
& PTHREAD_POLICY_FLAGS_MASK
) == _PTHREAD_MUTEX_POLICY_FIRSTFIT
;
371 uint32_t nextgen
= (ugen
+ PTHRW_INC
);
374 kwq
->kw_lastunlockseq
= (ugen
& PTHRW_COUNT_MASK
);
375 uint32_t updatebits
= (kwq
->kw_highseq
& PTHRW_COUNT_MASK
) | (PTH_RWL_EBIT
| PTH_RWL_KBIT
);
379 if (kwq
->kw_inqueue
== 0) {
380 // not set or the new lock sequence is higher
381 if (kwq
->kw_pre_rwwc
== 0 || is_seqhigher(mgen
, kwq
->kw_pre_lockseq
)) {
382 kwq
->kw_pre_lockseq
= (mgen
& PTHRW_COUNT_MASK
);
384 kwq
->kw_pre_rwwc
= 1;
385 ksyn_mtx_drop_qos_override(kwq
);
387 // indicate prepost content in kernel
388 returnbits
= mgen
| PTH_RWL_PBIT
;
390 // signal first waiter
391 ret
= ksyn_mtxsignal(kwq
, NULL
, updatebits
);
392 if (ret
== KERN_NOT_WAITING
) {
398 if (kwq
->kw_inqueue
== 0) {
399 // No waiters in the queue.
402 uint32_t low_writer
= (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_firstnum
& PTHRW_COUNT_MASK
);
403 if (low_writer
== nextgen
) {
404 /* next seq to be granted found */
405 /* since the grant could be cv, make sure mutex wait is set incase the thread interrupted out */
406 ret
= ksyn_mtxsignal(kwq
, NULL
, updatebits
| PTH_RWL_MTX_WAIT
);
407 if (ret
== KERN_NOT_WAITING
) {
409 kwq
->kw_pre_intrcount
= 1;
410 kwq
->kw_pre_intrseq
= nextgen
;
411 kwq
->kw_pre_intrretbits
= updatebits
;
412 kwq
->kw_pre_intrtype
= PTH_RW_TYPE_WRITE
;
415 } else if (is_seqhigher(low_writer
, nextgen
)) {
418 //__FAILEDUSERTEST__("psynch_mutexdrop_internal: FS mutex unlock sequence higher than the lowest one is queue\n");
419 ksyn_waitq_element_t kwe
;
420 kwe
= ksyn_queue_find_seq(kwq
, &kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
], nextgen
);
422 /* next seq to be granted found */
423 /* since the grant could be cv, make sure mutex wait is set incase the thread interrupted out */
424 ret
= ksyn_mtxsignal(kwq
, kwe
, updatebits
| PTH_RWL_MTX_WAIT
);
425 if (ret
== KERN_NOT_WAITING
) {
434 ksyn_mtx_drop_qos_override(kwq
);
436 if (++kwq
->kw_pre_rwwc
> 1) {
437 __FAILEDUSERTEST__("_psynch_mutexdrop_internal: multiple preposts\n");
439 kwq
->kw_pre_lockseq
= (nextgen
& PTHRW_COUNT_MASK
);
445 ksyn_wqrelease(kwq
, 1, KSYN_WQTYPE_MUTEXDROP
);
450 _ksyn_check_init(ksyn_wait_queue_t kwq
, uint32_t lgenval
)
452 int res
= (lgenval
& PTHRW_RWL_INIT
) != 0;
454 if ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) == 0) {
455 /* first to notice the reset of the lock, clear preposts */
456 CLEAR_REINIT_BITS(kwq
);
457 kwq
->kw_kflags
|= KSYN_KWF_INITCLEARED
;
464 _ksyn_handle_missed_wakeups(ksyn_wait_queue_t kwq
,
470 if (kwq
->kw_pre_intrcount
!= 0 &&
471 kwq
->kw_pre_intrtype
== type
&&
472 (kwq
->kw_pre_intrseq
== 0 || is_seqlower_eq(lockseq
, kwq
->kw_pre_intrseq
))) {
473 kwq
->kw_pre_intrcount
--;
474 *retval
= kwq
->kw_pre_intrretbits
;
475 if (kwq
->kw_pre_intrcount
== 0) {
476 CLEAR_INTR_PREPOST_BITS(kwq
);
484 _ksyn_handle_overlap(ksyn_wait_queue_t kwq
,
491 // check for overlap and no pending W bit (indicates writers)
492 if (kwq
->kw_overlapwatch
!= 0 &&
493 (rw_wc
& PTHRW_RWS_SAVEMASK
) == 0 &&
494 (lgenval
& PTH_RWL_WBIT
) == 0) {
495 /* overlap is set, so no need to check for valid state for overlap */
497 if (is_seqlower_eq(rw_wc
, kwq
->kw_nextseqword
) || is_seqhigher_eq(kwq
->kw_lastseqword
, rw_wc
)) {
498 /* increase the next expected seq by one */
499 kwq
->kw_nextseqword
+= PTHRW_INC
;
500 /* set count by one & bits from the nextseq and add M bit */
501 *retval
= PTHRW_INC
| ((kwq
->kw_nextseqword
& PTHRW_BIT_MASK
) | PTH_RWL_MBIT
);
509 _ksyn_handle_prepost(ksyn_wait_queue_t kwq
,
515 if (kwq
->kw_pre_rwwc
!= 0 && is_seqlower_eq(lockseq
, kwq
->kw_pre_lockseq
)) {
517 if (kwq
->kw_pre_rwwc
== 0) {
518 uint32_t preseq
= kwq
->kw_pre_lockseq
;
519 uint32_t prerw_wc
= kwq
->kw_pre_sseq
;
520 CLEAR_PREPOST_BITS(kwq
);
521 if ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) != 0){
522 kwq
->kw_kflags
&= ~KSYN_KWF_INITCLEARED
;
527 error
= kwq_handle_unlock(kwq
, preseq
, prerw_wc
, &updatebits
, (type
|KW_UNLOCK_PREPOST
), &block
, lockseq
);
529 panic("kwq_handle_unlock failed %d\n", error
);
533 *retval
= updatebits
;
541 /* Helpers for QoS override management. Only applies to mutexes */
542 static void ksyn_mtx_update_owner_qos_override(ksyn_wait_queue_t kwq
, uint64_t tid
, boolean_t prepost
)
544 if (!(kwq
->kw_pflags
& KSYN_WQ_SHARED
)) {
545 boolean_t wasboosted
= (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
) ? TRUE
: FALSE
;
546 int waiter_qos
= pthread_kern
->proc_usynch_get_requested_thread_qos(current_uthread());
548 kwq
->kw_qos_override
= MAX(waiter_qos
, kwq
->kw_qos_override
);
550 if (prepost
&& kwq
->kw_inqueue
== 0) {
551 // if there are no more waiters in the queue after the new (prepost-receiving) owner, we do not set an
552 // override, because the receiving owner may not re-enter the kernel to signal someone else if it is
553 // the last one to unlock. If other waiters end up entering the kernel, they will boost the owner
558 if ((tid
== kwq
->kw_owner
) && (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
)) {
559 // hint continues to be accurate, and a boost was already applied
560 pthread_kern
->proc_usynch_thread_qos_add_override_for_resource(current_task(), NULL
, tid
, kwq
->kw_qos_override
, FALSE
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
562 // either hint did not match previous owner, or hint was accurate but mutex was not contended enough for a boost previously
563 boolean_t boostsucceded
;
565 boostsucceded
= pthread_kern
->proc_usynch_thread_qos_add_override_for_resource(current_task(), NULL
, tid
, kwq
->kw_qos_override
, TRUE
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
568 kwq
->kw_kflags
|= KSYN_KWF_QOS_APPLIED
;
571 if (wasboosted
&& (tid
!= kwq
->kw_owner
) && (kwq
->kw_owner
!= 0)) {
572 // the hint did not match the previous owner, so drop overrides
573 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
574 pthread_kern
->proc_usynch_thread_qos_remove_override_for_resource(current_task(), NULL
, kwq
->kw_owner
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
578 // new hint tells us that we don't know the owner, so drop any existing overrides
579 kwq
->kw_kflags
&= ~KSYN_KWF_QOS_APPLIED
;
580 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
582 if (wasboosted
&& (kwq
->kw_owner
!= 0)) {
583 // the hint did not match the previous owner, so drop overrides
584 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
585 pthread_kern
->proc_usynch_thread_qos_remove_override_for_resource(current_task(), NULL
, kwq
->kw_owner
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
591 static void ksyn_mtx_transfer_qos_override(ksyn_wait_queue_t kwq
, ksyn_waitq_element_t kwe
)
593 if (!(kwq
->kw_pflags
& KSYN_WQ_SHARED
)) {
594 boolean_t wasboosted
= (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
) ? TRUE
: FALSE
;
596 if (kwq
->kw_inqueue
> 1) {
597 boolean_t boostsucceeded
;
599 // More than one waiter, so resource will still be contended after handing off ownership
600 boostsucceeded
= pthread_kern
->proc_usynch_thread_qos_add_override_for_resource(current_task(), kwe
->kwe_uth
, 0, kwq
->kw_qos_override
, TRUE
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
602 if (boostsucceeded
) {
603 kwq
->kw_kflags
|= KSYN_KWF_QOS_APPLIED
;
606 // kw_inqueue == 1 to get to this point, which means there will be no contention after this point
607 kwq
->kw_kflags
&= ~KSYN_KWF_QOS_APPLIED
;
608 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
611 // Remove the override that was applied to kw_owner. There may have been a race,
612 // in which case it may not match the current thread
614 if (kwq
->kw_owner
== 0) {
615 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, 0, 0, 0, 0, 0);
616 } else if (thread_tid(current_thread()) != kwq
->kw_owner
) {
617 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
618 pthread_kern
->proc_usynch_thread_qos_remove_override_for_resource(current_task(), NULL
, kwq
->kw_owner
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
620 pthread_kern
->proc_usynch_thread_qos_remove_override_for_resource(current_task(), current_uthread(), 0, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
626 static void ksyn_mtx_drop_qos_override(ksyn_wait_queue_t kwq
)
628 if (!(kwq
->kw_pflags
& KSYN_WQ_SHARED
)) {
629 boolean_t wasboosted
= (kwq
->kw_kflags
& KSYN_KWF_QOS_APPLIED
) ? TRUE
: FALSE
;
631 // assume nobody else in queue if this routine was called
632 kwq
->kw_kflags
&= ~KSYN_KWF_QOS_APPLIED
;
633 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
635 // Remove the override that was applied to kw_owner. There may have been a race,
636 // in which case it may not match the current thread
638 if (kwq
->kw_owner
== 0) {
639 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, 0, 0, 0, 0, 0);
640 } else if (thread_tid(current_thread()) != kwq
->kw_owner
) {
641 PTHREAD_TRACE(TRACE_psynch_ksyn_incorrect_owner
, kwq
->kw_owner
, 0, 0, 0, 0);
642 pthread_kern
->proc_usynch_thread_qos_remove_override_for_resource(current_task(), NULL
, kwq
->kw_owner
, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
644 pthread_kern
->proc_usynch_thread_qos_remove_override_for_resource(current_task(), current_uthread(), 0, kwq
->kw_addr
, THREAD_QOS_OVERRIDE_TYPE_PTHREAD_MUTEX
);
651 * psynch_mutexwait: This system call is used for contended psynch mutexes to block.
655 _psynch_mutexwait(__unused proc_t p
,
663 ksyn_wait_queue_t kwq
;
667 int firstfit
= (flags
& PTHREAD_POLICY_FLAGS_MASK
) == _PTHREAD_MUTEX_POLICY_FIRSTFIT
;
668 uint32_t updatebits
= 0;
670 uint32_t lockseq
= (mgen
& PTHRW_COUNT_MASK
);
676 ins_flags
= FIRSTFIT
;
679 error
= ksyn_wqfind(mutex
, mgen
, ugen
, 0, flags
, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_MTX
), &kwq
);
686 // mutexwait passes in an owner hint at the time userspace contended for the mutex, however, the
687 // owner tid in the userspace data structure may be unset or SWITCHING (-1), or it may correspond
688 // to a stale snapshot after the lock has subsequently been unlocked by another thread.
690 // contender came in before owner could write TID
692 } else if (kwq
->kw_lastunlockseq
!= PTHRW_RWL_INIT
&& is_seqlower(ugen
, kwq
->kw_lastunlockseq
)) {
693 // owner is stale, someone has come in and unlocked since this contended read the TID, so
694 // assume what is known in the kernel is accurate
696 } else if (tid
== PTHREAD_MTX_TID_SWITCHING
) {
697 // userspace didn't know the owner because it was being unlocked, but that unlocker hasn't
698 // reached the kernel yet. So assume what is known in the kernel is accurate
701 // hint is being passed in for a specific thread, and we have no reason not to trust
702 // it (like the kernel unlock sequence being higher
706 if (_ksyn_handle_missed_wakeups(kwq
, PTH_RW_TYPE_WRITE
, lockseq
, retval
)) {
707 ksyn_mtx_update_owner_qos_override(kwq
, thread_tid(current_thread()), TRUE
);
708 kwq
->kw_owner
= thread_tid(current_thread());
714 if ((kwq
->kw_pre_rwwc
!= 0) && ((ins_flags
== FIRSTFIT
) || ((lockseq
& PTHRW_COUNT_MASK
) == (kwq
->kw_pre_lockseq
& PTHRW_COUNT_MASK
) ))) {
715 /* got preposted lock */
717 if (kwq
->kw_pre_rwwc
== 0) {
718 CLEAR_PREPOST_BITS(kwq
);
719 if (kwq
->kw_inqueue
== 0) {
720 updatebits
= lockseq
| (PTH_RWL_KBIT
| PTH_RWL_EBIT
);
722 updatebits
= (kwq
->kw_highseq
& PTHRW_COUNT_MASK
) | (PTH_RWL_KBIT
| PTH_RWL_EBIT
);
724 updatebits
&= ~PTH_RWL_MTX_WAIT
;
726 if (updatebits
== 0) {
727 __FAILEDUSERTEST__("psynch_mutexwait(prepost): returning 0 lseq in mutexwait with no EBIT \n");
730 ksyn_mtx_update_owner_qos_override(kwq
, thread_tid(current_thread()), TRUE
);
731 kwq
->kw_owner
= thread_tid(current_thread());
734 *retval
= updatebits
;
737 __FAILEDUSERTEST__("psynch_mutexwait: more than one prepost\n");
738 kwq
->kw_pre_lockseq
+= PTHRW_INC
; /* look for next one */
745 ksyn_mtx_update_owner_qos_override(kwq
, tid
, FALSE
);
748 error
= ksyn_wait(kwq
, KSYN_QUEUE_WRITER
, mgen
, ins_flags
, 0, psynch_mtxcontinue
);
749 // ksyn_wait drops wait queue lock
751 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_MTX
));
756 psynch_mtxcontinue(void *parameter
, wait_result_t result
)
758 uthread_t uth
= current_uthread();
759 ksyn_wait_queue_t kwq
= parameter
;
760 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
762 int error
= _wait_result_to_errno(result
);
765 if (kwe
->kwe_kwqqueue
) {
766 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
], kwe
);
770 uint32_t updatebits
= kwe
->kwe_psynchretval
& ~PTH_RWL_MTX_WAIT
;
771 pthread_kern
->uthread_set_returnval(uth
, updatebits
);
774 __FAILEDUSERTEST__("psynch_mutexwait: returning 0 lseq in mutexwait with no EBIT \n");
776 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_MTX
));
777 pthread_kern
->unix_syscall_return(error
);
781 * psynch_mutexdrop: This system call is used for unlock postings on contended psynch mutexes.
784 _psynch_mutexdrop(__unused proc_t p
,
788 uint64_t tid __unused
,
793 ksyn_wait_queue_t kwq
;
795 res
= ksyn_wqfind(mutex
, mgen
, ugen
, 0, flags
, KSYN_WQTYPE_MUTEXDROP
, &kwq
);
797 uint32_t updateval
= _psynch_mutexdrop_internal(kwq
, mgen
, ugen
, flags
);
798 /* drops the kwq reference */
808 ksyn_mtxsignal(ksyn_wait_queue_t kwq
, ksyn_waitq_element_t kwe
, uint32_t updateval
)
813 kwe
= TAILQ_FIRST(&kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_kwelist
);
815 panic("ksyn_mtxsignal: panic signaling empty queue");
819 ksyn_mtx_transfer_qos_override(kwq
, kwe
);
820 kwq
->kw_owner
= kwe
->kwe_tid
;
822 ret
= ksyn_signal(kwq
, KSYN_QUEUE_WRITER
, kwe
, updateval
);
824 // if waking the new owner failed, remove any overrides
825 if (ret
!= KERN_SUCCESS
) {
826 ksyn_mtx_drop_qos_override(kwq
);
835 ksyn_prepost(ksyn_wait_queue_t kwq
,
836 ksyn_waitq_element_t kwe
,
840 bzero(kwe
, sizeof(*kwe
));
841 kwe
->kwe_state
= state
;
842 kwe
->kwe_lockseq
= lockseq
;
845 (void)ksyn_queue_insert(kwq
, KSYN_QUEUE_WRITER
, kwe
, lockseq
, SEQFIT
);
850 ksyn_cvsignal(ksyn_wait_queue_t ckwq
,
854 uint32_t *updatebits
,
856 ksyn_waitq_element_t
*nkwep
)
858 ksyn_waitq_element_t kwe
= NULL
;
859 ksyn_waitq_element_t nkwe
= NULL
;
860 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
];
862 uptoseq
&= PTHRW_COUNT_MASK
;
864 // Find the specified thread to wake.
865 if (th
!= THREAD_NULL
) {
866 uthread_t uth
= pthread_kern
->get_bsdthread_info(th
);
867 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
868 if (kwe
->kwe_kwqqueue
!= ckwq
||
869 is_seqhigher(kwe
->kwe_lockseq
, uptoseq
)) {
870 // Unless it's no longer waiting on this CV...
872 // ...in which case we post a broadcast instead.
878 // If no thread was specified, find any thread to wake (with the right
880 while (th
== THREAD_NULL
) {
882 kwe
= ksyn_queue_find_signalseq(ckwq
, kq
, uptoseq
, signalseq
);
884 if (kwe
== NULL
&& nkwe
== NULL
) {
885 // No eligible entries; need to allocate a new
886 // entry to prepost. Loop to rescan after
887 // reacquiring the lock after allocation in
888 // case anything new shows up.
890 nkwe
= (ksyn_waitq_element_t
)pthread_kern
->zalloc(kwe_zone
);
898 // If we found a thread to wake...
899 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
900 if (is_seqlower(kwe
->kwe_lockseq
, signalseq
)) {
902 * A valid thread in our range, but lower than our signal.
903 * Matching it may leave our match with nobody to wake it if/when
904 * it arrives (the signal originally meant for this thread might
905 * not successfully wake it).
907 * Convert to broadcast - may cause some spurious wakeups
908 * (allowed by spec), but avoids starvation (better choice).
912 (void)ksyn_signal(ckwq
, KSYN_QUEUE_WRITER
, kwe
, PTH_RWL_MTX_WAIT
);
913 *updatebits
+= PTHRW_INC
;
915 } else if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
916 // Merge with existing prepost at same uptoseq.
918 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
919 // Existing broadcasts subsume this signal.
921 panic("unknown kwe state\n");
925 * If we allocated a new kwe above but then found a different kwe to
926 * use then we need to deallocate the spare one.
928 pthread_kern
->zfree(kwe_zone
, nkwe
);
931 } else if (nkwe
!= NULL
) {
932 // ... otherwise, insert the newly allocated prepost.
933 ksyn_prepost(ckwq
, nkwe
, KWE_THREAD_PREPOST
, uptoseq
);
936 panic("failed to allocate kwe\n");
943 __psynch_cvsignal(user_addr_t cv
,
949 mach_port_name_t threadport
,
953 thread_t th
= THREAD_NULL
;
954 ksyn_wait_queue_t kwq
;
956 uint32_t uptoseq
= cgen
& PTHRW_COUNT_MASK
;
957 uint32_t fromseq
= (cugen
& PTHRW_COUNT_MASK
) + PTHRW_INC
;
959 // validate sane L, U, and S values
960 if ((threadport
== 0 && is_seqhigher(fromseq
, uptoseq
)) || is_seqhigher(csgen
, uptoseq
)) {
961 __FAILEDUSERTEST__("cvbroad: invalid L, U and S values\n");
965 if (threadport
!= 0) {
966 th
= port_name_to_thread((mach_port_name_t
)threadport
);
967 if (th
== THREAD_NULL
) {
972 error
= ksyn_wqfind(cv
, cgen
, cugen
, csgen
, flags
, (KSYN_WQTYPE_CVAR
| KSYN_WQTYPE_INDROP
), &kwq
);
974 uint32_t updatebits
= 0;
975 ksyn_waitq_element_t nkwe
= NULL
;
979 // update L, U and S...
980 UPDATE_CVKWQ(kwq
, cgen
, cugen
, csgen
);
983 // No need to signal if the CV is already balanced.
984 if (diff_genseq(kwq
->kw_lword
, kwq
->kw_sword
)) {
985 ksyn_cvsignal(kwq
, th
, uptoseq
, fromseq
, &updatebits
, &broadcast
, &nkwe
);
990 ksyn_handle_cvbroad(kwq
, uptoseq
, &updatebits
);
993 kwq
->kw_sword
+= (updatebits
& PTHRW_COUNT_MASK
);
994 // set C or P bits and free if needed
995 ksyn_cvupdate_fixup(kwq
, &updatebits
);
996 *retval
= updatebits
;
1001 pthread_kern
->zfree(kwe_zone
, nkwe
);
1004 ksyn_wqrelease(kwq
, 1, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_CVAR
));
1008 thread_deallocate(th
);
1015 * psynch_cvbroad: This system call is used for broadcast posting on blocked waiters of psynch cvars.
1018 _psynch_cvbroad(__unused proc_t p
,
1023 __unused user_addr_t mutex
,
1024 __unused
uint64_t mugen
,
1025 __unused
uint64_t tid
,
1028 uint32_t diffgen
= cvudgen
& 0xffffffff;
1029 uint32_t count
= diffgen
>> PTHRW_COUNT_SHIFT
;
1030 if (count
> pthread_kern
->get_task_threadmax()) {
1031 __FAILEDUSERTEST__("cvbroad: difference greater than maximum possible thread count\n");
1035 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1036 uint32_t cgen
= cvlsgen
& 0xffffffff;
1037 uint32_t cugen
= (cvudgen
>> 32) & 0xffffffff;
1039 return __psynch_cvsignal(cv
, cgen
, cugen
, csgen
, flags
, 1, 0, retval
);
1043 * psynch_cvsignal: This system call is used for signalling the blocked waiters of psynch cvars.
1046 _psynch_cvsignal(__unused proc_t p
,
1051 __unused user_addr_t mutex
,
1052 __unused
uint64_t mugen
,
1053 __unused
uint64_t tid
,
1057 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1058 uint32_t cgen
= cvlsgen
& 0xffffffff;
1060 return __psynch_cvsignal(cv
, cgen
, cvugen
, csgen
, flags
, 0, threadport
, retval
);
1064 * psynch_cvwait: This system call is used for psynch cvar waiters to block in kernel.
1067 _psynch_cvwait(__unused proc_t p
,
1079 uint32_t updatebits
= 0;
1080 ksyn_wait_queue_t ckwq
= NULL
;
1081 ksyn_waitq_element_t kwe
, nkwe
= NULL
;
1083 /* for conformance reasons */
1084 pthread_kern
->__pthread_testcancel(0);
1086 uint32_t csgen
= (cvlsgen
>> 32) & 0xffffffff;
1087 uint32_t cgen
= cvlsgen
& 0xffffffff;
1088 uint32_t ugen
= (mugen
>> 32) & 0xffffffff;
1089 uint32_t mgen
= mugen
& 0xffffffff;
1091 uint32_t lockseq
= (cgen
& PTHRW_COUNT_MASK
);
1094 * In cvwait U word can be out of range as cv could be used only for
1095 * timeouts. However S word needs to be within bounds and validated at
1096 * user level as well.
1098 if (is_seqhigher_eq(csgen
, lockseq
) != 0) {
1099 __FAILEDUSERTEST__("psync_cvwait; invalid sequence numbers\n");
1103 error
= ksyn_wqfind(cv
, cgen
, cvugen
, csgen
, flags
, KSYN_WQTYPE_CVAR
| KSYN_WQTYPE_INWAIT
, &ckwq
);
1109 error
= _psynch_mutexdrop(NULL
, mutex
, mgen
, ugen
, 0, flags
, NULL
);
1117 // update L, U and S...
1118 UPDATE_CVKWQ(ckwq
, cgen
, cvugen
, csgen
);
1120 /* Look for the sequence for prepost (or conflicting thread */
1121 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
];
1122 kwe
= ksyn_queue_find_cvpreposeq(kq
, lockseq
);
1124 if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
1125 if ((kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) == lockseq
) {
1126 /* we can safely consume a reference, so do so */
1127 if (--kwe
->kwe_count
== 0) {
1128 ksyn_queue_remove_item(ckwq
, kq
, kwe
);
1129 ckwq
->kw_fakecount
--;
1134 * consuming a prepost higher than our lock sequence is valid, but
1135 * can leave the higher thread without a match. Convert the entry
1136 * to a broadcast to compensate for this.
1138 ksyn_handle_cvbroad(ckwq
, kwe
->kwe_lockseq
, &updatebits
);
1140 if (updatebits
!= 0)
1141 panic("psync_cvwait: convert pre-post to broadcast: woke up %d threads that shouldn't be there\n", updatebits
);
1142 #endif /* __TESTPANICS__ */
1144 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
1147 } else if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
1148 __FAILEDUSERTEST__("cvwait: thread entry with same sequence already present\n");
1151 panic("psync_cvwait: unexpected wait queue element type\n");
1155 updatebits
= PTHRW_INC
;
1156 ckwq
->kw_sword
+= PTHRW_INC
;
1158 /* set C or P bits and free if needed */
1159 ksyn_cvupdate_fixup(ckwq
, &updatebits
);
1160 *retval
= updatebits
;
1163 uint64_t abstime
= 0;
1165 if (sec
!= 0 || (nsec
& 0x3fffffff) != 0) {
1167 ts
.tv_sec
= (__darwin_time_t
)sec
;
1168 ts
.tv_nsec
= (nsec
& 0x3fffffff);
1169 nanoseconds_to_absolutetime((uint64_t)ts
.tv_sec
* NSEC_PER_SEC
+ ts
.tv_nsec
, &abstime
);
1170 clock_absolutetime_interval_to_deadline(abstime
, &abstime
);
1173 error
= ksyn_wait(ckwq
, KSYN_QUEUE_WRITER
, cgen
, SEQFIT
, abstime
, psynch_cvcontinue
);
1174 // ksyn_wait drops wait queue lock
1177 ksyn_wqunlock(ckwq
);
1180 pthread_kern
->zfree(kwe_zone
, nkwe
);
1183 ksyn_wqrelease(ckwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_CVAR
));
1189 psynch_cvcontinue(void *parameter
, wait_result_t result
)
1191 uthread_t uth
= current_uthread();
1192 ksyn_wait_queue_t ckwq
= parameter
;
1193 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1195 int error
= _wait_result_to_errno(result
);
1198 /* just in case it got woken up as we were granting */
1199 pthread_kern
->uthread_set_returnval(uth
, kwe
->kwe_psynchretval
);
1201 if (kwe
->kwe_kwqqueue
) {
1202 ksyn_queue_remove_item(ckwq
, &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
], kwe
);
1204 if ((kwe
->kwe_psynchretval
& PTH_RWL_MTX_WAIT
) != 0) {
1205 /* the condition var granted.
1206 * reset the error so that the thread returns back.
1209 /* no need to set any bits just return as cvsig/broad covers this */
1211 ckwq
->kw_sword
+= PTHRW_INC
;
1213 /* set C and P bits, in the local error */
1214 if ((ckwq
->kw_lword
& PTHRW_COUNT_MASK
) == (ckwq
->kw_sword
& PTHRW_COUNT_MASK
)) {
1216 if (ckwq
->kw_inqueue
!= 0) {
1217 ksyn_queue_free_items(ckwq
, KSYN_QUEUE_WRITER
, ckwq
->kw_lword
, 1);
1219 ckwq
->kw_lword
= ckwq
->kw_uword
= ckwq
->kw_sword
= 0;
1220 ckwq
->kw_kflags
|= KSYN_KWF_ZEROEDOUT
;
1222 /* everythig in the queue is a fake entry ? */
1223 if (ckwq
->kw_inqueue
!= 0 && ckwq
->kw_fakecount
== ckwq
->kw_inqueue
) {
1228 ksyn_wqunlock(ckwq
);
1231 // PTH_RWL_MTX_WAIT is removed
1232 if ((kwe
->kwe_psynchretval
& PTH_RWS_CV_MBIT
) != 0) {
1233 val
= PTHRW_INC
| PTH_RWS_CV_CBIT
;
1235 pthread_kern
->uthread_set_returnval(uth
, val
);
1238 ksyn_wqrelease(ckwq
, 1, (KSYN_WQTYPE_INWAIT
| KSYN_WQTYPE_CVAR
));
1239 pthread_kern
->unix_syscall_return(error
);
1243 * psynch_cvclrprepost: This system call clears pending prepost if present.
1246 _psynch_cvclrprepost(__unused proc_t p
,
1251 __unused
uint32_t prepocnt
,
1257 int mutex
= (flags
& _PTHREAD_MTX_OPT_MUTEX
);
1258 int wqtype
= (mutex
? KSYN_WQTYPE_MTX
: KSYN_WQTYPE_CVAR
) | KSYN_WQTYPE_INDROP
;
1259 ksyn_wait_queue_t kwq
= NULL
;
1263 error
= ksyn_wqfind(cv
, cvgen
, cvugen
, mutex
? 0 : cvsgen
, flags
, wqtype
, &kwq
);
1271 int firstfit
= (flags
& PTHREAD_POLICY_FLAGS_MASK
) == _PTHREAD_MUTEX_POLICY_FIRSTFIT
;
1272 if (firstfit
&& kwq
->kw_pre_rwwc
!= 0) {
1273 if (is_seqlower_eq(kwq
->kw_pre_lockseq
, cvgen
)) {
1275 kwq
->kw_pre_rwwc
= 0;
1276 kwq
->kw_pre_lockseq
= 0;
1280 ksyn_queue_free_items(kwq
, KSYN_QUEUE_WRITER
, preposeq
, 0);
1284 ksyn_wqrelease(kwq
, 1, wqtype
);
1288 /* ***************** pthread_rwlock ************************ */
1291 __psynch_rw_lock(int type
,
1299 int prepost_type
, kqi
;
1301 if (type
== PTH_RW_TYPE_READ
) {
1302 prepost_type
= KW_UNLOCK_PREPOST_READLOCK
;
1303 kqi
= KSYN_QUEUE_READ
;
1305 prepost_type
= KW_UNLOCK_PREPOST_WRLOCK
;
1306 kqi
= KSYN_QUEUE_WRITER
;
1309 uint32_t lockseq
= lgenval
& PTHRW_COUNT_MASK
;
1312 ksyn_wait_queue_t kwq
;
1313 error
= ksyn_wqfind(rwlock
, lgenval
, ugenval
, rw_wc
, flags
, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_RWLOCK
), &kwq
);
1316 _ksyn_check_init(kwq
, lgenval
);
1317 if (_ksyn_handle_missed_wakeups(kwq
, type
, lockseq
, retval
) ||
1318 // handle overlap first as they are not counted against pre_rwwc
1319 (type
== PTH_RW_TYPE_READ
&& _ksyn_handle_overlap(kwq
, lgenval
, rw_wc
, retval
)) ||
1320 _ksyn_handle_prepost(kwq
, prepost_type
, lockseq
, retval
)) {
1323 error
= ksyn_wait(kwq
, kqi
, lgenval
, SEQFIT
, 0, THREAD_CONTINUE_NULL
);
1324 // ksyn_wait drops wait queue lock
1326 uthread_t uth
= current_uthread();
1327 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1328 *retval
= kwe
->kwe_psynchretval
;
1331 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INWAIT
|KSYN_WQTYPE_RWLOCK
));
1337 * psynch_rw_rdlock: This system call is used for psync rwlock readers to block.
1340 _psynch_rw_rdlock(__unused proc_t p
,
1348 return __psynch_rw_lock(PTH_RW_TYPE_READ
, rwlock
, lgenval
, ugenval
, rw_wc
, flags
, retval
);
1352 * psynch_rw_longrdlock: This system call is used for psync rwlock long readers to block.
1355 _psynch_rw_longrdlock(__unused proc_t p
,
1356 __unused user_addr_t rwlock
,
1357 __unused
uint32_t lgenval
,
1358 __unused
uint32_t ugenval
,
1359 __unused
uint32_t rw_wc
,
1361 __unused
uint32_t *retval
)
1368 * psynch_rw_wrlock: This system call is used for psync rwlock writers to block.
1371 _psynch_rw_wrlock(__unused proc_t p
,
1379 return __psynch_rw_lock(PTH_RW_TYPE_WRITE
, rwlock
, lgenval
, ugenval
, rw_wc
, flags
, retval
);
1383 * psynch_rw_yieldwrlock: This system call is used for psync rwlock yielding writers to block.
1386 _psynch_rw_yieldwrlock(__unused proc_t p
,
1387 __unused user_addr_t rwlock
,
1388 __unused
uint32_t lgenval
,
1389 __unused
uint32_t ugenval
,
1390 __unused
uint32_t rw_wc
,
1392 __unused
uint32_t *retval
)
1398 * psynch_rw_unlock: This system call is used for unlock state postings. This will grant appropriate
1399 * reader/writer variety lock.
1402 _psynch_rw_unlock(__unused proc_t p
,
1411 ksyn_wait_queue_t kwq
;
1412 uint32_t updatebits
= 0;
1415 uint32_t curgen
= lgenval
& PTHRW_COUNT_MASK
;
1416 int clearedkflags
= 0;
1418 error
= ksyn_wqfind(rwlock
, lgenval
, ugenval
, rw_wc
, flags
, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_RWLOCK
), &kwq
);
1424 int isinit
= _ksyn_check_init(kwq
, lgenval
);
1426 /* if lastunlock seq is set, ensure the current one is not lower than that, as it would be spurious */
1427 if ((kwq
->kw_lastunlockseq
!= PTHRW_RWL_INIT
) && (is_seqlower(ugenval
, kwq
->kw_lastunlockseq
)!= 0)) {
1432 /* If L-U != num of waiters, then it needs to be preposted or spr */
1433 diff
= find_diff(lgenval
, ugenval
);
1435 if (find_seq_till(kwq
, curgen
, diff
, &count
) == 0) {
1436 if ((count
== 0) || (count
< (uint32_t)diff
))
1440 /* no prepost and all threads are in place, reset the bit */
1441 if ((isinit
!= 0) && ((kwq
->kw_kflags
& KSYN_KWF_INITCLEARED
) != 0)){
1442 kwq
->kw_kflags
&= ~KSYN_KWF_INITCLEARED
;
1446 /* can handle unlock now */
1448 CLEAR_PREPOST_BITS(kwq
);
1450 error
= kwq_handle_unlock(kwq
, lgenval
, rw_wc
, &updatebits
, 0, NULL
, 0);
1453 panic("psynch_rw_unlock: kwq_handle_unlock failed %d\n",error
);
1454 #endif /* __TESTPANICS__ */
1458 *retval
= updatebits
;
1461 // <rdar://problem/22244050> If any of the wakeups failed because they already
1462 // returned to userspace because of a signal then we need to ensure that the
1463 // reset state is not cleared when that thread returns. Otherwise,
1464 // _pthread_rwlock_lock will clear the interrupted state before it is read.
1465 if (clearedkflags
!= 0 && kwq
->kw_pre_intrcount
> 0) {
1466 kwq
->kw_kflags
|= KSYN_KWF_INITCLEARED
;
1470 ksyn_wqrelease(kwq
, 0, (KSYN_WQTYPE_INDROP
| KSYN_WQTYPE_RWLOCK
));
1475 /* update if the new seq is higher than prev prepost, or first set */
1476 if (is_rws_setseq(kwq
->kw_pre_sseq
) ||
1477 is_seqhigher_eq(rw_wc
, kwq
->kw_pre_sseq
)) {
1478 kwq
->kw_pre_rwwc
= (diff
- count
);
1479 kwq
->kw_pre_lockseq
= curgen
;
1480 kwq
->kw_pre_sseq
= rw_wc
;
1481 updatebits
= lgenval
; /* let this not do unlock handling */
1488 /* ************************************************************************** */
1490 pth_global_hashinit(void)
1492 pth_glob_hashtbl
= hashinit(PTH_HASHSIZE
* 4, M_PROC
, &pthhash
);
1496 _pth_proc_hashinit(proc_t p
)
1498 void *ptr
= hashinit(PTH_HASHSIZE
, M_PCB
, &pthhash
);
1500 panic("pth_proc_hashinit: hash init returned 0\n");
1503 pthread_kern
->proc_set_pthhash(p
, ptr
);
1508 ksyn_wq_hash_lookup(user_addr_t uaddr
,
1511 ksyn_wait_queue_t
*out_kwq
,
1512 struct pthhashhead
**out_hashptr
,
1513 uint64_t *out_object
,
1514 uint64_t *out_offset
)
1517 ksyn_wait_queue_t kwq
;
1518 uint64_t object
= 0, offset
= 0;
1519 struct pthhashhead
*hashptr
;
1520 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1521 hashptr
= pth_glob_hashtbl
;
1522 res
= ksyn_findobj(uaddr
, &object
, &offset
);
1524 LIST_FOREACH(kwq
, &hashptr
[object
& pthhash
], kw_hash
) {
1525 if (kwq
->kw_object
== object
&& kwq
->kw_offset
== offset
) {
1533 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1534 LIST_FOREACH(kwq
, &hashptr
[uaddr
& pthhash
], kw_hash
) {
1535 if (kwq
->kw_addr
== uaddr
) {
1541 *out_object
= object
;
1542 *out_offset
= offset
;
1543 *out_hashptr
= hashptr
;
1548 _pth_proc_hashdelete(proc_t p
)
1550 struct pthhashhead
* hashptr
;
1551 ksyn_wait_queue_t kwq
;
1552 unsigned long hashsize
= pthhash
+ 1;
1555 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1556 pthread_kern
->proc_set_pthhash(p
, NULL
);
1557 if (hashptr
== NULL
) {
1561 pthread_list_lock();
1562 for(i
= 0; i
< hashsize
; i
++) {
1563 while ((kwq
= LIST_FIRST(&hashptr
[i
])) != NULL
) {
1564 if ((kwq
->kw_pflags
& KSYN_WQ_INHASH
) != 0) {
1565 kwq
->kw_pflags
&= ~KSYN_WQ_INHASH
;
1566 LIST_REMOVE(kwq
, kw_hash
);
1568 if ((kwq
->kw_pflags
& KSYN_WQ_FLIST
) != 0) {
1569 kwq
->kw_pflags
&= ~KSYN_WQ_FLIST
;
1570 LIST_REMOVE(kwq
, kw_list
);
1572 pthread_list_unlock();
1573 /* release fake entries if present for cvars */
1574 if (((kwq
->kw_type
& KSYN_WQTYPE_MASK
) == KSYN_WQTYPE_CVAR
) && (kwq
->kw_inqueue
!= 0))
1575 ksyn_freeallkwe(&kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
]);
1576 lck_mtx_destroy(&kwq
->kw_lock
, pthread_lck_grp
);
1577 pthread_kern
->zfree(kwq_zone
, kwq
);
1578 pthread_list_lock();
1581 pthread_list_unlock();
1582 FREE(hashptr
, M_PROC
);
1585 /* no lock held for this as the waitqueue is getting freed */
1587 ksyn_freeallkwe(ksyn_queue_t kq
)
1589 ksyn_waitq_element_t kwe
;
1590 while ((kwe
= TAILQ_FIRST(&kq
->ksynq_kwelist
)) != NULL
) {
1591 TAILQ_REMOVE(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
1592 if (kwe
->kwe_state
!= KWE_THREAD_INWAIT
) {
1593 pthread_kern
->zfree(kwe_zone
, kwe
);
1598 /* find kernel waitqueue, if not present create one. Grants a reference */
1600 ksyn_wqfind(user_addr_t uaddr
, uint32_t mgen
, uint32_t ugen
, uint32_t sgen
, int flags
, int wqtype
, ksyn_wait_queue_t
*kwqp
)
1603 ksyn_wait_queue_t kwq
= NULL
;
1604 ksyn_wait_queue_t nkwq
= NULL
;
1605 struct pthhashhead
*hashptr
;
1606 proc_t p
= current_proc();
1608 uint64_t object
= 0, offset
= 0;
1609 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1610 res
= ksyn_findobj(uaddr
, &object
, &offset
);
1611 hashptr
= pth_glob_hashtbl
;
1613 hashptr
= pthread_kern
->proc_get_pthhash(p
);
1617 pthread_list_lock();
1618 res
= ksyn_wq_hash_lookup(uaddr
, current_proc(), flags
, &kwq
, &hashptr
, &object
, &offset
);
1620 pthread_list_unlock();
1623 if (kwq
== NULL
&& nkwq
== NULL
) {
1624 // Drop the lock to allocate a new kwq and retry.
1625 pthread_list_unlock();
1627 nkwq
= (ksyn_wait_queue_t
)pthread_kern
->zalloc(kwq_zone
);
1628 bzero(nkwq
, sizeof(struct ksyn_wait_queue
));
1630 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
1631 ksyn_queue_init(&nkwq
->kw_ksynqueues
[i
]);
1633 lck_mtx_init(&nkwq
->kw_lock
, pthread_lck_grp
, pthread_lck_attr
);
1635 } else if (kwq
== NULL
&& nkwq
!= NULL
) {
1636 // Still not found, add the new kwq to the hash.
1638 nkwq
= NULL
; // Don't free.
1639 if ((flags
& PTHREAD_PSHARED_FLAGS_MASK
) == PTHREAD_PROCESS_SHARED
) {
1640 kwq
->kw_pflags
|= KSYN_WQ_SHARED
;
1641 LIST_INSERT_HEAD(&hashptr
[object
& pthhash
], kwq
, kw_hash
);
1643 LIST_INSERT_HEAD(&hashptr
[uaddr
& pthhash
], kwq
, kw_hash
);
1645 kwq
->kw_pflags
|= KSYN_WQ_INHASH
;
1646 } else if (kwq
!= NULL
) {
1647 // Found an existing kwq, use it.
1648 if ((kwq
->kw_pflags
& KSYN_WQ_FLIST
) != 0) {
1649 LIST_REMOVE(kwq
, kw_list
);
1650 kwq
->kw_pflags
&= ~KSYN_WQ_FLIST
;
1652 if ((kwq
->kw_type
& KSYN_WQTYPE_MASK
) != (wqtype
& KSYN_WQTYPE_MASK
)) {
1653 if (kwq
->kw_inqueue
== 0 && kwq
->kw_pre_rwwc
== 0 && kwq
->kw_pre_intrcount
== 0) {
1654 if (kwq
->kw_iocount
== 0) {
1655 kwq
->kw_type
= 0; // mark for reinitialization
1656 } else if (kwq
->kw_iocount
== 1 && kwq
->kw_dropcount
== kwq
->kw_iocount
) {
1657 /* if all users are unlockers then wait for it to finish */
1658 kwq
->kw_pflags
|= KSYN_WQ_WAITING
;
1659 // Drop the lock and wait for the kwq to be free.
1660 (void)msleep(&kwq
->kw_pflags
, pthread_list_mlock
, PDROP
, "ksyn_wqfind", 0);
1663 __FAILEDUSERTEST__("address already known to kernel for another [busy] synchronizer type\n");
1667 __FAILEDUSERTEST__("address already known to kernel for another [busy] synchronizer type\n");
1673 if (kwq
->kw_type
== 0) {
1674 kwq
->kw_addr
= uaddr
;
1675 kwq
->kw_object
= object
;
1676 kwq
->kw_offset
= offset
;
1677 kwq
->kw_type
= (wqtype
& KSYN_WQTYPE_MASK
);
1678 CLEAR_REINIT_BITS(kwq
);
1679 kwq
->kw_lword
= mgen
;
1680 kwq
->kw_uword
= ugen
;
1681 kwq
->kw_sword
= sgen
;
1684 kwq
->kw_qos_override
= THREAD_QOS_UNSPECIFIED
;
1687 if (wqtype
== KSYN_WQTYPE_MUTEXDROP
) {
1688 kwq
->kw_dropcount
++;
1691 pthread_list_unlock();
1698 lck_mtx_destroy(&nkwq
->kw_lock
, pthread_lck_grp
);
1699 pthread_kern
->zfree(kwq_zone
, nkwq
);
1704 /* Reference from find is dropped here. Starts the free process if needed */
1706 ksyn_wqrelease(ksyn_wait_queue_t kwq
, int qfreenow
, int wqtype
)
1709 ksyn_wait_queue_t free_elem
= NULL
;
1711 pthread_list_lock();
1712 if (wqtype
== KSYN_WQTYPE_MUTEXDROP
) {
1713 kwq
->kw_dropcount
--;
1715 if (--kwq
->kw_iocount
== 0) {
1716 if ((kwq
->kw_pflags
& KSYN_WQ_WAITING
) != 0) {
1717 /* some one is waiting for the waitqueue, wake them up */
1718 kwq
->kw_pflags
&= ~KSYN_WQ_WAITING
;
1719 wakeup(&kwq
->kw_pflags
);
1722 if (kwq
->kw_pre_rwwc
== 0 && kwq
->kw_inqueue
== 0 && kwq
->kw_pre_intrcount
== 0) {
1723 if (qfreenow
== 0) {
1724 microuptime(&kwq
->kw_ts
);
1725 LIST_INSERT_HEAD(&pth_free_list
, kwq
, kw_list
);
1726 kwq
->kw_pflags
|= KSYN_WQ_FLIST
;
1727 if (psynch_cleanupset
== 0) {
1730 t
.tv_sec
+= KSYN_CLEANUP_DEADLINE
;
1731 deadline
= tvtoabstime(&t
);
1732 thread_call_enter_delayed(psynch_thcall
, deadline
);
1733 psynch_cleanupset
= 1;
1736 kwq
->kw_pflags
&= ~KSYN_WQ_INHASH
;
1737 LIST_REMOVE(kwq
, kw_hash
);
1742 pthread_list_unlock();
1743 if (free_elem
!= NULL
) {
1744 lck_mtx_destroy(&free_elem
->kw_lock
, pthread_lck_grp
);
1745 pthread_kern
->zfree(kwq_zone
, free_elem
);
1749 /* responsible to free the waitqueues */
1751 psynch_wq_cleanup(__unused
void *param
, __unused
void * param1
)
1753 ksyn_wait_queue_t kwq
;
1756 uint64_t deadline
= 0;
1757 LIST_HEAD(, ksyn_wait_queue
) freelist
;
1758 LIST_INIT(&freelist
);
1760 pthread_list_lock();
1764 LIST_FOREACH(kwq
, &pth_free_list
, kw_list
) {
1765 if (kwq
->kw_iocount
!= 0 || kwq
->kw_pre_rwwc
!= 0 || kwq
->kw_inqueue
!= 0 || kwq
->kw_pre_intrcount
!= 0) {
1769 __darwin_time_t diff
= t
.tv_sec
- kwq
->kw_ts
.tv_sec
;
1772 if (diff
>= KSYN_CLEANUP_DEADLINE
) {
1773 kwq
->kw_pflags
&= ~(KSYN_WQ_FLIST
| KSYN_WQ_INHASH
);
1774 LIST_REMOVE(kwq
, kw_hash
);
1775 LIST_REMOVE(kwq
, kw_list
);
1776 LIST_INSERT_HEAD(&freelist
, kwq
, kw_list
);
1782 if (reschedule
!= 0) {
1783 t
.tv_sec
+= KSYN_CLEANUP_DEADLINE
;
1784 deadline
= tvtoabstime(&t
);
1785 thread_call_enter_delayed(psynch_thcall
, deadline
);
1786 psynch_cleanupset
= 1;
1788 psynch_cleanupset
= 0;
1790 pthread_list_unlock();
1792 while ((kwq
= LIST_FIRST(&freelist
)) != NULL
) {
1793 LIST_REMOVE(kwq
, kw_list
);
1794 lck_mtx_destroy(&kwq
->kw_lock
, pthread_lck_grp
);
1795 pthread_kern
->zfree(kwq_zone
, kwq
);
1800 _wait_result_to_errno(wait_result_t result
)
1804 case THREAD_TIMED_OUT
:
1807 case THREAD_INTERRUPTED
:
1815 ksyn_wait(ksyn_wait_queue_t kwq
,
1820 thread_continue_t continuation
)
1824 thread_t th
= current_thread();
1825 uthread_t uth
= pthread_kern
->get_bsdthread_info(th
);
1826 ksyn_waitq_element_t kwe
= pthread_kern
->uthread_get_uukwe(uth
);
1827 bzero(kwe
, sizeof(*kwe
));
1829 kwe
->kwe_lockseq
= lockseq
& PTHRW_COUNT_MASK
;
1830 kwe
->kwe_state
= KWE_THREAD_INWAIT
;
1832 kwe
->kwe_tid
= thread_tid(th
);
1834 res
= ksyn_queue_insert(kwq
, kqi
, kwe
, lockseq
, fit
);
1836 //panic("psynch_rw_wrlock: failed to enqueue\n"); // XXX
1841 assert_wait_deadline_with_leeway(&kwe
->kwe_psynchretval
, THREAD_ABORTSAFE
, TIMEOUT_URGENCY_USER_NORMAL
, abstime
, 0);
1845 if (continuation
== THREAD_CONTINUE_NULL
) {
1846 ret
= thread_block(NULL
);
1848 ret
= thread_block_parameter(continuation
, kwq
);
1850 // If thread_block_parameter returns (interrupted) call the
1851 // continuation manually to clean up.
1852 continuation(kwq
, ret
);
1855 panic("ksyn_wait continuation returned");
1858 res
= _wait_result_to_errno(ret
);
1861 if (kwe
->kwe_kwqqueue
) {
1862 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[kqi
], kwe
);
1870 ksyn_signal(ksyn_wait_queue_t kwq
,
1872 ksyn_waitq_element_t kwe
,
1877 // If no wait element was specified, wake the first.
1879 kwe
= TAILQ_FIRST(&kwq
->kw_ksynqueues
[kqi
].ksynq_kwelist
);
1881 panic("ksyn_signal: panic signaling empty queue");
1885 if (kwe
->kwe_state
!= KWE_THREAD_INWAIT
) {
1886 panic("ksyn_signal: panic signaling non-waiting element");
1889 ksyn_queue_remove_item(kwq
, &kwq
->kw_ksynqueues
[kqi
], kwe
);
1890 kwe
->kwe_psynchretval
= updateval
;
1892 ret
= thread_wakeup_one((caddr_t
)&kwe
->kwe_psynchretval
);
1893 if (ret
!= KERN_SUCCESS
&& ret
!= KERN_NOT_WAITING
) {
1894 panic("ksyn_signal: panic waking up thread %x\n", ret
);
1900 ksyn_findobj(user_addr_t uaddr
, uint64_t *objectp
, uint64_t *offsetp
)
1903 vm_page_info_basic_data_t info
;
1904 mach_msg_type_number_t count
= VM_PAGE_INFO_BASIC_COUNT
;
1905 ret
= pthread_kern
->vm_map_page_info(pthread_kern
->current_map(), uaddr
, VM_PAGE_INFO_BASIC
, (vm_page_info_t
)&info
, &count
);
1906 if (ret
!= KERN_SUCCESS
) {
1910 if (objectp
!= NULL
) {
1911 *objectp
= (uint64_t)info
.object_id
;
1913 if (offsetp
!= NULL
) {
1914 *offsetp
= (uint64_t)info
.offset
;
1921 /* lowest of kw_fr, kw_flr, kw_fwr, kw_fywr */
1923 kwq_find_rw_lowest(ksyn_wait_queue_t kwq
, int flags
, uint32_t premgen
, int *typep
, uint32_t lowest
[])
1925 uint32_t kw_fr
, kw_fwr
, low
;
1926 int type
= 0, lowtype
, typenum
[2] = { 0 };
1927 uint32_t numbers
[2] = { 0 };
1931 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
!= 0) || ((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0)) {
1932 type
|= PTH_RWSHFT_TYPE_READ
;
1933 /* read entries are present */
1934 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
!= 0) {
1935 kw_fr
= kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_firstnum
;
1936 if (((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) && (is_seqlower(premgen
, kw_fr
) != 0))
1941 lowest
[KSYN_QUEUE_READ
] = kw_fr
;
1942 numbers
[count
]= kw_fr
;
1943 typenum
[count
] = PTH_RW_TYPE_READ
;
1946 lowest
[KSYN_QUEUE_READ
] = 0;
1948 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) || ((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0)) {
1949 type
|= PTH_RWSHFT_TYPE_WRITE
;
1950 /* read entries are present */
1951 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) {
1952 kw_fwr
= kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_firstnum
;
1953 if (((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) && (is_seqlower(premgen
, kw_fwr
) != 0))
1958 lowest
[KSYN_QUEUE_WRITER
] = kw_fwr
;
1959 numbers
[count
]= kw_fwr
;
1960 typenum
[count
] = PTH_RW_TYPE_WRITE
;
1963 lowest
[KSYN_QUEUE_WRITER
] = 0;
1967 panic("nothing in the queue???\n");
1968 #endif /* __TESTPANICS__ */
1971 lowtype
= typenum
[0];
1973 for (i
= 1; i
< count
; i
++) {
1974 if (is_seqlower(numbers
[i
] , low
) != 0) {
1976 lowtype
= typenum
[i
];
1987 /* wakeup readers to upto the writer limits */
1989 ksyn_wakeupreaders(ksyn_wait_queue_t kwq
, uint32_t limitread
, int allreaders
, uint32_t updatebits
, int *wokenp
)
1992 int failedwakeup
= 0;
1994 kern_return_t kret
= KERN_SUCCESS
;
1999 kq
= &kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
];
2000 while ((kq
->ksynq_count
!= 0) && (allreaders
|| (is_seqlower(kq
->ksynq_firstnum
, limitread
) != 0))) {
2001 kret
= ksyn_signal(kwq
, KSYN_QUEUE_READ
, NULL
, lbits
);
2002 if (kret
== KERN_NOT_WAITING
) {
2010 return(failedwakeup
);
2014 /* This handles the unlock grants for next set on rw_unlock() or on arrival of all preposted waiters */
2016 kwq_handle_unlock(ksyn_wait_queue_t kwq
,
2017 __unused
uint32_t mgen
,
2024 uint32_t low_writer
, limitrdnum
;
2025 int rwtype
, error
=0;
2026 int allreaders
, failed
;
2027 uint32_t updatebits
=0, numneeded
= 0;;
2028 int prepost
= flags
& KW_UNLOCK_PREPOST
;
2029 thread_t preth
= THREAD_NULL
;
2030 ksyn_waitq_element_t kwe
;
2035 uint32_t lowest
[KSYN_QUEUE_MAX
]; /* np need for upgrade as it is handled separately */
2036 kern_return_t kret
= KERN_SUCCESS
;
2038 int curthreturns
= 0;
2041 preth
= current_thread();
2044 kq
= &kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
];
2045 kwq
->kw_lastseqword
= rw_wc
;
2046 kwq
->kw_lastunlockseq
= (rw_wc
& PTHRW_COUNT_MASK
);
2047 kwq
->kw_overlapwatch
= 0;
2049 error
= kwq_find_rw_lowest(kwq
, flags
, premgen
, &rwtype
, lowest
);
2052 panic("rwunlock: cannot fails to slot next round of threads");
2053 #endif /* __TESTPANICS__ */
2055 low_writer
= lowest
[KSYN_QUEUE_WRITER
];
2060 switch (rwtype
& PTH_RW_TYPE_MASK
) {
2061 case PTH_RW_TYPE_READ
: {
2063 /* what about the preflight which is LREAD or READ ?? */
2064 if ((rwtype
& PTH_RWSHFT_TYPE_MASK
) != 0) {
2065 if (rwtype
& PTH_RWSHFT_TYPE_WRITE
) {
2066 updatebits
|= (PTH_RWL_WBIT
| PTH_RWL_KBIT
);
2070 if ((rwtype
& PTH_RWSHFT_TYPE_WRITE
) != 0) {
2071 limitrdnum
= low_writer
;
2078 if ((rwtype
& PTH_RWSHFT_TYPE_WRITE
) != 0) {
2079 limitrdnum
= low_writer
;
2080 numneeded
= ksyn_queue_count_tolowest(kq
, limitrdnum
);
2081 if (((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) && (is_seqlower(premgen
, limitrdnum
) != 0)) {
2086 // no writers at all
2087 // no other waiters only readers
2088 kwq
->kw_overlapwatch
= 1;
2089 numneeded
+= kwq
->kw_ksynqueues
[KSYN_QUEUE_READ
].ksynq_count
;
2090 if ((flags
& KW_UNLOCK_PREPOST_READLOCK
) != 0) {
2096 updatebits
+= (numneeded
<< PTHRW_COUNT_SHIFT
);
2098 kwq
->kw_nextseqword
= (rw_wc
& PTHRW_COUNT_MASK
) + updatebits
;
2100 if (curthreturns
!= 0) {
2102 uth
= current_uthread();
2103 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
2104 kwe
->kwe_psynchretval
= updatebits
;
2108 failed
= ksyn_wakeupreaders(kwq
, limitrdnum
, allreaders
, updatebits
, &woken
);
2110 kwq
->kw_pre_intrcount
= failed
; /* actually a count */
2111 kwq
->kw_pre_intrseq
= limitrdnum
;
2112 kwq
->kw_pre_intrretbits
= updatebits
;
2113 kwq
->kw_pre_intrtype
= PTH_RW_TYPE_READ
;
2118 if ((kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) && ((updatebits
& PTH_RWL_WBIT
) == 0))
2119 panic("kwq_handle_unlock: writer pending but no writebit set %x\n", updatebits
);
2123 case PTH_RW_TYPE_WRITE
: {
2125 /* only one thread is goin to be granted */
2126 updatebits
|= (PTHRW_INC
);
2127 updatebits
|= PTH_RWL_KBIT
| PTH_RWL_EBIT
;
2129 if (((flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) && (low_writer
== premgen
)) {
2131 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
!= 0) {
2132 updatebits
|= PTH_RWL_WBIT
;
2135 uth
= pthread_kern
->get_bsdthread_info(th
);
2136 kwe
= pthread_kern
->uthread_get_uukwe(uth
);
2137 kwe
->kwe_psynchretval
= updatebits
;
2139 /* we are not granting writelock to the preposting thread */
2140 /* if there are writers present or the preposting write thread then W bit is to be set */
2141 if (kwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
].ksynq_count
> 1 ||
2142 (flags
& KW_UNLOCK_PREPOST_WRLOCK
) != 0) {
2143 updatebits
|= PTH_RWL_WBIT
;
2145 /* setup next in the queue */
2146 kret
= ksyn_signal(kwq
, KSYN_QUEUE_WRITER
, NULL
, updatebits
);
2147 if (kret
== KERN_NOT_WAITING
) {
2148 kwq
->kw_pre_intrcount
= 1; /* actually a count */
2149 kwq
->kw_pre_intrseq
= low_writer
;
2150 kwq
->kw_pre_intrretbits
= updatebits
;
2151 kwq
->kw_pre_intrtype
= PTH_RW_TYPE_WRITE
;
2155 kwq
->kw_nextseqword
= (rw_wc
& PTHRW_COUNT_MASK
) + updatebits
;
2156 if ((updatebits
& (PTH_RWL_KBIT
| PTH_RWL_EBIT
)) != (PTH_RWL_KBIT
| PTH_RWL_EBIT
))
2157 panic("kwq_handle_unlock: writer lock granted but no ke set %x\n", updatebits
);
2162 panic("rwunlock: invalid type for lock grants");
2166 if (updatep
!= NULL
)
2167 *updatep
= updatebits
;
2173 /************* Indiv queue support routines ************************/
2175 ksyn_queue_init(ksyn_queue_t kq
)
2177 TAILQ_INIT(&kq
->ksynq_kwelist
);
2178 kq
->ksynq_count
= 0;
2179 kq
->ksynq_firstnum
= 0;
2180 kq
->ksynq_lastnum
= 0;
2184 ksyn_queue_insert(ksyn_wait_queue_t kwq
, int kqi
, ksyn_waitq_element_t kwe
, uint32_t mgen
, int fit
)
2186 ksyn_queue_t kq
= &kwq
->kw_ksynqueues
[kqi
];
2187 uint32_t lockseq
= mgen
& PTHRW_COUNT_MASK
;
2190 if (kwe
->kwe_kwqqueue
!= NULL
) {
2191 panic("adding enqueued item to another queue");
2194 if (kq
->ksynq_count
== 0) {
2195 TAILQ_INSERT_HEAD(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2196 kq
->ksynq_firstnum
= lockseq
;
2197 kq
->ksynq_lastnum
= lockseq
;
2198 } else if (fit
== FIRSTFIT
) {
2199 /* TBD: if retry bit is set for mutex, add it to the head */
2200 /* firstfit, arriving order */
2201 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2202 if (is_seqlower(lockseq
, kq
->ksynq_firstnum
)) {
2203 kq
->ksynq_firstnum
= lockseq
;
2205 if (is_seqhigher(lockseq
, kq
->ksynq_lastnum
)) {
2206 kq
->ksynq_lastnum
= lockseq
;
2208 } else if (lockseq
== kq
->ksynq_firstnum
|| lockseq
== kq
->ksynq_lastnum
) {
2209 /* During prepost when a thread is getting cancelled, we could have two with same seq */
2211 if (kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2212 ksyn_waitq_element_t tmp
= ksyn_queue_find_seq(kwq
, kq
, lockseq
);
2213 if (tmp
!= NULL
&& tmp
->kwe_uth
!= NULL
&& pthread_kern
->uthread_is_cancelled(tmp
->kwe_uth
)) {
2214 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2218 } else if (is_seqlower(kq
->ksynq_lastnum
, lockseq
)) { // XXX is_seqhigher
2219 TAILQ_INSERT_TAIL(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2220 kq
->ksynq_lastnum
= lockseq
;
2221 } else if (is_seqlower(lockseq
, kq
->ksynq_firstnum
)) {
2222 TAILQ_INSERT_HEAD(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2223 kq
->ksynq_firstnum
= lockseq
;
2225 ksyn_waitq_element_t q_kwe
, r_kwe
;
2228 TAILQ_FOREACH_SAFE(q_kwe
, &kq
->ksynq_kwelist
, kwe_list
, r_kwe
) {
2229 if (is_seqhigher(q_kwe
->kwe_lockseq
, lockseq
)) {
2230 TAILQ_INSERT_BEFORE(q_kwe
, kwe
, kwe_list
);
2238 kwe
->kwe_kwqqueue
= kwq
;
2241 update_low_high(kwq
, lockseq
);
2247 ksyn_queue_remove_item(ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, ksyn_waitq_element_t kwe
)
2249 if (kq
->ksynq_count
== 0) {
2250 panic("removing item from empty queue");
2253 if (kwe
->kwe_kwqqueue
!= kwq
) {
2254 panic("removing item from wrong queue");
2257 TAILQ_REMOVE(&kq
->ksynq_kwelist
, kwe
, kwe_list
);
2258 kwe
->kwe_list
.tqe_next
= NULL
;
2259 kwe
->kwe_list
.tqe_prev
= NULL
;
2260 kwe
->kwe_kwqqueue
= NULL
;
2262 if (--kq
->ksynq_count
> 0) {
2263 ksyn_waitq_element_t tmp
;
2264 tmp
= TAILQ_FIRST(&kq
->ksynq_kwelist
);
2265 kq
->ksynq_firstnum
= tmp
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2266 tmp
= TAILQ_LAST(&kq
->ksynq_kwelist
, ksynq_kwelist_head
);
2267 kq
->ksynq_lastnum
= tmp
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2269 kq
->ksynq_firstnum
= 0;
2270 kq
->ksynq_lastnum
= 0;
2273 if (--kwq
->kw_inqueue
> 0) {
2274 uint32_t curseq
= kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
;
2275 if (kwq
->kw_lowseq
== curseq
) {
2276 kwq
->kw_lowseq
= find_nextlowseq(kwq
);
2278 if (kwq
->kw_highseq
== curseq
) {
2279 kwq
->kw_highseq
= find_nexthighseq(kwq
);
2283 kwq
->kw_highseq
= 0;
2287 ksyn_waitq_element_t
2288 ksyn_queue_find_seq(__unused ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t seq
)
2290 ksyn_waitq_element_t kwe
;
2292 // XXX: should stop searching when higher sequence number is seen
2293 TAILQ_FOREACH(kwe
, &kq
->ksynq_kwelist
, kwe_list
) {
2294 if ((kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) == seq
) {
2301 /* find the thread at the target sequence (or a broadcast/prepost at or above) */
2302 ksyn_waitq_element_t
2303 ksyn_queue_find_cvpreposeq(ksyn_queue_t kq
, uint32_t cgen
)
2305 ksyn_waitq_element_t result
= NULL
;
2306 ksyn_waitq_element_t kwe
;
2307 uint32_t lgen
= (cgen
& PTHRW_COUNT_MASK
);
2309 TAILQ_FOREACH(kwe
, &kq
->ksynq_kwelist
, kwe_list
) {
2310 if (is_seqhigher_eq(kwe
->kwe_lockseq
, cgen
)) {
2313 // KWE_THREAD_INWAIT must be strictly equal
2314 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
&& (kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
) != lgen
) {
2323 /* look for a thread at lockseq, a */
2324 ksyn_waitq_element_t
2325 ksyn_queue_find_signalseq(__unused ksyn_wait_queue_t kwq
, ksyn_queue_t kq
, uint32_t uptoseq
, uint32_t signalseq
)
2327 ksyn_waitq_element_t result
= NULL
;
2328 ksyn_waitq_element_t q_kwe
, r_kwe
;
2331 /* case where wrap in the tail of the queue exists */
2332 TAILQ_FOREACH_SAFE(q_kwe
, &kq
->ksynq_kwelist
, kwe_list
, r_kwe
) {
2333 if (q_kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2334 if (is_seqhigher(q_kwe
->kwe_lockseq
, uptoseq
)) {
2338 if (q_kwe
->kwe_state
== KWE_THREAD_PREPOST
|| q_kwe
->kwe_state
== KWE_THREAD_BROADCAST
) {
2339 /* match any prepost at our same uptoseq or any broadcast above */
2340 if (is_seqlower(q_kwe
->kwe_lockseq
, uptoseq
)) {
2344 } else if (q_kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2346 * Match any (non-cancelled) thread at or below our upto sequence -
2347 * but prefer an exact match to our signal sequence (if present) to
2348 * keep exact matches happening.
2350 if (is_seqhigher(q_kwe
->kwe_lockseq
, uptoseq
)) {
2353 if (q_kwe
->kwe_kwqqueue
== kwq
) {
2354 if (!pthread_kern
->uthread_is_cancelled(q_kwe
->kwe_uth
)) {
2355 /* if equal or higher than our signal sequence, return this one */
2356 if (is_seqhigher_eq(q_kwe
->kwe_lockseq
, signalseq
)) {
2360 /* otherwise, just remember this eligible thread and move on */
2361 if (result
== NULL
) {
2367 panic("ksyn_queue_find_signalseq(): unknown wait queue element type (%d)\n", q_kwe
->kwe_state
);
2374 ksyn_queue_free_items(ksyn_wait_queue_t kwq
, int kqi
, uint32_t upto
, int all
)
2376 ksyn_waitq_element_t kwe
;
2377 uint32_t tseq
= upto
& PTHRW_COUNT_MASK
;
2378 ksyn_queue_t kq
= &kwq
->kw_ksynqueues
[kqi
];
2380 while ((kwe
= TAILQ_FIRST(&kq
->ksynq_kwelist
)) != NULL
) {
2381 if (all
== 0 && is_seqhigher(kwe
->kwe_lockseq
, tseq
)) {
2384 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2386 * This scenario is typically noticed when the cvar is
2387 * reinited and the new waiters are waiting. We can
2388 * return them as spurious wait so the cvar state gets
2392 /* skip canceled ones */
2394 /* set M bit to indicate to waking CV to retun Inc val */
2395 (void)ksyn_signal(kwq
, kqi
, kwe
, PTHRW_INC
| PTH_RWS_CV_MBIT
| PTH_RWL_MTX_WAIT
);
2397 ksyn_queue_remove_item(kwq
, kq
, kwe
);
2398 pthread_kern
->zfree(kwe_zone
, kwe
);
2399 kwq
->kw_fakecount
--;
2404 /*************************************************************************/
2407 update_low_high(ksyn_wait_queue_t kwq
, uint32_t lockseq
)
2409 if (kwq
->kw_inqueue
== 1) {
2410 kwq
->kw_lowseq
= lockseq
;
2411 kwq
->kw_highseq
= lockseq
;
2413 if (is_seqlower(lockseq
, kwq
->kw_lowseq
)) {
2414 kwq
->kw_lowseq
= lockseq
;
2416 if (is_seqhigher(lockseq
, kwq
->kw_highseq
)) {
2417 kwq
->kw_highseq
= lockseq
;
2423 find_nextlowseq(ksyn_wait_queue_t kwq
)
2425 uint32_t lowest
= 0;
2429 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2430 if (kwq
->kw_ksynqueues
[i
].ksynq_count
> 0) {
2431 uint32_t current
= kwq
->kw_ksynqueues
[i
].ksynq_firstnum
;
2432 if (first
|| is_seqlower(current
, lowest
)) {
2443 find_nexthighseq(ksyn_wait_queue_t kwq
)
2445 uint32_t highest
= 0;
2449 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2450 if (kwq
->kw_ksynqueues
[i
].ksynq_count
> 0) {
2451 uint32_t current
= kwq
->kw_ksynqueues
[i
].ksynq_lastnum
;
2452 if (first
|| is_seqhigher(current
, highest
)) {
2463 find_seq_till(ksyn_wait_queue_t kwq
, uint32_t upto
, uint32_t nwaiters
, uint32_t *countp
)
2468 for (i
= 0; i
< KSYN_QUEUE_MAX
; i
++) {
2469 count
+= ksyn_queue_count_tolowest(&kwq
->kw_ksynqueues
[i
], upto
);
2470 if (count
>= nwaiters
) {
2475 if (countp
!= NULL
) {
2481 } else if (count
>= nwaiters
) {
2490 ksyn_queue_count_tolowest(ksyn_queue_t kq
, uint32_t upto
)
2493 ksyn_waitq_element_t kwe
, newkwe
;
2495 if (kq
->ksynq_count
== 0 || is_seqhigher(kq
->ksynq_firstnum
, upto
)) {
2498 if (upto
== kq
->ksynq_firstnum
) {
2501 TAILQ_FOREACH_SAFE(kwe
, &kq
->ksynq_kwelist
, kwe_list
, newkwe
) {
2502 uint32_t curval
= (kwe
->kwe_lockseq
& PTHRW_COUNT_MASK
);
2503 if (is_seqhigher(curval
, upto
)) {
2507 if (upto
== curval
) {
2514 /* handles the cond broadcast of cvar and returns number of woken threads and bits for syscall return */
2516 ksyn_handle_cvbroad(ksyn_wait_queue_t ckwq
, uint32_t upto
, uint32_t *updatep
)
2518 ksyn_waitq_element_t kwe
, newkwe
;
2519 uint32_t updatebits
= 0;
2520 ksyn_queue_t kq
= &ckwq
->kw_ksynqueues
[KSYN_QUEUE_WRITER
];
2522 struct ksyn_queue kfreeq
;
2523 ksyn_queue_init(&kfreeq
);
2526 TAILQ_FOREACH_SAFE(kwe
, &kq
->ksynq_kwelist
, kwe_list
, newkwe
) {
2527 if (is_seqhigher(kwe
->kwe_lockseq
, upto
)) {
2528 // outside our range
2532 if (kwe
->kwe_state
== KWE_THREAD_INWAIT
) {
2533 // Wake only non-canceled threads waiting on this CV.
2534 if (!pthread_kern
->uthread_is_cancelled(kwe
->kwe_uth
)) {
2535 (void)ksyn_signal(ckwq
, KSYN_QUEUE_WRITER
, kwe
, PTH_RWL_MTX_WAIT
);
2536 updatebits
+= PTHRW_INC
;
2538 } else if (kwe
->kwe_state
== KWE_THREAD_BROADCAST
||
2539 kwe
->kwe_state
== KWE_THREAD_PREPOST
) {
2540 ksyn_queue_remove_item(ckwq
, kq
, kwe
);
2541 TAILQ_INSERT_TAIL(&kfreeq
.ksynq_kwelist
, kwe
, kwe_list
);
2542 ckwq
->kw_fakecount
--;
2544 panic("unknown kwe state\n");
2548 /* Need to enter a broadcast in the queue (if not already at L == S) */
2550 if (diff_genseq(ckwq
->kw_lword
, ckwq
->kw_sword
)) {
2551 newkwe
= TAILQ_FIRST(&kfreeq
.ksynq_kwelist
);
2552 if (newkwe
== NULL
) {
2553 ksyn_wqunlock(ckwq
);
2554 newkwe
= (ksyn_waitq_element_t
)pthread_kern
->zalloc(kwe_zone
);
2555 TAILQ_INSERT_TAIL(&kfreeq
.ksynq_kwelist
, newkwe
, kwe_list
);
2559 TAILQ_REMOVE(&kfreeq
.ksynq_kwelist
, newkwe
, kwe_list
);
2560 ksyn_prepost(ckwq
, newkwe
, KWE_THREAD_BROADCAST
, upto
);
2564 // free up any remaining things stumbled across above
2565 while ((kwe
= TAILQ_FIRST(&kfreeq
.ksynq_kwelist
)) != NULL
) {
2566 TAILQ_REMOVE(&kfreeq
.ksynq_kwelist
, kwe
, kwe_list
);
2567 pthread_kern
->zfree(kwe_zone
, kwe
);
2570 if (updatep
!= NULL
) {
2571 *updatep
= updatebits
;
2576 ksyn_cvupdate_fixup(ksyn_wait_queue_t ckwq
, uint32_t *updatebits
)
2578 if ((ckwq
->kw_lword
& PTHRW_COUNT_MASK
) == (ckwq
->kw_sword
& PTHRW_COUNT_MASK
)) {
2579 if (ckwq
->kw_inqueue
!= 0) {
2580 /* FREE THE QUEUE */
2581 ksyn_queue_free_items(ckwq
, KSYN_QUEUE_WRITER
, ckwq
->kw_lword
, 0);
2583 if (ckwq
->kw_inqueue
!= 0)
2584 panic("ksyn_cvupdate_fixup: L == S, but entries in queue beyond S");
2585 #endif /* __TESTPANICS__ */
2587 ckwq
->kw_lword
= ckwq
->kw_uword
= ckwq
->kw_sword
= 0;
2588 ckwq
->kw_kflags
|= KSYN_KWF_ZEROEDOUT
;
2589 *updatebits
|= PTH_RWS_CV_CBIT
;
2590 } else if (ckwq
->kw_inqueue
!= 0 && ckwq
->kw_fakecount
== ckwq
->kw_inqueue
) {
2591 // only fake entries are present in the queue
2592 *updatebits
|= PTH_RWS_CV_PBIT
;
2597 psynch_zoneinit(void)
2599 kwq_zone
= (zone_t
)pthread_kern
->zinit(sizeof(struct ksyn_wait_queue
), 8192 * sizeof(struct ksyn_wait_queue
), 4096, "ksyn_wait_queue");
2600 kwe_zone
= (zone_t
)pthread_kern
->zinit(sizeof(struct ksyn_waitq_element
), 8192 * sizeof(struct ksyn_waitq_element
), 4096, "ksyn_waitq_element");