]> git.saurik.com Git - apple/libc.git/blob - db/hash/FreeBSD/hash_bigkey.c
Libc-391.4.1.tar.gz
[apple/libc.git] / db / hash / FreeBSD / hash_bigkey.c
1 /*-
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_bigkey.c 8.3 (Berkeley) 5/31/94";
39 #endif /* LIBC_SCCS and not lint */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD: src/lib/libc/db/hash/hash_bigkey.c,v 1.5 2003/02/16 17:29:09 nectar Exp $");
42
43 /*
44 * PACKAGE: hash
45 * DESCRIPTION:
46 * Big key/data handling for the hashing package.
47 *
48 * ROUTINES:
49 * External
50 * __big_keydata
51 * __big_split
52 * __big_insert
53 * __big_return
54 * __big_delete
55 * __find_last_page
56 * Internal
57 * collect_key
58 * collect_data
59 */
60
61 #include <sys/param.h>
62
63 #include <errno.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <string.h>
67
68 #ifdef DEBUG
69 #include <assert.h>
70 #endif
71
72 #include <db.h>
73 #include "hash.h"
74 #include "page.h"
75 #include "extern.h"
76
77 static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int);
78 static int collect_data(HTAB *, BUFHEAD *, int, int);
79
80 /*
81 * Big_insert
82 *
83 * You need to do an insert and the key/data pair is too big
84 *
85 * Returns:
86 * 0 ==> OK
87 *-1 ==> ERROR
88 */
89 extern int
90 __big_insert(hashp, bufp, key, val)
91 HTAB *hashp;
92 BUFHEAD *bufp;
93 const DBT *key, *val;
94 {
95 u_int16_t *p;
96 int key_size, n, val_size;
97 u_int16_t space, move_bytes, off;
98 char *cp, *key_data, *val_data;
99
100 cp = bufp->page; /* Character pointer of p. */
101 p = (u_int16_t *)cp;
102
103 key_data = (char *)key->data;
104 key_size = key->size;
105 val_data = (char *)val->data;
106 val_size = val->size;
107
108 /* First move the Key */
109 for (space = FREESPACE(p) - BIGOVERHEAD; key_size;
110 space = FREESPACE(p) - BIGOVERHEAD) {
111 move_bytes = MIN(space, key_size);
112 off = OFFSET(p) - move_bytes;
113 memmove(cp + off, key_data, move_bytes);
114 key_size -= move_bytes;
115 key_data += move_bytes;
116 n = p[0];
117 p[++n] = off;
118 p[0] = ++n;
119 FREESPACE(p) = off - PAGE_META(n);
120 OFFSET(p) = off;
121 p[n] = PARTIAL_KEY;
122 bufp = __add_ovflpage(hashp, bufp);
123 if (!bufp)
124 return (-1);
125 n = p[0];
126 if (!key_size) {
127 if (FREESPACE(p)) {
128 move_bytes = MIN(FREESPACE(p), val_size);
129 off = OFFSET(p) - move_bytes;
130 p[n] = off;
131 memmove(cp + off, val_data, move_bytes);
132 val_data += move_bytes;
133 val_size -= move_bytes;
134 p[n - 2] = FULL_KEY_DATA;
135 FREESPACE(p) = FREESPACE(p) - move_bytes;
136 OFFSET(p) = off;
137 } else
138 p[n - 2] = FULL_KEY;
139 }
140 p = (u_int16_t *)bufp->page;
141 cp = bufp->page;
142 bufp->flags |= BUF_MOD;
143 }
144
145 /* Now move the data */
146 for (space = FREESPACE(p) - BIGOVERHEAD; val_size;
147 space = FREESPACE(p) - BIGOVERHEAD) {
148 move_bytes = MIN(space, val_size);
149 /*
150 * Here's the hack to make sure that if the data ends on the
151 * same page as the key ends, FREESPACE is at least one.
152 */
153 if (space == val_size && val_size == val->size)
154 move_bytes--;
155 off = OFFSET(p) - move_bytes;
156 memmove(cp + off, val_data, move_bytes);
157 val_size -= move_bytes;
158 val_data += move_bytes;
159 n = p[0];
160 p[++n] = off;
161 p[0] = ++n;
162 FREESPACE(p) = off - PAGE_META(n);
163 OFFSET(p) = off;
164 if (val_size) {
165 p[n] = FULL_KEY;
166 bufp = __add_ovflpage(hashp, bufp);
167 if (!bufp)
168 return (-1);
169 cp = bufp->page;
170 p = (u_int16_t *)cp;
171 } else
172 p[n] = FULL_KEY_DATA;
173 bufp->flags |= BUF_MOD;
174 }
175 return (0);
176 }
177
178 /*
179 * Called when bufp's page contains a partial key (index should be 1)
180 *
181 * All pages in the big key/data pair except bufp are freed. We cannot
182 * free bufp because the page pointing to it is lost and we can't get rid
183 * of its pointer.
184 *
185 * Returns:
186 * 0 => OK
187 *-1 => ERROR
188 */
189 extern int
190 __big_delete(hashp, bufp)
191 HTAB *hashp;
192 BUFHEAD *bufp;
193 {
194 BUFHEAD *last_bfp, *rbufp;
195 u_int16_t *bp, pageno;
196 int key_done, n;
197
198 rbufp = bufp;
199 last_bfp = NULL;
200 bp = (u_int16_t *)bufp->page;
201 pageno = 0;
202 key_done = 0;
203
204 while (!key_done || (bp[2] != FULL_KEY_DATA)) {
205 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA)
206 key_done = 1;
207
208 /*
209 * If there is freespace left on a FULL_KEY_DATA page, then
210 * the data is short and fits entirely on this page, and this
211 * is the last page.
212 */
213 if (bp[2] == FULL_KEY_DATA && FREESPACE(bp))
214 break;
215 pageno = bp[bp[0] - 1];
216 rbufp->flags |= BUF_MOD;
217 rbufp = __get_buf(hashp, pageno, rbufp, 0);
218 if (last_bfp)
219 __free_ovflpage(hashp, last_bfp);
220 last_bfp = rbufp;
221 if (!rbufp)
222 return (-1); /* Error. */
223 bp = (u_int16_t *)rbufp->page;
224 }
225
226 /*
227 * If we get here then rbufp points to the last page of the big
228 * key/data pair. Bufp points to the first one -- it should now be
229 * empty pointing to the next page after this pair. Can't free it
230 * because we don't have the page pointing to it.
231 */
232
233 /* This is information from the last page of the pair. */
234 n = bp[0];
235 pageno = bp[n - 1];
236
237 /* Now, bp is the first page of the pair. */
238 bp = (u_int16_t *)bufp->page;
239 if (n > 2) {
240 /* There is an overflow page. */
241 bp[1] = pageno;
242 bp[2] = OVFLPAGE;
243 bufp->ovfl = rbufp->ovfl;
244 } else
245 /* This is the last page. */
246 bufp->ovfl = NULL;
247 n -= 2;
248 bp[0] = n;
249 FREESPACE(bp) = hashp->BSIZE - PAGE_META(n);
250 OFFSET(bp) = hashp->BSIZE - 1;
251
252 bufp->flags |= BUF_MOD;
253 if (rbufp)
254 __free_ovflpage(hashp, rbufp);
255 if (last_bfp != rbufp)
256 __free_ovflpage(hashp, last_bfp);
257
258 hashp->NKEYS--;
259 return (0);
260 }
261 /*
262 * Returns:
263 * 0 = key not found
264 * -1 = get next overflow page
265 * -2 means key not found and this is big key/data
266 * -3 error
267 */
268 extern int
269 __find_bigpair(hashp, bufp, ndx, key, size)
270 HTAB *hashp;
271 BUFHEAD *bufp;
272 int ndx;
273 char *key;
274 int size;
275 {
276 u_int16_t *bp;
277 char *p;
278 int ksize;
279 u_int16_t bytes;
280 char *kkey;
281
282 bp = (u_int16_t *)bufp->page;
283 p = bufp->page;
284 ksize = size;
285 kkey = key;
286
287 for (bytes = hashp->BSIZE - bp[ndx];
288 bytes <= size && bp[ndx + 1] == PARTIAL_KEY;
289 bytes = hashp->BSIZE - bp[ndx]) {
290 if (memcmp(p + bp[ndx], kkey, bytes))
291 return (-2);
292 kkey += bytes;
293 ksize -= bytes;
294 bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0);
295 if (!bufp)
296 return (-3);
297 p = bufp->page;
298 bp = (u_int16_t *)p;
299 ndx = 1;
300 }
301
302 if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) {
303 #ifdef HASH_STATISTICS
304 ++hash_collisions;
305 #endif
306 return (-2);
307 } else
308 return (ndx);
309 }
310
311 /*
312 * Given the buffer pointer of the first overflow page of a big pair,
313 * find the end of the big pair
314 *
315 * This will set bpp to the buffer header of the last page of the big pair.
316 * It will return the pageno of the overflow page following the last page
317 * of the pair; 0 if there isn't any (i.e. big pair is the last key in the
318 * bucket)
319 */
320 extern u_int16_t
321 __find_last_page(hashp, bpp)
322 HTAB *hashp;
323 BUFHEAD **bpp;
324 {
325 BUFHEAD *bufp;
326 u_int16_t *bp, pageno;
327 int n;
328
329 bufp = *bpp;
330 bp = (u_int16_t *)bufp->page;
331 for (;;) {
332 n = bp[0];
333
334 /*
335 * This is the last page if: the tag is FULL_KEY_DATA and
336 * either only 2 entries OVFLPAGE marker is explicit there
337 * is freespace on the page.
338 */
339 if (bp[2] == FULL_KEY_DATA &&
340 ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp))))
341 break;
342
343 pageno = bp[n - 1];
344 bufp = __get_buf(hashp, pageno, bufp, 0);
345 if (!bufp)
346 return (0); /* Need to indicate an error! */
347 bp = (u_int16_t *)bufp->page;
348 }
349
350 *bpp = bufp;
351 if (bp[0] > 2)
352 return (bp[3]);
353 else
354 return (0);
355 }
356
357 /*
358 * Return the data for the key/data pair that begins on this page at this
359 * index (index should always be 1).
360 */
361 extern int
362 __big_return(hashp, bufp, ndx, val, set_current)
363 HTAB *hashp;
364 BUFHEAD *bufp;
365 int ndx;
366 DBT *val;
367 int set_current;
368 {
369 BUFHEAD *save_p;
370 u_int16_t *bp, len, off, save_addr;
371 char *tp;
372
373 bp = (u_int16_t *)bufp->page;
374 while (bp[ndx + 1] == PARTIAL_KEY) {
375 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
376 if (!bufp)
377 return (-1);
378 bp = (u_int16_t *)bufp->page;
379 ndx = 1;
380 }
381
382 if (bp[ndx + 1] == FULL_KEY) {
383 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
384 if (!bufp)
385 return (-1);
386 bp = (u_int16_t *)bufp->page;
387 save_p = bufp;
388 save_addr = save_p->addr;
389 off = bp[1];
390 len = 0;
391 } else
392 if (!FREESPACE(bp)) {
393 /*
394 * This is a hack. We can't distinguish between
395 * FULL_KEY_DATA that contains complete data or
396 * incomplete data, so we require that if the data
397 * is complete, there is at least 1 byte of free
398 * space left.
399 */
400 off = bp[bp[0]];
401 len = bp[1] - off;
402 save_p = bufp;
403 save_addr = bufp->addr;
404 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
405 if (!bufp)
406 return (-1);
407 bp = (u_int16_t *)bufp->page;
408 } else {
409 /* The data is all on one page. */
410 tp = (char *)bp;
411 off = bp[bp[0]];
412 val->data = (u_char *)tp + off;
413 val->size = bp[1] - off;
414 if (set_current) {
415 if (bp[0] == 2) { /* No more buckets in
416 * chain */
417 hashp->cpage = NULL;
418 hashp->cbucket++;
419 hashp->cndx = 1;
420 } else {
421 hashp->cpage = __get_buf(hashp,
422 bp[bp[0] - 1], bufp, 0);
423 if (!hashp->cpage)
424 return (-1);
425 hashp->cndx = 1;
426 if (!((u_int16_t *)
427 hashp->cpage->page)[0]) {
428 hashp->cbucket++;
429 hashp->cpage = NULL;
430 }
431 }
432 }
433 return (0);
434 }
435
436 val->size = collect_data(hashp, bufp, (int)len, set_current);
437 if (val->size == -1)
438 return (-1);
439 if (save_p->addr != save_addr) {
440 /* We are pretty short on buffers. */
441 errno = EINVAL; /* OUT OF BUFFERS */
442 return (-1);
443 }
444 memmove(hashp->tmp_buf, (save_p->page) + off, len);
445 val->data = (u_char *)hashp->tmp_buf;
446 return (0);
447 }
448 /*
449 * Count how big the total datasize is by recursing through the pages. Then
450 * allocate a buffer and copy the data as you recurse up.
451 */
452 static int
453 collect_data(hashp, bufp, len, set)
454 HTAB *hashp;
455 BUFHEAD *bufp;
456 int len, set;
457 {
458 u_int16_t *bp;
459 char *p;
460 BUFHEAD *xbp;
461 u_int16_t save_addr;
462 int mylen, totlen;
463
464 p = bufp->page;
465 bp = (u_int16_t *)p;
466 mylen = hashp->BSIZE - bp[1];
467 save_addr = bufp->addr;
468
469 if (bp[2] == FULL_KEY_DATA) { /* End of Data */
470 totlen = len + mylen;
471 if (hashp->tmp_buf)
472 free(hashp->tmp_buf);
473 if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL)
474 return (-1);
475 if (set) {
476 hashp->cndx = 1;
477 if (bp[0] == 2) { /* No more buckets in chain */
478 hashp->cpage = NULL;
479 hashp->cbucket++;
480 } else {
481 hashp->cpage =
482 __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
483 if (!hashp->cpage)
484 return (-1);
485 else if (!((u_int16_t *)hashp->cpage->page)[0]) {
486 hashp->cbucket++;
487 hashp->cpage = NULL;
488 }
489 }
490 }
491 } else {
492 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
493 if (!xbp || ((totlen =
494 collect_data(hashp, xbp, len + mylen, set)) < 1))
495 return (-1);
496 }
497 if (bufp->addr != save_addr) {
498 errno = EINVAL; /* Out of buffers. */
499 return (-1);
500 }
501 memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen);
502 return (totlen);
503 }
504
505 /*
506 * Fill in the key and data for this big pair.
507 */
508 extern int
509 __big_keydata(hashp, bufp, key, val, set)
510 HTAB *hashp;
511 BUFHEAD *bufp;
512 DBT *key, *val;
513 int set;
514 {
515 key->size = collect_key(hashp, bufp, 0, val, set);
516 if (key->size == -1)
517 return (-1);
518 key->data = (u_char *)hashp->tmp_key;
519 return (0);
520 }
521
522 /*
523 * Count how big the total key size is by recursing through the pages. Then
524 * collect the data, allocate a buffer and copy the key as you recurse up.
525 */
526 static int
527 collect_key(hashp, bufp, len, val, set)
528 HTAB *hashp;
529 BUFHEAD *bufp;
530 int len;
531 DBT *val;
532 int set;
533 {
534 BUFHEAD *xbp;
535 char *p;
536 int mylen, totlen;
537 u_int16_t *bp, save_addr;
538
539 p = bufp->page;
540 bp = (u_int16_t *)p;
541 mylen = hashp->BSIZE - bp[1];
542
543 save_addr = bufp->addr;
544 totlen = len + mylen;
545 if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */
546 if (hashp->tmp_key != NULL)
547 free(hashp->tmp_key);
548 if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL)
549 return (-1);
550 if (__big_return(hashp, bufp, 1, val, set))
551 return (-1);
552 } else {
553 xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
554 if (!xbp || ((totlen =
555 collect_key(hashp, xbp, totlen, val, set)) < 1))
556 return (-1);
557 }
558 if (bufp->addr != save_addr) {
559 errno = EINVAL; /* MIS -- OUT OF BUFFERS */
560 return (-1);
561 }
562 memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen);
563 return (totlen);
564 }
565
566 /*
567 * Returns:
568 * 0 => OK
569 * -1 => error
570 */
571 extern int
572 __big_split(hashp, op, np, big_keyp, addr, obucket, ret)
573 HTAB *hashp;
574 BUFHEAD *op; /* Pointer to where to put keys that go in old bucket */
575 BUFHEAD *np; /* Pointer to new bucket page */
576 /* Pointer to first page containing the big key/data */
577 BUFHEAD *big_keyp;
578 int addr; /* Address of big_keyp */
579 u_int32_t obucket;/* Old Bucket */
580 SPLIT_RETURN *ret;
581 {
582 BUFHEAD *tmpp;
583 u_int16_t *tp;
584 BUFHEAD *bp;
585 DBT key, val;
586 u_int32_t change;
587 u_int16_t free_space, n, off;
588
589 bp = big_keyp;
590
591 /* Now figure out where the big key/data goes */
592 if (__big_keydata(hashp, big_keyp, &key, &val, 0))
593 return (-1);
594 change = (__call_hash(hashp, key.data, key.size) != obucket);
595
596 if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) {
597 if (!(ret->nextp =
598 __get_buf(hashp, ret->next_addr, big_keyp, 0)))
599 return (-1);;
600 } else
601 ret->nextp = NULL;
602
603 /* Now make one of np/op point to the big key/data pair */
604 #ifdef DEBUG
605 assert(np->ovfl == NULL);
606 #endif
607 if (change)
608 tmpp = np;
609 else
610 tmpp = op;
611
612 tmpp->flags |= BUF_MOD;
613 #ifdef DEBUG1
614 (void)fprintf(stderr,
615 "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr,
616 (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0));
617 #endif
618 tmpp->ovfl = bp; /* one of op/np point to big_keyp */
619 tp = (u_int16_t *)tmpp->page;
620 #ifdef DEBUG
621 assert(FREESPACE(tp) >= OVFLSIZE);
622 #endif
623 n = tp[0];
624 off = OFFSET(tp);
625 free_space = FREESPACE(tp);
626 tp[++n] = (u_int16_t)addr;
627 tp[++n] = OVFLPAGE;
628 tp[0] = n;
629 OFFSET(tp) = off;
630 FREESPACE(tp) = free_space - OVFLSIZE;
631
632 /*
633 * Finally, set the new and old return values. BIG_KEYP contains a
634 * pointer to the last page of the big key_data pair. Make sure that
635 * big_keyp has no following page (2 elements) or create an empty
636 * following page.
637 */
638
639 ret->newp = np;
640 ret->oldp = op;
641
642 tp = (u_int16_t *)big_keyp->page;
643 big_keyp->flags |= BUF_MOD;
644 if (tp[0] > 2) {
645 /*
646 * There may be either one or two offsets on this page. If
647 * there is one, then the overflow page is linked on normally
648 * and tp[4] is OVFLPAGE. If there are two, tp[4] contains
649 * the second offset and needs to get stuffed in after the
650 * next overflow page is added.
651 */
652 n = tp[4];
653 free_space = FREESPACE(tp);
654 off = OFFSET(tp);
655 tp[0] -= 2;
656 FREESPACE(tp) = free_space + OVFLSIZE;
657 OFFSET(tp) = off;
658 tmpp = __add_ovflpage(hashp, big_keyp);
659 if (!tmpp)
660 return (-1);
661 tp[4] = n;
662 } else
663 tmpp = big_keyp;
664
665 if (change)
666 ret->newp = tmpp;
667 else
668 ret->oldp = tmpp;
669 return (0);
670 }