2 * Copyright (c) 2002 Apple Computer, Inc. All rights reserved.
4 * @APPLE_LICENSE_HEADER_START@
6 * Copyright (c) 1999-2003 Apple Computer, Inc. All Rights Reserved.
8 * This file contains Original Code and/or Modifications of Original Code
9 * as defined in and that are subject to the Apple Public Source License
10 * Version 2.0 (the 'License'). You may not use this file except in
11 * compliance with the License. Please obtain a copy of the License at
12 * http://www.opensource.apple.com/apsl/ and read it before using this
15 * The Original Code and all software distributed under the License are
16 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
17 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
18 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
20 * Please see the License for the specific language governing rights and
21 * limitations under the License.
23 * @APPLE_LICENSE_HEADER_END@
26 #include <mach/ppc/asm.h>
29 #define __APPLE_API_PRIVATE
30 #include <machine/cpu_capabilities.h>
31 #undef __APPLE_API_PRIVATE
33 /* We use mode-independent "g" opcodes such as "srgi". These expand
34 * into word operations when targeting __ppc__, and into doubleword
35 * operations when targeting __ppc64__.
37 #include <architecture/ppc/mode_independent_asm.h>
44 // char* strcat(const char *dst, const char *src);
46 // We optimize the move by doing it word parallel. This introduces
47 // a complication: if we blindly did word load/stores until finding
48 // a 0, we might get a spurious page fault by touching bytes past it.
49 // To avoid this, we never do a load that crosses a page boundary,
50 // and never store a byte we don't have to.
52 // The test for 0s relies on the following inobvious but very efficient
53 // word-parallel test:
54 // x = dataWord + 0xFEFEFEFF
55 // y = ~dataWord & 0x80808080
56 // if (x & y) == 0 then no zero found
57 // The test maps any non-zero byte to zero, and any zero byte to 0x80,
58 // with one exception: 0x01 bytes preceeding the first zero are also
61 // In 64-bit mode, this algorithm is doubleword parallel.
67 LEXT(strcat) // char* strcat(const char *s, const char *append);
68 clrrgi r9,r3,LOG2_GPR_BYTES// align pointer by zeroing right LOG2_GPR_BYTES bits
69 li r10,-1 // get 0xFFs
70 lg r8,0(r9) // get word or doubleword with 1st operand byte
71 rlwinm r11,r3,3,(GPR_BYTES-1)*8 // get starting bit position of operand
73 lis r6,hi16(0xFEFEFEFF) // start to generate 32-bit magic constants
74 lis r7,hi16(0x80808080)
75 srw r10,r10,r11 // create a mask of 0xFF bytes for operand in r8
76 ori r6,r6,lo16(0xFEFEFEFF)
77 ori r7,r7,lo16(0x80808080)
79 ld r6,_COMM_PAGE_MAGIC_FE(0) // get 0xFEFEFEFE FEFEFEFF from commpage
80 ld r7,_COMM_PAGE_MAGIC_80(0) // get 0x80808080 80808080 from commpage
81 srd r10,r10,r11 // create a mask of 0xFF bytes for operand in r8
83 orc r8,r8,r10 // make sure bytes preceeding operand are nonzero
86 // Loop over words or doublewords looking for 0-byte marking end of dest.
87 // r4 = source ptr (unaligned)
90 // r9 = dest ptr (aligned)
92 .align 5 // align inner loops for speed
94 lgu r8,GPR_BYTES(r9) // r8 <- next dest word or doubleword
95 Lword0loopEnter: // initial entry
96 add r10,r8,r6 // r10 <- word + 0xFEFEFEFF
97 andc r12,r7,r8 // r12 <- ~word & 0x80808080
98 and. r11,r10,r12 // r11 <- nonzero iff word has a 0-byte
99 beq Lword0loop // loop until 0 found
101 // Now we know one of the bytes in r8 is zero, we just have to figure out which one.
102 // We have mapped 0 bytes to 0x80, and nonzero bytes to 0x00, with one exception:
103 // 0x01 bytes preceeding the first zero are also mapped to 0x80. So we have to mask
104 // out the 0x80s caused by 0x01s before searching for the 0x80 byte. Once the 0 is
105 // found, we can start appending source. We align the source, which allows us to
106 // avoid worrying about spurious page faults.
107 // r4 = source ptr (unaligned)
110 // r8 = word or doubleword with a 0-byte
111 // r9 = ptr to the word or doubleword in r8 (aligned)
112 // r11 = mapped word or doubleword
114 slgi r10,r8,7 // move 0x01 bits (false hits) into 0x80 position
115 andi. r0,r4,GPR_BYTES-1 // is source aligned?
116 andc r11,r11,r10 // mask out false hits
117 cntlzg r10,r11 // find 0 byte (r0 = 0, 8, 16, or 24)
118 subfic r0,r0,GPR_BYTES // get #bytes to align r4
119 srwi r10,r10,3 // now r0 = 0, 1, 2, or 3
120 add r9,r9,r10 // now r9 points to the 0-byte in dest
121 beq LwordloopEnter // skip if source is already aligned
123 mtctr r0 // set up loop
126 // r4 = source ptr (unaligned)
129 // r9 = dest ptr (unaligned)
133 lbz r8,0(r4) // r8 <- next source byte
136 stb r8,0(r9) // pack into dest
138 bdnzf eq,Lbyteloop // loop until (ctr==0) | (r8==0)
140 bne LwordloopEnter // 0-byte not found, so enter word loop
141 blr // 0-byte found, done
143 // Word loop: move a word or doubleword at a time until 0-byte found.
144 // r4 = source ptr (aligned)
147 // r9 = dest ptr (unaligned)
149 .align 5 // align inner loop, which is 8 words ling
151 stg r8,0(r9) // pack word or doubleword into destination
154 lg r8,0(r4) // r8 <- next 4 or 8 source bytes
156 add r10,r8,r6 // r10 <- word + 0xFEFEFEFF
157 andc r12,r7,r8 // r12 <- ~word & 0x80808080
158 and. r0,r10,r12 // r0 <- nonzero iff word has a 0-byte
159 beq Lwordloop // loop if no 0-byte
161 // Found a 0-byte. Store last word up to and including the 0, a byte at a time.
162 // r8 = last word or doubleword, known to have a 0-byte
166 srgi. r0,r8,GPR_BYTES*8-8 // shift leftmost byte into bottom so we can "stb"
167 slgi r8,r8,8 // move on to next
168 stb r0,0(r9) // pack into dest
170 bne Lstorelastbytes // loop until 0 stored