]> git.saurik.com Git - apple/libc.git/blob - db/hash/FreeBSD/hash_page.c
Libc-339.tar.gz
[apple/libc.git] / db / hash / FreeBSD / hash_page.c
1 /*-
2 * Copyright (c) 1990, 1993, 1994
3 * The Regents of the University of California. All rights reserved.
4 *
5 * This code is derived from software contributed to Berkeley by
6 * Margo Seltzer.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by the University of
19 * California, Berkeley and its contributors.
20 * 4. Neither the name of the University nor the names of its contributors
21 * may be used to endorse or promote products derived from this software
22 * without specific prior written permission.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34 * SUCH DAMAGE.
35 */
36
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)hash_page.c 8.7 (Berkeley) 8/16/94";
39 #endif /* LIBC_SCCS and not lint */
40 #include <sys/cdefs.h>
41 __FBSDID("$FreeBSD: src/lib/libc/db/hash/hash_page.c,v 1.8 2002/03/21 22:46:26 obrien Exp $");
42
43 /*
44 * PACKAGE: hashing
45 *
46 * DESCRIPTION:
47 * Page manipulation for hashing package.
48 *
49 * ROUTINES:
50 *
51 * External
52 * __get_page
53 * __add_ovflpage
54 * Internal
55 * overflow_page
56 * open_temp
57 */
58
59 #include "namespace.h"
60 #include <sys/types.h>
61
62 #include <errno.h>
63 #include <fcntl.h>
64 #include <signal.h>
65 #include <stdio.h>
66 #include <stdlib.h>
67 #include <string.h>
68 #include <unistd.h>
69 #ifdef DEBUG
70 #include <assert.h>
71 #endif
72 #include "un-namespace.h"
73
74 #include <db.h>
75 #include "hash.h"
76 #include "page.h"
77 #include "extern.h"
78
79 static u_int32_t *fetch_bitmap(HTAB *, int);
80 static u_int32_t first_free(u_int32_t);
81 static int open_temp(HTAB *);
82 static u_int16_t overflow_page(HTAB *);
83 static void putpair(char *, const DBT *, const DBT *);
84 static void squeeze_key(u_int16_t *, const DBT *, const DBT *);
85 static int ugly_split
86 (HTAB *, u_int32_t, BUFHEAD *, BUFHEAD *, int, int);
87
88 #define PAGE_INIT(P) { \
89 ((u_int16_t *)(P))[0] = 0; \
90 ((u_int16_t *)(P))[1] = hashp->BSIZE - 3 * sizeof(u_int16_t); \
91 ((u_int16_t *)(P))[2] = hashp->BSIZE; \
92 }
93
94 /*
95 * This is called AFTER we have verified that there is room on the page for
96 * the pair (PAIRFITS has returned true) so we go right ahead and start moving
97 * stuff on.
98 */
99 static void
100 putpair(p, key, val)
101 char *p;
102 const DBT *key, *val;
103 {
104 u_int16_t *bp, n, off;
105
106 bp = (u_int16_t *)p;
107
108 /* Enter the key first. */
109 n = bp[0];
110
111 off = OFFSET(bp) - key->size;
112 memmove(p + off, key->data, key->size);
113 bp[++n] = off;
114
115 /* Now the data. */
116 off -= val->size;
117 memmove(p + off, val->data, val->size);
118 bp[++n] = off;
119
120 /* Adjust page info. */
121 bp[0] = n;
122 bp[n + 1] = off - ((n + 3) * sizeof(u_int16_t));
123 bp[n + 2] = off;
124 }
125
126 /*
127 * Returns:
128 * 0 OK
129 * -1 error
130 */
131 extern int
132 __delpair(hashp, bufp, ndx)
133 HTAB *hashp;
134 BUFHEAD *bufp;
135 int ndx;
136 {
137 u_int16_t *bp, newoff;
138 int n;
139 u_int16_t pairlen;
140
141 bp = (u_int16_t *)bufp->page;
142 n = bp[0];
143
144 if (bp[ndx + 1] < REAL_KEY)
145 return (__big_delete(hashp, bufp));
146 if (ndx != 1)
147 newoff = bp[ndx - 1];
148 else
149 newoff = hashp->BSIZE;
150 pairlen = newoff - bp[ndx + 1];
151
152 if (ndx != (n - 1)) {
153 /* Hard Case -- need to shuffle keys */
154 int i;
155 char *src = bufp->page + (int)OFFSET(bp);
156 char *dst = src + (int)pairlen;
157 memmove(dst, src, bp[ndx + 1] - OFFSET(bp));
158
159 /* Now adjust the pointers */
160 for (i = ndx + 2; i <= n; i += 2) {
161 if (bp[i + 1] == OVFLPAGE) {
162 bp[i - 2] = bp[i];
163 bp[i - 1] = bp[i + 1];
164 } else {
165 bp[i - 2] = bp[i] + pairlen;
166 bp[i - 1] = bp[i + 1] + pairlen;
167 }
168 }
169 }
170 /* Finally adjust the page data */
171 bp[n] = OFFSET(bp) + pairlen;
172 bp[n - 1] = bp[n + 1] + pairlen + 2 * sizeof(u_int16_t);
173 bp[0] = n - 2;
174 hashp->NKEYS--;
175
176 bufp->flags |= BUF_MOD;
177 return (0);
178 }
179 /*
180 * Returns:
181 * 0 ==> OK
182 * -1 ==> Error
183 */
184 extern int
185 __split_page(hashp, obucket, nbucket)
186 HTAB *hashp;
187 u_int32_t obucket, nbucket;
188 {
189 BUFHEAD *new_bufp, *old_bufp;
190 u_int16_t *ino;
191 char *np;
192 DBT key, val;
193 int n, ndx, retval;
194 u_int16_t copyto, diff, off, moved;
195 char *op;
196
197 copyto = (u_int16_t)hashp->BSIZE;
198 off = (u_int16_t)hashp->BSIZE;
199 old_bufp = __get_buf(hashp, obucket, NULL, 0);
200 if (old_bufp == NULL)
201 return (-1);
202 new_bufp = __get_buf(hashp, nbucket, NULL, 0);
203 if (new_bufp == NULL)
204 return (-1);
205
206 old_bufp->flags |= (BUF_MOD | BUF_PIN);
207 new_bufp->flags |= (BUF_MOD | BUF_PIN);
208
209 ino = (u_int16_t *)(op = old_bufp->page);
210 np = new_bufp->page;
211
212 moved = 0;
213
214 for (n = 1, ndx = 1; n < ino[0]; n += 2) {
215 if (ino[n + 1] < REAL_KEY) {
216 retval = ugly_split(hashp, obucket, old_bufp, new_bufp,
217 (int)copyto, (int)moved);
218 old_bufp->flags &= ~BUF_PIN;
219 new_bufp->flags &= ~BUF_PIN;
220 return (retval);
221
222 }
223 key.data = (u_char *)op + ino[n];
224 key.size = off - ino[n];
225
226 if (__call_hash(hashp, key.data, key.size) == obucket) {
227 /* Don't switch page */
228 diff = copyto - off;
229 if (diff) {
230 copyto = ino[n + 1] + diff;
231 memmove(op + copyto, op + ino[n + 1],
232 off - ino[n + 1]);
233 ino[ndx] = copyto + ino[n] - ino[n + 1];
234 ino[ndx + 1] = copyto;
235 } else
236 copyto = ino[n + 1];
237 ndx += 2;
238 } else {
239 /* Switch page */
240 val.data = (u_char *)op + ino[n + 1];
241 val.size = ino[n] - ino[n + 1];
242 putpair(np, &key, &val);
243 moved += 2;
244 }
245
246 off = ino[n + 1];
247 }
248
249 /* Now clean up the page */
250 ino[0] -= moved;
251 FREESPACE(ino) = copyto - sizeof(u_int16_t) * (ino[0] + 3);
252 OFFSET(ino) = copyto;
253
254 #ifdef DEBUG3
255 (void)fprintf(stderr, "split %d/%d\n",
256 ((u_int16_t *)np)[0] / 2,
257 ((u_int16_t *)op)[0] / 2);
258 #endif
259 /* unpin both pages */
260 old_bufp->flags &= ~BUF_PIN;
261 new_bufp->flags &= ~BUF_PIN;
262 return (0);
263 }
264
265 /*
266 * Called when we encounter an overflow or big key/data page during split
267 * handling. This is special cased since we have to begin checking whether
268 * the key/data pairs fit on their respective pages and because we may need
269 * overflow pages for both the old and new pages.
270 *
271 * The first page might be a page with regular key/data pairs in which case
272 * we have a regular overflow condition and just need to go on to the next
273 * page or it might be a big key/data pair in which case we need to fix the
274 * big key/data pair.
275 *
276 * Returns:
277 * 0 ==> success
278 * -1 ==> failure
279 */
280 static int
281 ugly_split(hashp, obucket, old_bufp, new_bufp, copyto, moved)
282 HTAB *hashp;
283 u_int32_t obucket; /* Same as __split_page. */
284 BUFHEAD *old_bufp, *new_bufp;
285 int copyto; /* First byte on page which contains key/data values. */
286 int moved; /* Number of pairs moved to new page. */
287 {
288 BUFHEAD *bufp; /* Buffer header for ino */
289 u_int16_t *ino; /* Page keys come off of */
290 u_int16_t *np; /* New page */
291 u_int16_t *op; /* Page keys go on to if they aren't moving */
292
293 BUFHEAD *last_bfp; /* Last buf header OVFL needing to be freed */
294 DBT key, val;
295 SPLIT_RETURN ret;
296 u_int16_t n, off, ov_addr, scopyto;
297 char *cino; /* Character value of ino */
298
299 bufp = old_bufp;
300 ino = (u_int16_t *)old_bufp->page;
301 np = (u_int16_t *)new_bufp->page;
302 op = (u_int16_t *)old_bufp->page;
303 last_bfp = NULL;
304 scopyto = (u_int16_t)copyto; /* ANSI */
305
306 n = ino[0] - 1;
307 while (n < ino[0]) {
308 if (ino[2] < REAL_KEY && ino[2] != OVFLPAGE) {
309 if (__big_split(hashp, old_bufp,
310 new_bufp, bufp, bufp->addr, obucket, &ret))
311 return (-1);
312 old_bufp = ret.oldp;
313 if (!old_bufp)
314 return (-1);
315 op = (u_int16_t *)old_bufp->page;
316 new_bufp = ret.newp;
317 if (!new_bufp)
318 return (-1);
319 np = (u_int16_t *)new_bufp->page;
320 bufp = ret.nextp;
321 if (!bufp)
322 return (0);
323 cino = (char *)bufp->page;
324 ino = (u_int16_t *)cino;
325 last_bfp = ret.nextp;
326 } else if (ino[n + 1] == OVFLPAGE) {
327 ov_addr = ino[n];
328 /*
329 * Fix up the old page -- the extra 2 are the fields
330 * which contained the overflow information.
331 */
332 ino[0] -= (moved + 2);
333 FREESPACE(ino) =
334 scopyto - sizeof(u_int16_t) * (ino[0] + 3);
335 OFFSET(ino) = scopyto;
336
337 bufp = __get_buf(hashp, ov_addr, bufp, 0);
338 if (!bufp)
339 return (-1);
340
341 ino = (u_int16_t *)bufp->page;
342 n = 1;
343 scopyto = hashp->BSIZE;
344 moved = 0;
345
346 if (last_bfp)
347 __free_ovflpage(hashp, last_bfp);
348 last_bfp = bufp;
349 }
350 /* Move regular sized pairs of there are any */
351 off = hashp->BSIZE;
352 for (n = 1; (n < ino[0]) && (ino[n + 1] >= REAL_KEY); n += 2) {
353 cino = (char *)ino;
354 key.data = (u_char *)cino + ino[n];
355 key.size = off - ino[n];
356 val.data = (u_char *)cino + ino[n + 1];
357 val.size = ino[n] - ino[n + 1];
358 off = ino[n + 1];
359
360 if (__call_hash(hashp, key.data, key.size) == obucket) {
361 /* Keep on old page */
362 if (PAIRFITS(op, (&key), (&val)))
363 putpair((char *)op, &key, &val);
364 else {
365 old_bufp =
366 __add_ovflpage(hashp, old_bufp);
367 if (!old_bufp)
368 return (-1);
369 op = (u_int16_t *)old_bufp->page;
370 putpair((char *)op, &key, &val);
371 }
372 old_bufp->flags |= BUF_MOD;
373 } else {
374 /* Move to new page */
375 if (PAIRFITS(np, (&key), (&val)))
376 putpair((char *)np, &key, &val);
377 else {
378 new_bufp =
379 __add_ovflpage(hashp, new_bufp);
380 if (!new_bufp)
381 return (-1);
382 np = (u_int16_t *)new_bufp->page;
383 putpair((char *)np, &key, &val);
384 }
385 new_bufp->flags |= BUF_MOD;
386 }
387 }
388 }
389 if (last_bfp)
390 __free_ovflpage(hashp, last_bfp);
391 return (0);
392 }
393
394 /*
395 * Add the given pair to the page
396 *
397 * Returns:
398 * 0 ==> OK
399 * 1 ==> failure
400 */
401 extern int
402 __addel(hashp, bufp, key, val)
403 HTAB *hashp;
404 BUFHEAD *bufp;
405 const DBT *key, *val;
406 {
407 u_int16_t *bp, *sop;
408 int do_expand;
409
410 bp = (u_int16_t *)bufp->page;
411 do_expand = 0;
412 while (bp[0] && (bp[2] < REAL_KEY || bp[bp[0]] < REAL_KEY))
413 /* Exception case */
414 if (bp[2] == FULL_KEY_DATA && bp[0] == 2)
415 /* This is the last page of a big key/data pair
416 and we need to add another page */
417 break;
418 else if (bp[2] < REAL_KEY && bp[bp[0]] != OVFLPAGE) {
419 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
420 if (!bufp)
421 return (-1);
422 bp = (u_int16_t *)bufp->page;
423 } else
424 /* Try to squeeze key on this page */
425 if (FREESPACE(bp) > PAIRSIZE(key, val)) {
426 squeeze_key(bp, key, val);
427 return (0);
428 } else {
429 bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0);
430 if (!bufp)
431 return (-1);
432 bp = (u_int16_t *)bufp->page;
433 }
434
435 if (PAIRFITS(bp, key, val))
436 putpair(bufp->page, key, val);
437 else {
438 do_expand = 1;
439 bufp = __add_ovflpage(hashp, bufp);
440 if (!bufp)
441 return (-1);
442 sop = (u_int16_t *)bufp->page;
443
444 if (PAIRFITS(sop, key, val))
445 putpair((char *)sop, key, val);
446 else
447 if (__big_insert(hashp, bufp, key, val))
448 return (-1);
449 }
450 bufp->flags |= BUF_MOD;
451 /*
452 * If the average number of keys per bucket exceeds the fill factor,
453 * expand the table.
454 */
455 hashp->NKEYS++;
456 if (do_expand ||
457 (hashp->NKEYS / (hashp->MAX_BUCKET + 1) > hashp->FFACTOR))
458 return (__expand_table(hashp));
459 return (0);
460 }
461
462 /*
463 *
464 * Returns:
465 * pointer on success
466 * NULL on error
467 */
468 extern BUFHEAD *
469 __add_ovflpage(hashp, bufp)
470 HTAB *hashp;
471 BUFHEAD *bufp;
472 {
473 u_int16_t *sp;
474 u_int16_t ndx, ovfl_num;
475 #ifdef DEBUG1
476 int tmp1, tmp2;
477 #endif
478 sp = (u_int16_t *)bufp->page;
479
480 /* Check if we are dynamically determining the fill factor */
481 if (hashp->FFACTOR == DEF_FFACTOR) {
482 hashp->FFACTOR = sp[0] >> 1;
483 if (hashp->FFACTOR < MIN_FFACTOR)
484 hashp->FFACTOR = MIN_FFACTOR;
485 }
486 bufp->flags |= BUF_MOD;
487 ovfl_num = overflow_page(hashp);
488 #ifdef DEBUG1
489 tmp1 = bufp->addr;
490 tmp2 = bufp->ovfl ? bufp->ovfl->addr : 0;
491 #endif
492 if (!ovfl_num || !(bufp->ovfl = __get_buf(hashp, ovfl_num, bufp, 1)))
493 return (NULL);
494 bufp->ovfl->flags |= BUF_MOD;
495 #ifdef DEBUG1
496 (void)fprintf(stderr, "ADDOVFLPAGE: %d->ovfl was %d is now %d\n",
497 tmp1, tmp2, bufp->ovfl->addr);
498 #endif
499 ndx = sp[0];
500 /*
501 * Since a pair is allocated on a page only if there's room to add
502 * an overflow page, we know that the OVFL information will fit on
503 * the page.
504 */
505 sp[ndx + 4] = OFFSET(sp);
506 sp[ndx + 3] = FREESPACE(sp) - OVFLSIZE;
507 sp[ndx + 1] = ovfl_num;
508 sp[ndx + 2] = OVFLPAGE;
509 sp[0] = ndx + 2;
510 #ifdef HASH_STATISTICS
511 hash_overflows++;
512 #endif
513 return (bufp->ovfl);
514 }
515
516 /*
517 * Returns:
518 * 0 indicates SUCCESS
519 * -1 indicates FAILURE
520 */
521 extern int
522 __get_page(hashp, p, bucket, is_bucket, is_disk, is_bitmap)
523 HTAB *hashp;
524 char *p;
525 u_int32_t bucket;
526 int is_bucket, is_disk, is_bitmap;
527 {
528 int fd, page, size;
529 int rsize;
530 u_int16_t *bp;
531
532 fd = hashp->fp;
533 size = hashp->BSIZE;
534
535 if ((fd == -1) || !is_disk) {
536 PAGE_INIT(p);
537 return (0);
538 }
539 if (is_bucket)
540 page = BUCKET_TO_PAGE(bucket);
541 else
542 page = OADDR_TO_PAGE(bucket);
543 if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
544 ((rsize = _read(fd, p, size)) == -1))
545 return (-1);
546 bp = (u_int16_t *)p;
547 if (!rsize)
548 bp[0] = 0; /* We hit the EOF, so initialize a new page */
549 else
550 if (rsize != size) {
551 errno = EFTYPE;
552 return (-1);
553 }
554 if (!is_bitmap && !bp[0]) {
555 PAGE_INIT(p);
556 } else
557 if (hashp->LORDER != BYTE_ORDER) {
558 int i, max;
559
560 if (is_bitmap) {
561 max = hashp->BSIZE >> 2; /* divide by 4 */
562 for (i = 0; i < max; i++)
563 M_32_SWAP(((int *)p)[i]);
564 } else {
565 M_16_SWAP(bp[0]);
566 max = bp[0] + 2;
567 for (i = 1; i <= max; i++)
568 M_16_SWAP(bp[i]);
569 }
570 }
571 return (0);
572 }
573
574 /*
575 * Write page p to disk
576 *
577 * Returns:
578 * 0 ==> OK
579 * -1 ==>failure
580 */
581 extern int
582 __put_page(hashp, p, bucket, is_bucket, is_bitmap)
583 HTAB *hashp;
584 char *p;
585 u_int32_t bucket;
586 int is_bucket, is_bitmap;
587 {
588 int fd, page, size;
589 int wsize;
590
591 size = hashp->BSIZE;
592 if ((hashp->fp == -1) && open_temp(hashp))
593 return (-1);
594 fd = hashp->fp;
595
596 if (hashp->LORDER != BYTE_ORDER) {
597 int i;
598 int max;
599
600 if (is_bitmap) {
601 max = hashp->BSIZE >> 2; /* divide by 4 */
602 for (i = 0; i < max; i++)
603 M_32_SWAP(((int *)p)[i]);
604 } else {
605 max = ((u_int16_t *)p)[0] + 2;
606 for (i = 0; i <= max; i++)
607 M_16_SWAP(((u_int16_t *)p)[i]);
608 }
609 }
610 if (is_bucket)
611 page = BUCKET_TO_PAGE(bucket);
612 else
613 page = OADDR_TO_PAGE(bucket);
614 if ((lseek(fd, (off_t)page << hashp->BSHIFT, SEEK_SET) == -1) ||
615 ((wsize = _write(fd, p, size)) == -1))
616 /* Errno is set */
617 return (-1);
618 if (wsize != size) {
619 errno = EFTYPE;
620 return (-1);
621 }
622 return (0);
623 }
624
625 #define BYTE_MASK ((1 << INT_BYTE_SHIFT) -1)
626 /*
627 * Initialize a new bitmap page. Bitmap pages are left in memory
628 * once they are read in.
629 */
630 extern int
631 __ibitmap(hashp, pnum, nbits, ndx)
632 HTAB *hashp;
633 int pnum, nbits, ndx;
634 {
635 u_int32_t *ip;
636 int clearbytes, clearints;
637
638 if ((ip = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
639 return (1);
640 hashp->nmaps++;
641 clearints = ((nbits - 1) >> INT_BYTE_SHIFT) + 1;
642 clearbytes = clearints << INT_TO_BYTE;
643 (void)memset((char *)ip, 0, clearbytes);
644 (void)memset(((char *)ip) + clearbytes, 0xFF,
645 hashp->BSIZE - clearbytes);
646 ip[clearints - 1] = ALL_SET << (nbits & BYTE_MASK);
647 SETBIT(ip, 0);
648 hashp->BITMAPS[ndx] = (u_int16_t)pnum;
649 hashp->mapp[ndx] = ip;
650 return (0);
651 }
652
653 static u_int32_t
654 first_free(map)
655 u_int32_t map;
656 {
657 u_int32_t i, mask;
658
659 mask = 0x1;
660 for (i = 0; i < BITS_PER_MAP; i++) {
661 if (!(mask & map))
662 return (i);
663 mask = mask << 1;
664 }
665 return (i);
666 }
667
668 static u_int16_t
669 overflow_page(hashp)
670 HTAB *hashp;
671 {
672 u_int32_t *freep;
673 int max_free, offset, splitnum;
674 u_int16_t addr;
675 int bit, first_page, free_bit, free_page, i, in_use_bits, j;
676 #ifdef DEBUG2
677 int tmp1, tmp2;
678 #endif
679 splitnum = hashp->OVFL_POINT;
680 max_free = hashp->SPARES[splitnum];
681
682 free_page = (max_free - 1) >> (hashp->BSHIFT + BYTE_SHIFT);
683 free_bit = (max_free - 1) & ((hashp->BSIZE << BYTE_SHIFT) - 1);
684
685 /* Look through all the free maps to find the first free block */
686 first_page = hashp->LAST_FREED >>(hashp->BSHIFT + BYTE_SHIFT);
687 for ( i = first_page; i <= free_page; i++ ) {
688 if (!(freep = (u_int32_t *)hashp->mapp[i]) &&
689 !(freep = fetch_bitmap(hashp, i)))
690 return (0);
691 if (i == free_page)
692 in_use_bits = free_bit;
693 else
694 in_use_bits = (hashp->BSIZE << BYTE_SHIFT) - 1;
695
696 if (i == first_page) {
697 bit = hashp->LAST_FREED &
698 ((hashp->BSIZE << BYTE_SHIFT) - 1);
699 j = bit / BITS_PER_MAP;
700 bit = bit & ~(BITS_PER_MAP - 1);
701 } else {
702 bit = 0;
703 j = 0;
704 }
705 for (; bit <= in_use_bits; j++, bit += BITS_PER_MAP)
706 if (freep[j] != ALL_SET)
707 goto found;
708 }
709
710 /* No Free Page Found */
711 hashp->LAST_FREED = hashp->SPARES[splitnum];
712 hashp->SPARES[splitnum]++;
713 offset = hashp->SPARES[splitnum] -
714 (splitnum ? hashp->SPARES[splitnum - 1] : 0);
715
716 #define OVMSG "HASH: Out of overflow pages. Increase page size\n"
717 if (offset > SPLITMASK) {
718 if (++splitnum >= NCACHED) {
719 (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
720 return (0);
721 }
722 hashp->OVFL_POINT = splitnum;
723 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
724 hashp->SPARES[splitnum-1]--;
725 offset = 1;
726 }
727
728 /* Check if we need to allocate a new bitmap page */
729 if (free_bit == (hashp->BSIZE << BYTE_SHIFT) - 1) {
730 free_page++;
731 if (free_page >= NCACHED) {
732 (void)_write(STDERR_FILENO, OVMSG, sizeof(OVMSG) - 1);
733 return (0);
734 }
735 /*
736 * This is tricky. The 1 indicates that you want the new page
737 * allocated with 1 clear bit. Actually, you are going to
738 * allocate 2 pages from this map. The first is going to be
739 * the map page, the second is the overflow page we were
740 * looking for. The init_bitmap routine automatically, sets
741 * the first bit of itself to indicate that the bitmap itself
742 * is in use. We would explicitly set the second bit, but
743 * don't have to if we tell init_bitmap not to leave it clear
744 * in the first place.
745 */
746 if (__ibitmap(hashp,
747 (int)OADDR_OF(splitnum, offset), 1, free_page))
748 return (0);
749 hashp->SPARES[splitnum]++;
750 #ifdef DEBUG2
751 free_bit = 2;
752 #endif
753 offset++;
754 if (offset > SPLITMASK) {
755 if (++splitnum >= NCACHED) {
756 (void)_write(STDERR_FILENO, OVMSG,
757 sizeof(OVMSG) - 1);
758 return (0);
759 }
760 hashp->OVFL_POINT = splitnum;
761 hashp->SPARES[splitnum] = hashp->SPARES[splitnum-1];
762 hashp->SPARES[splitnum-1]--;
763 offset = 0;
764 }
765 } else {
766 /*
767 * Free_bit addresses the last used bit. Bump it to address
768 * the first available bit.
769 */
770 free_bit++;
771 SETBIT(freep, free_bit);
772 }
773
774 /* Calculate address of the new overflow page */
775 addr = OADDR_OF(splitnum, offset);
776 #ifdef DEBUG2
777 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
778 addr, free_bit, free_page);
779 #endif
780 return (addr);
781
782 found:
783 bit = bit + first_free(freep[j]);
784 SETBIT(freep, bit);
785 #ifdef DEBUG2
786 tmp1 = bit;
787 tmp2 = i;
788 #endif
789 /*
790 * Bits are addressed starting with 0, but overflow pages are addressed
791 * beginning at 1. Bit is a bit addressnumber, so we need to increment
792 * it to convert it to a page number.
793 */
794 bit = 1 + bit + (i * (hashp->BSIZE << BYTE_SHIFT));
795 if (bit >= hashp->LAST_FREED)
796 hashp->LAST_FREED = bit - 1;
797
798 /* Calculate the split number for this page */
799 for (i = 0; (i < splitnum) && (bit > hashp->SPARES[i]); i++);
800 offset = (i ? bit - hashp->SPARES[i - 1] : bit);
801 if (offset >= SPLITMASK)
802 return (0); /* Out of overflow pages */
803 addr = OADDR_OF(i, offset);
804 #ifdef DEBUG2
805 (void)fprintf(stderr, "OVERFLOW_PAGE: ADDR: %d BIT: %d PAGE %d\n",
806 addr, tmp1, tmp2);
807 #endif
808
809 /* Allocate and return the overflow page */
810 return (addr);
811 }
812
813 /*
814 * Mark this overflow page as free.
815 */
816 extern void
817 __free_ovflpage(hashp, obufp)
818 HTAB *hashp;
819 BUFHEAD *obufp;
820 {
821 u_int16_t addr;
822 u_int32_t *freep;
823 int bit_address, free_page, free_bit;
824 u_int16_t ndx;
825
826 addr = obufp->addr;
827 #ifdef DEBUG1
828 (void)fprintf(stderr, "Freeing %d\n", addr);
829 #endif
830 ndx = (((u_int16_t)addr) >> SPLITSHIFT);
831 bit_address =
832 (ndx ? hashp->SPARES[ndx - 1] : 0) + (addr & SPLITMASK) - 1;
833 if (bit_address < hashp->LAST_FREED)
834 hashp->LAST_FREED = bit_address;
835 free_page = (bit_address >> (hashp->BSHIFT + BYTE_SHIFT));
836 free_bit = bit_address & ((hashp->BSIZE << BYTE_SHIFT) - 1);
837
838 if (!(freep = hashp->mapp[free_page]))
839 freep = fetch_bitmap(hashp, free_page);
840 #ifdef DEBUG
841 /*
842 * This had better never happen. It means we tried to read a bitmap
843 * that has already had overflow pages allocated off it, and we
844 * failed to read it from the file.
845 */
846 if (!freep)
847 assert(0);
848 #endif
849 CLRBIT(freep, free_bit);
850 #ifdef DEBUG2
851 (void)fprintf(stderr, "FREE_OVFLPAGE: ADDR: %d BIT: %d PAGE %d\n",
852 obufp->addr, free_bit, free_page);
853 #endif
854 __reclaim_buf(hashp, obufp);
855 }
856
857 /*
858 * Returns:
859 * 0 success
860 * -1 failure
861 */
862 static int
863 open_temp(hashp)
864 HTAB *hashp;
865 {
866 sigset_t set, oset;
867 static char namestr[] = "_hashXXXXXX";
868
869 /* Block signals; make sure file goes away at process exit. */
870 (void)sigfillset(&set);
871 (void)_sigprocmask(SIG_BLOCK, &set, &oset);
872 if ((hashp->fp = mkstemp(namestr)) != -1) {
873 (void)unlink(namestr);
874 (void)_fcntl(hashp->fp, F_SETFD, 1);
875 }
876 (void)_sigprocmask(SIG_SETMASK, &oset, (sigset_t *)NULL);
877 return (hashp->fp != -1 ? 0 : -1);
878 }
879
880 /*
881 * We have to know that the key will fit, but the last entry on the page is
882 * an overflow pair, so we need to shift things.
883 */
884 static void
885 squeeze_key(sp, key, val)
886 u_int16_t *sp;
887 const DBT *key, *val;
888 {
889 char *p;
890 u_int16_t free_space, n, off, pageno;
891
892 p = (char *)sp;
893 n = sp[0];
894 free_space = FREESPACE(sp);
895 off = OFFSET(sp);
896
897 pageno = sp[n - 1];
898 off -= key->size;
899 sp[n - 1] = off;
900 memmove(p + off, key->data, key->size);
901 off -= val->size;
902 sp[n] = off;
903 memmove(p + off, val->data, val->size);
904 sp[0] = n + 2;
905 sp[n + 1] = pageno;
906 sp[n + 2] = OVFLPAGE;
907 FREESPACE(sp) = free_space - PAIRSIZE(key, val);
908 OFFSET(sp) = off;
909 }
910
911 static u_int32_t *
912 fetch_bitmap(hashp, ndx)
913 HTAB *hashp;
914 int ndx;
915 {
916 if (ndx >= hashp->nmaps)
917 return (NULL);
918 if ((hashp->mapp[ndx] = (u_int32_t *)malloc(hashp->BSIZE)) == NULL)
919 return (NULL);
920 if (__get_page(hashp,
921 (char *)hashp->mapp[ndx], hashp->BITMAPS[ndx], 0, 1, 1)) {
922 free(hashp->mapp[ndx]);
923 return (NULL);
924 }
925 return (hashp->mapp[ndx]);
926 }
927
928 #ifdef DEBUG4
929 int
930 print_chain(addr)
931 int addr;
932 {
933 BUFHEAD *bufp;
934 short *bp, oaddr;
935
936 (void)fprintf(stderr, "%d ", addr);
937 bufp = __get_buf(hashp, addr, NULL, 0);
938 bp = (short *)bufp->page;
939 while (bp[0] && ((bp[bp[0]] == OVFLPAGE) ||
940 ((bp[0] > 2) && bp[2] < REAL_KEY))) {
941 oaddr = bp[bp[0] - 1];
942 (void)fprintf(stderr, "%d ", (int)oaddr);
943 bufp = __get_buf(hashp, (int)oaddr, bufp, 0);
944 bp = (short *)bufp->page;
945 }
946 (void)fprintf(stderr, "\n");
947 }
948 #endif