]> git.saurik.com Git - apple/libc.git/blob - gen/rand48.3
Libc-594.1.4.tar.gz
[apple/libc.git] / gen / rand48.3
1 .\" Copyright (c) 1993 Martin Birgmeier
2 .\" All rights reserved.
3 .\"
4 .\" You may redistribute unmodified or modified versions of this source
5 .\" code provided that the above copyright notice and this and the
6 .\" following conditions are retained.
7 .\"
8 .\" This software is provided ``as is'', and comes with no warranties
9 .\" of any kind. I shall in no event be liable for anything that happens
10 .\" to anyone/anything when using this software.
11 .\"
12 .\" @(#)rand48.3 V1.0 MB 8 Oct 1993
13 .\" $FreeBSD: src/lib/libc/gen/rand48.3,v 1.16 2004/07/02 23:52:10 ru Exp $
14 .\"
15 .Dd October 8, 1993
16 .Dt RAND48 3
17 .Os
18 .Sh NAME
19 .Nm drand48 ,
20 .Nm erand48 ,
21 .Nm jrand48 ,
22 .Nm lcong48 ,
23 .Nm lrand48 ,
24 .Nm mrand48 ,
25 .Nm nrand48 ,
26 .Nm seed48 ,
27 .Nm srand48
28 .Nd pseudo random number generators and initialization routines
29 .Sh LIBRARY
30 .Lb libc
31 .Sh SYNOPSIS
32 .In stdlib.h
33 .Ft double
34 .Fo drand48
35 .Fa void
36 .Fc
37 .Ft double
38 .Fo erand48
39 .Fa "unsigned short xsubi[3]"
40 .Fc
41 .Ft long
42 .Fo jrand48
43 .Fa "unsigned short xsubi[3]"
44 .Fc
45 .Ft void
46 .Fo lcong48
47 .Fa "unsigned short param[7]"
48 .Fc
49 .Ft long
50 .Fo lrand48
51 .Fa void
52 .Fc
53 .Ft long
54 .Fo mrand48
55 .Fa void
56 .Fc
57 .Ft long
58 .Fo nrand48
59 .Fa "unsigned short xsubi[3]"
60 .Fc
61 .Ft "unsigned short *"
62 .Fo seed48
63 .Fa "unsigned short seed16v[3]"
64 .Fc
65 .Ft void
66 .Fo srand48
67 .Fa "long seedval"
68 .Fc
69 .Sh DESCRIPTION
70 The
71 .Fn rand48
72 family of functions generates pseudo-random numbers, using a linear
73 congruential algorithm working on integers 48 bits in size.
74 The
75 particular formula employed is
76 r(n+1) = (a * r(n) + c) mod m.
77 The default value for the multiplicand `a' is 0xfdeece66d (25214903917).
78 The default value for the the addend `c' is 0xb (11).
79 The modulo is always fixed at m = 2 ** 48.
80 r(n) is called the seed of the random number generator.
81 .Pp
82 For the six generator routines described next, the first
83 computational step is to perform a single iteration of the algorithm.
84 .Pp
85 The
86 .Fn drand48
87 and
88 .Fn erand48
89 functions
90 return values of type double.
91 The full 48 bits of r(n+1) are
92 loaded into the mantissa of the returned value, with the exponent set
93 such that the values produced lie in the interval [0.0, 1.0).
94 .Pp
95 The
96 .Fn lrand48
97 and
98 .Fn nrand48
99 functions
100 return values of type long in the range
101 [0, 2**31-1].
102 The high-order (31) bits of
103 r(n+1) are loaded into the lower bits of the returned value, with
104 the topmost (sign) bit set to zero.
105 .Pp
106 The
107 .Fn mrand48
108 and
109 .Fn jrand48
110 functions
111 return values of type long in the range
112 [-2**31, 2**31-1].
113 The high-order (32) bits of
114 r(n+1) are loaded into the returned value.
115 .Pp
116 The
117 .Fn drand48 ,
118 .Fn lrand48 ,
119 and
120 .Fn mrand48
121 functions
122 use an internal buffer to store r(n).
123 For these functions
124 the initial value of r(0) = 0x1234abcd330e = 20017429951246.
125 .Pp
126 On the other hand,
127 .Fn erand48 ,
128 .Fn nrand48 ,
129 and
130 .Fn jrand48
131 use a user-supplied buffer to store the seed r(n),
132 which consists of an array of 3 shorts, where the zeroth member
133 holds the least significant bits.
134 .Pp
135 All functions share the same multiplicand and addend.
136 .Pp
137 The
138 .Fn srand48
139 function
140 is used to initialize the internal buffer r(n) of
141 .Fn drand48 ,
142 .Fn lrand48 ,
143 and
144 .Fn mrand48 ,
145 such that the 32 bits of the seed value are copied into the upper 32 bits
146 of r(n), with the lower 16 bits of r(n) arbitrarily being set to 0x330e.
147 Additionally, the constant multiplicand and addend of the algorithm are
148 reset to the default values given above.
149 .Pp
150 The
151 .Fn seed48
152 function
153 also initializes the internal buffer r(n) of
154 .Fn drand48 ,
155 .Fn lrand48 ,
156 and
157 .Fn mrand48 ,
158 but here all 48 bits of the seed can be specified in an array of 3 shorts,
159 where the zeroth member specifies the lowest bits.
160 Again,
161 the constant multiplicand and addend of the algorithm are
162 reset to the default values given above.
163 The
164 .Fn seed48
165 function
166 returns a pointer to an array of 3 shorts which contains the old seed.
167 This array is statically allocated; thus, its contents are lost after
168 each new call to
169 .Fn seed48 .
170 .Pp
171 Finally,
172 .Fn lcong48
173 allows full control over the multiplicand and addend used in
174 .Fn drand48 ,
175 .Fn erand48 ,
176 .Fn lrand48 ,
177 .Fn nrand48 ,
178 .Fn mrand48 ,
179 and
180 .Fn jrand48 ,
181 and the seed used in
182 .Fn drand48 ,
183 .Fn lrand48 ,
184 and
185 .Fn mrand48 .
186 An array of 7 shorts is passed as argument; the first three shorts are
187 used to initialize the seed; the second three are used to initialize the
188 multiplicand; and the last short is used to initialize the addend.
189 It is thus not possible to use values greater than 0xffff as the addend.
190 .Pp
191 Note that all three methods of seeding the random number generator
192 always also set the multiplicand and addend for any of the six
193 generator calls.
194 .Pp
195 For a more powerful random number generator, see
196 .Xr random 3 .
197 .Sh AUTHORS
198 .An Martin Birgmeier
199 .Sh SEE ALSO
200 .Xr rand 3 ,
201 .Xr random 3