]>
git.saurik.com Git - apple/libc.git/blob - gdtoa/FreeBSD/gdtoaimp.h
1 /****************************************************************
3 The author of this software is David M. Gay.
5 Copyright (C) 1998-2000 by Lucent Technologies
8 Permission to use, copy, modify, and distribute this software and
9 its documentation for any purpose and without fee is hereby
10 granted, provided that the above copyright notice appear in all
11 copies and that both that the copyright notice and this
12 permission notice and warranty disclaimer appear in supporting
13 documentation, and that the name of Lucent or any of its entities
14 not be used in advertising or publicity pertaining to
15 distribution of the software without specific, written prior
18 LUCENT DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
19 INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS.
20 IN NO EVENT SHALL LUCENT OR ANY OF ITS ENTITIES BE LIABLE FOR ANY
21 SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
22 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
23 IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION,
24 ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF
27 ****************************************************************/
29 /* This is a variation on dtoa.c that converts arbitary binary
30 floating-point formats to and from decimal notation. It uses
31 double-precision arithmetic internally, so there are still
32 various #ifdefs that adapt the calculations to the native
33 double-precision arithmetic (any of IEEE, VAX D_floating,
34 or IBM mainframe arithmetic).
36 Please send bug reports to David M. Gay (dmg at acm dot org,
37 with " at " changed at "@" and " dot " changed to ".").
40 /* On a machine with IEEE extended-precision registers, it is
41 * necessary to specify double-precision (53-bit) rounding precision
42 * before invoking strtod or dtoa. If the machine uses (the equivalent
43 * of) Intel 80x87 arithmetic, the call
44 * _control87(PC_53, MCW_PC);
45 * does this with many compilers. Whether this or another call is
46 * appropriate depends on the compiler; for this to work, it may be
47 * necessary to #include "float.h" or another system-dependent header
51 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
53 * This strtod returns a nearest machine number to the input decimal
54 * string (or sets errno to ERANGE). With IEEE arithmetic, ties are
55 * broken by the IEEE round-even rule. Otherwise ties are broken by
56 * biased rounding (add half and chop).
58 * Inspired loosely by William D. Clinger's paper "How to Read Floating
59 * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 112-126].
63 * 1. We only require IEEE, IBM, or VAX double-precision
64 * arithmetic (not IEEE double-extended).
65 * 2. We get by with floating-point arithmetic in a case that
66 * Clinger missed -- when we're computing d * 10^n
67 * for a small integer d and the integer n is not too
68 * much larger than 22 (the maximum integer k for which
69 * we can represent 10^k exactly), we may be able to
70 * compute (d*10^k) * 10^(e-k) with just one roundoff.
71 * 3. Rather than a bit-at-a-time adjustment of the binary
72 * result in the hard case, we use floating-point
73 * arithmetic to determine the adjustment to within
74 * one bit; only in really hard cases do we need to
75 * compute a second residual.
76 * 4. Because of 3., we don't need a large table of powers of 10
77 * for ten-to-e (just some small tables, e.g. of 10^k
82 * #define IEEE_8087 for IEEE-arithmetic machines where the least
83 * significant byte has the lowest address.
84 * #define IEEE_MC68k for IEEE-arithmetic machines where the most
85 * significant byte has the lowest address.
86 * #define Long int on machines with 32-bit ints and 64-bit longs.
87 * #define Sudden_Underflow for IEEE-format machines without gradual
88 * underflow (i.e., that flush to zero on underflow).
89 * #define IBM for IBM mainframe-style floating-point arithmetic.
90 * #define VAX for VAX-style floating-point arithmetic (D_floating).
91 * #define No_leftright to omit left-right logic in fast floating-point
92 * computation of dtoa.
93 * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
94 * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
95 * that use extended-precision instructions to compute rounded
96 * products and quotients) with IBM.
97 * #define ROUND_BIASED for IEEE-format with biased rounding.
98 * #define Inaccurate_Divide for IEEE-format with correctly rounded
99 * products but inaccurate quotients, e.g., for Intel i860.
100 * #define NO_LONG_LONG on machines that do not have a "long long"
101 * integer type (of >= 64 bits). On such machines, you can
102 * #define Just_16 to store 16 bits per 32-bit Long when doing
103 * high-precision integer arithmetic. Whether this speeds things
104 * up or slows things down depends on the machine and the number
105 * being converted. If long long is available and the name is
106 * something other than "long long", #define Llong to be the name,
107 * and if "unsigned Llong" does not work as an unsigned version of
108 * Llong, #define #ULLong to be the corresponding unsigned type.
109 * #define KR_headers for old-style C function headers.
110 * #define Bad_float_h if your system lacks a float.h or if it does not
111 * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
112 * FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
113 * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
114 * if memory is available and otherwise does something you deem
115 * appropriate. If MALLOC is undefined, malloc will be invoked
116 * directly -- and assumed always to succeed.
117 * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
118 * memory allocations from a private pool of memory when possible.
119 * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
120 * unless #defined to be a different length. This default length
121 * suffices to get rid of MALLOC calls except for unusual cases,
122 * such as decimal-to-binary conversion of a very long string of
123 * digits. When converting IEEE double precision values, the
124 * longest string gdtoa can return is about 751 bytes long. For
125 * conversions by strtod of strings of 800 digits and all gdtoa
126 * conversions of IEEE doubles in single-threaded executions with
127 * 8-byte pointers, PRIVATE_MEM >= 7400 appears to suffice; with
128 * 4-byte pointers, PRIVATE_MEM >= 7112 appears adequate.
129 * #define INFNAN_CHECK on IEEE systems to cause strtod to check for
130 * Infinity and NaN (case insensitively).
131 * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
132 * strtodg also accepts (case insensitively) strings of the form
133 * NaN(x), where x is a string of hexadecimal digits (optionally
134 * preceded by 0x or 0X) and spaces; if there is only one string
135 * of hexadecimal digits, it is taken for the fraction bits of the
136 * resulting NaN; if there are two or more strings of hexadecimal
137 * digits, each string is assigned to the next available sequence
138 * of 32-bit words of fractions bits (starting with the most
139 * significant), right-aligned in each sequence.
140 * Unless GDTOA_NON_PEDANTIC_NANCHECK is #defined, input "NaN(...)"
141 * is consumed even when ... has the wrong form (in which case the
142 * "(...)" is consumed but ignored).
143 * #define MULTIPLE_THREADS if the system offers preemptively scheduled
144 * multiple threads. In this case, you must provide (or suitably
145 * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
146 * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
147 * in pow5mult, ensures lazy evaluation of only one copy of high
148 * powers of 5; omitting this lock would introduce a small
149 * probability of wasting memory, but would otherwise be harmless.)
150 * You must also invoke freedtoa(s) to free the value s returned by
151 * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
152 * #define IMPRECISE_INEXACT if you do not care about the setting of
153 * the STRTOG_Inexact bits in the special case of doing IEEE double
154 * precision conversions (which could also be done by the strtod in
156 * #define NO_HEX_FP to disable recognition of C9x's hexadecimal
157 * floating-point constants.
158 * #define -DNO_ERRNO to suppress setting errno (in strtod.c and
160 * #define NO_STRING_H to use private versions of memcpy.
161 * On some K&R systems, it may also be necessary to
162 * #define DECLARE_SIZE_T in this case.
163 * #define YES_ALIAS to permit aliasing certain double values with
164 * arrays of ULongs. This leads to slightly better code with
165 * some compilers and was always used prior to 19990916, but it
166 * is not strictly legal and can cause trouble with aggressively
167 * optimizing compilers (e.g., gcc 2.95.1 under -O2).
168 * #define USE_LOCALE to use the current locale's decimal_point value.
171 #ifndef GDTOAIMP_H_INCLUDED
172 #define GDTOAIMP_H_INCLUDED
175 #ifdef Honor_FLT_ROUNDS
181 #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
194 extern Char
*MALLOC
ANSI((size_t));
196 #define MALLOC malloc
200 #undef Avoid_Underflow
213 #define DBL_MAX_10_EXP 308
214 #define DBL_MAX_EXP 1024
216 #define DBL_MAX 1.7976931348623157e+308
221 #define DBL_MAX_10_EXP 75
222 #define DBL_MAX_EXP 63
224 #define DBL_MAX 7.2370055773322621e+75
229 #define DBL_MAX_10_EXP 38
230 #define DBL_MAX_EXP 127
232 #define DBL_MAX 1.7014118346046923e+38
237 #define LONG_MAX 2147483647
240 #else /* ifndef Bad_float_h */
242 #endif /* Bad_float_h */
245 #define Scale_Bit 0x10
265 #if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
266 Exactly one of IEEE_8087
, IEEE_MC68k
, VAX
, or IBM should be defined
.
269 typedef union { double d
; ULong L
[2]; } U
;
274 #define word0(x) ((ULong *)&x)[1]
275 #define word1(x) ((ULong *)&x)[0]
277 #define word0(x) ((ULong *)&x)[0]
278 #define word1(x) ((ULong *)&x)[1]
280 #else /* !YES_ALIAS */
282 #define word0(x) ((U*)&x)->L[1]
283 #define word1(x) ((U*)&x)->L[0]
285 #define word0(x) ((U*)&x)->L[0]
286 #define word1(x) ((U*)&x)->L[1]
288 #define dval(x) ((U*)&x)->d
289 #endif /* YES_ALIAS */
291 /* The following definition of Storeinc is appropriate for MIPS processors.
292 * An alternative that might be better on some machines is
293 * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
295 #if defined(IEEE_8087) + defined(VAX)
296 #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
297 ((unsigned short *)a)[0] = (unsigned short)c, a++)
299 #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
300 ((unsigned short *)a)[1] = (unsigned short)c, a++)
303 /* #define P DBL_MANT_DIG */
304 /* Ten_pmax = floor(P*log(2)/log(5)) */
305 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
306 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
307 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
311 #define Exp_shift1 20
312 #define Exp_msk1 0x100000
313 #define Exp_msk11 0x100000
314 #define Exp_mask 0x7ff00000
318 #define Exp_1 0x3ff00000
319 #define Exp_11 0x3ff00000
321 #define Frac_mask 0xfffff
322 #define Frac_mask1 0xfffff
325 #define Bndry_mask 0xfffff
326 #define Bndry_mask1 0xfffff
328 #define Sign_bit 0x80000000
337 #define Flt_Rounds FLT_ROUNDS
341 #endif /*Flt_Rounds*/
343 #else /* ifndef IEEE_Arith */
344 #undef Sudden_Underflow
345 #define Sudden_Underflow
350 #define Exp_shift1 24
351 #define Exp_msk1 0x1000000
352 #define Exp_msk11 0x1000000
353 #define Exp_mask 0x7f000000
356 #define Exp_1 0x41000000
357 #define Exp_11 0x41000000
358 #define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
359 #define Frac_mask 0xffffff
360 #define Frac_mask1 0xffffff
363 #define Bndry_mask 0xefffff
364 #define Bndry_mask1 0xffffff
366 #define Sign_bit 0x80000000
368 #define Tiny0 0x100000
377 #define Exp_msk1 0x80
378 #define Exp_msk11 0x800000
379 #define Exp_mask 0x7f80
382 #define Exp_1 0x40800000
383 #define Exp_11 0x4080
385 #define Frac_mask 0x7fffff
386 #define Frac_mask1 0xffff007f
389 #define Bndry_mask 0xffff007f
390 #define Bndry_mask1 0xffff007f
392 #define Sign_bit 0x8000
398 #endif /* IBM, VAX */
399 #endif /* IEEE_Arith */
406 #define rounded_product(a,b) a = rnd_prod(a, b)
407 #define rounded_quotient(a,b) a = rnd_quot(a, b)
409 extern double rnd_prod(), rnd_quot();
411 extern double rnd_prod(double, double), rnd_quot(double, double);
414 #define rounded_product(a,b) a *= b
415 #define rounded_quotient(a,b) a /= b
418 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
419 #define Big1 0xffffffff
431 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
432 * This makes some inner loops simpler and sometimes saves work
433 * during multiplications, but it often seems to make things slightly
434 * slower. Hence the default is now to store 32 bits per Long.
437 #else /* long long available */
439 #define Llong long long
442 #define ULLong unsigned Llong
444 #endif /* NO_LONG_LONG */
450 #define ALL_ON 0xffffffff
455 #define ALL_ON 0xffff
458 #ifndef MULTIPLE_THREADS
459 #define ACQUIRE_DTOA_LOCK(n) /*nothing*/
460 #define FREE_DTOA_LOCK(n) /*nothing*/
468 int k
, maxwds
, sign
, wds
;
472 typedef struct Bigint Bigint
;
475 #ifdef DECLARE_SIZE_T
476 typedef unsigned int size_t;
478 extern void memcpy_D2A
ANSI((void*, const void*, size_t));
479 #define Bcopy(x,y) memcpy_D2A(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
480 #else /* !NO_STRING_H */
481 #define Bcopy(x,y) memcpy(&x->sign,&y->sign,y->wds*sizeof(ULong) + 2*sizeof(int))
482 #endif /* NO_STRING_H */
484 #define Balloc Balloc_D2A
485 #define Bfree Bfree_D2A
486 #define ULtoQ ULtoQ_D2A
487 #define ULtof ULtof_D2A
488 #define ULtod ULtod_D2A
489 #define ULtodd ULtodd_D2A
490 #define ULtox ULtox_D2A
491 #define ULtoxL ULtoxL_D2A
492 #define any_on any_on_D2A
494 #define bigtens bigtens_D2A
496 #define copybits copybits_D2A
498 #define decrement decrement_D2A
499 #define diff diff_D2A
500 #define dtoa_result dtoa_result_D2A
501 #define g__fmt g__fmt_D2A
502 #define gethex gethex_D2A
503 #define hexdig hexdig_D2A
504 #define hexnan hexnan_D2A
505 #define hi0bits(x) hi0bits_D2A((ULong)(x))
507 #define increment increment_D2A
508 #define lo0bits lo0bits_D2A
509 #define lshift lshift_D2A
510 #define match match_D2A
511 #define mult mult_D2A
512 #define multadd multadd_D2A
513 #define nrv_alloc nrv_alloc_D2A
514 #define pow5mult pow5mult_D2A
515 #define quorem quorem_D2A
516 #define ratio ratio_D2A
517 #define rshift rshift_D2A
518 #define rv_alloc rv_alloc_D2A
520 #define set_ones set_ones_D2A
521 #define strcp strcp_D2A
522 #define strtoIg strtoIg_D2A
524 #define tens tens_D2A
525 #define tinytens tinytens_D2A
526 #define tinytens tinytens_D2A
527 #define trailz trailz_D2A
530 extern char *dtoa_result
;
531 extern CONST
double bigtens
[], tens
[], tinytens
[];
532 extern unsigned char hexdig
[];
534 extern Bigint
*Balloc
ANSI((int));
535 extern void Bfree
ANSI((Bigint
*));
536 extern void ULtof
ANSI((ULong
*, ULong
*, Long
, int));
537 extern void ULtod
ANSI((ULong
*, ULong
*, Long
, int));
538 extern void ULtodd
ANSI((ULong
*, ULong
*, Long
, int));
539 extern void ULtoQ
ANSI((ULong
*, ULong
*, Long
, int));
540 extern void ULtox
ANSI((UShort
*, ULong
*, Long
, int));
541 extern void ULtoxL
ANSI((ULong
*, ULong
*, Long
, int));
542 extern ULong any_on
ANSI((Bigint
*, int));
543 extern double b2d
ANSI((Bigint
*, int*));
544 extern int cmp
ANSI((Bigint
*, Bigint
*));
545 extern void copybits
ANSI((ULong
*, int, Bigint
*));
546 extern Bigint
*d2b
ANSI((double, int*, int*));
547 extern void decrement
ANSI((Bigint
*));
548 extern Bigint
*diff
ANSI((Bigint
*, Bigint
*));
549 extern char *dtoa
ANSI((double d
, int mode
, int ndigits
,
550 int *decpt
, int *sign
, char **rve
));
551 extern char *g__fmt
ANSI((char*, char*, char*, int, ULong
, size_t));
552 extern int gethex
ANSI((CONST
char**, FPI
*, Long
*, Bigint
**, int));
553 extern void hexdig_init_D2A(Void
);
554 extern int hexnan
ANSI((CONST
char**, FPI
*, ULong
*));
555 extern int hi0bits_D2A
ANSI((ULong
));
556 extern Bigint
*i2b
ANSI((int));
557 extern Bigint
*increment
ANSI((Bigint
*));
558 extern int lo0bits
ANSI((ULong
*));
559 extern Bigint
*lshift
ANSI((Bigint
*, int));
560 extern int match
ANSI((CONST
char**, char*));
561 extern Bigint
*mult
ANSI((Bigint
*, Bigint
*));
562 extern Bigint
*multadd
ANSI((Bigint
*, int, int));
563 extern char *nrv_alloc
ANSI((char*, char **, int));
564 extern Bigint
*pow5mult
ANSI((Bigint
*, int));
565 extern int quorem
ANSI((Bigint
*, Bigint
*));
566 extern double ratio
ANSI((Bigint
*, Bigint
*));
567 extern void rshift
ANSI((Bigint
*, int));
568 extern char *rv_alloc
ANSI((int));
569 extern Bigint
*s2b
ANSI((CONST
char*, int, int, ULong
));
570 extern Bigint
*set_ones
ANSI((Bigint
*, int));
571 extern char *strcp
ANSI((char*, const char*));
572 extern int strtoIg
ANSI((CONST
char*, char**, FPI
*, Long
*, Bigint
**, int*));
573 extern double strtod
ANSI((const char *s00
, char **se
));
574 extern Bigint
*sum
ANSI((Bigint
*, Bigint
*));
575 extern int trailz
ANSI((Bigint
*));
576 extern double ulp
ANSI((double));
582 * NAN_WORD0 and NAN_WORD1 are only referenced in strtod.c. Prior to
583 * 20050115, they used to be hard-wired here (to 0x7ff80000 and 0,
584 * respectively), but now are determined by compiling and running
585 * qnan.c to generate gd_qnan.h, which specifies d_QNAN0 and d_QNAN1.
586 * Formerly gdtoaimp.h recommended supplying suitable -DNAN_WORD0=...
587 * and -DNAN_WORD1=... values if necessary. This should still work.
588 * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
595 #define NAN_WORD0 d_QNAN0
598 #define NAN_WORD1 d_QNAN1
604 #define NAN_WORD0 d_QNAN1
607 #define NAN_WORD1 d_QNAN0
615 #ifdef Sudden_Underflow
621 #endif /* GDTOAIMP_H_INCLUDED */