]> git.saurik.com Git - apple/libc.git/blob - gen.subproj/crypt.c
Libc-167.tar.gz
[apple/libc.git] / gen.subproj / crypt.c
1 /*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1989, 1993
24 * The Regents of the University of California. All rights reserved.
25 *
26 * This code is derived from software contributed to Berkeley by
27 * Tom Truscott.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 * 1. Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * 2. Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in the
36 * documentation and/or other materials provided with the distribution.
37 * 3. All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * This product includes software developed by the University of
40 * California, Berkeley and its contributors.
41 * 4. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58
59 #include <unistd.h>
60 #include <limits.h>
61 #include <pwd.h>
62
63 /*
64 * UNIX password, and DES, encryption.
65 * By Tom Truscott, trt@rti.rti.org,
66 * from algorithms by Robert W. Baldwin and James Gillogly.
67 *
68 * References:
69 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
70 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
71 *
72 * "Password Security: A Case History," R. Morris and Ken Thompson,
73 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
74 *
75 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
76 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
77 */
78
79 /* ===== Configuration ==================== */
80
81 /*
82 * define "MUST_ALIGN" if your compiler cannot load/store
83 * long integers at arbitrary (e.g. odd) memory locations.
84 * (Either that or never pass unaligned addresses to des_cipher!)
85 */
86 #if !defined(vax)
87 #define MUST_ALIGN
88 #endif
89
90 #ifdef CHAR_BITS
91 #if CHAR_BITS != 8
92 #error C_block structure assumes 8 bit characters
93 #endif
94 #endif
95
96 /*
97 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
98 * This avoids use of bit fields (your compiler may be sloppy with them).
99 */
100 #if !defined(cray)
101 #define LONG_IS_32_BITS
102 #endif
103
104 /*
105 * define "B64" to be the declaration for a 64 bit integer.
106 * XXX this feature is currently unused, see "endian" comment below.
107 */
108 #if defined(cray)
109 #define B64 long
110 #endif
111 #if defined(convex)
112 #define B64 long long
113 #endif
114
115 /*
116 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
117 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
118 * little effect on crypt().
119 */
120 #if defined(notdef)
121 #define LARGEDATA
122 #endif
123
124 /* compile with "-DSTATIC=int" when profiling */
125 #ifndef STATIC
126 #define STATIC static
127 #endif
128 STATIC void init_des(), init_perm(), permute();
129 #ifdef DEBUG
130 STATIC prtab();
131 #endif
132
133 /* ==================================== */
134
135 /*
136 * Cipher-block representation (Bob Baldwin):
137 *
138 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
139 * representation is to store one bit per byte in an array of bytes. Bit N of
140 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
141 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
142 * first byte, 9..16 in the second, and so on. The DES spec apparently has
143 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
144 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
145 * the MSB of the first byte. Specifically, the 64-bit input data and key are
146 * converted to LSB format, and the output 64-bit block is converted back into
147 * MSB format.
148 *
149 * DES operates internally on groups of 32 bits which are expanded to 48 bits
150 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
151 * the computation, the expansion is applied only once, the expanded
152 * representation is maintained during the encryption, and a compression
153 * permutation is applied only at the end. To speed up the S-box lookups,
154 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
155 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
156 * most significant ones. The low two bits of each byte are zero. (Thus,
157 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
158 * first byte in the eight byte representation, bit 2 of the 48 bit value is
159 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
160 * used, in which the output is the 64 bit result of an S-box lookup which
161 * has been permuted by P and expanded by E, and is ready for use in the next
162 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
163 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
164 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
165 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
166 * 8*64*8 = 4K bytes.
167 *
168 * To speed up bit-parallel operations (such as XOR), the 8 byte
169 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
170 * machines which support it, a 64 bit value "b64". This data structure,
171 * "C_block", has two problems. First, alignment restrictions must be
172 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
173 * the architecture becomes visible.
174 *
175 * The byte-order problem is unfortunate, since on the one hand it is good
176 * to have a machine-independent C_block representation (bits 1..8 in the
177 * first byte, etc.), and on the other hand it is good for the LSB of the
178 * first byte to be the LSB of i0. We cannot have both these things, so we
179 * currently use the "little-endian" representation and avoid any multi-byte
180 * operations that depend on byte order. This largely precludes use of the
181 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
182 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
183 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
184 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
185 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
186 * requires a 128 kilobyte table, so perhaps this is not a big loss.
187 *
188 * Permutation representation (Jim Gillogly):
189 *
190 * A transformation is defined by its effect on each of the 8 bytes of the
191 * 64-bit input. For each byte we give a 64-bit output that has the bits in
192 * the input distributed appropriately. The transformation is then the OR
193 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
194 * each transformation. Unless LARGEDATA is defined, however, a more compact
195 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
196 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
197 * is slower but tolerable, particularly for password encryption in which
198 * the SPE transformation is iterated many times. The small tables total 9K
199 * bytes, the large tables total 72K bytes.
200 *
201 * The transformations used are:
202 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
203 * This is done by collecting the 32 even-numbered bits and applying
204 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
205 * bits and applying the same transformation. Since there are only
206 * 32 input bits, the IE3264 transformation table is half the size of
207 * the usual table.
208 * CF6464: Compression, final permutation, and LSB->MSB conversion.
209 * This is done by two trivial 48->32 bit compressions to obtain
210 * a 64-bit block (the bit numbering is given in the "CIFP" table)
211 * followed by a 64->64 bit "cleanup" transformation. (It would
212 * be possible to group the bits in the 64-bit block so that 2
213 * identical 32->32 bit transformations could be used instead,
214 * saving a factor of 4 in space and possibly 2 in time, but
215 * byte-ordering and other complications rear their ugly head.
216 * Similar opportunities/problems arise in the key schedule
217 * transforms.)
218 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
219 * This admittedly baroque 64->64 bit transformation is used to
220 * produce the first code (in 8*(6+2) format) of the key schedule.
221 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
222 * It would be possible to define 15 more transformations, each
223 * with a different rotation, to generate the entire key schedule.
224 * To save space, however, we instead permute each code into the
225 * next by using a transformation that "undoes" the PC2 permutation,
226 * rotates the code, and then applies PC2. Unfortunately, PC2
227 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
228 * invertible. We get around that problem by using a modified PC2
229 * which retains the 8 otherwise-lost bits in the unused low-order
230 * bits of each byte. The low-order bits are cleared when the
231 * codes are stored into the key schedule.
232 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
233 * This is faster than applying PC2ROT[0] twice,
234 *
235 * The Bell Labs "salt" (Bob Baldwin):
236 *
237 * The salting is a simple permutation applied to the 48-bit result of E.
238 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
239 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
240 * 16777216 possible values. (The original salt was 12 bits and could not
241 * swap bits 13..24 with 36..48.)
242 *
243 * It is possible, but ugly, to warp the SPE table to account for the salt
244 * permutation. Fortunately, the conditional bit swapping requires only
245 * about four machine instructions and can be done on-the-fly with about an
246 * 8% performance penalty.
247 */
248
249 typedef union {
250 unsigned char b[8];
251 struct {
252 #if defined(LONG_IS_32_BITS)
253 /* long is often faster than a 32-bit bit field */
254 long i0;
255 long i1;
256 #else
257 long i0: 32;
258 long i1: 32;
259 #endif
260 } b32;
261 #if defined(B64)
262 B64 b64;
263 #endif
264 } C_block;
265
266 /*
267 * Convert twenty-four-bit long in host-order
268 * to six bits (and 2 low-order zeroes) per char little-endian format.
269 */
270 #define TO_SIX_BIT(rslt, src) { \
271 C_block cvt; \
272 cvt.b[0] = src; src >>= 6; \
273 cvt.b[1] = src; src >>= 6; \
274 cvt.b[2] = src; src >>= 6; \
275 cvt.b[3] = src; \
276 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
277 }
278
279 /*
280 * These macros may someday permit efficient use of 64-bit integers.
281 */
282 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
283 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
284 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
285 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
286 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
287 #define DCL_BLOCK(d,d0,d1) long d0, d1
288
289 #if defined(LARGEDATA)
290 /* Waste memory like crazy. Also, do permutations in line */
291 #define LGCHUNKBITS 3
292 #define CHUNKBITS (1<<LGCHUNKBITS)
293 #define PERM6464(d,d0,d1,cpp,p) \
294 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
295 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
296 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
297 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
298 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
299 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
300 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
301 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
302 #define PERM3264(d,d0,d1,cpp,p) \
303 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
304 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
305 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
306 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
307 #else
308 /* "small data" */
309 #define LGCHUNKBITS 2
310 #define CHUNKBITS (1<<LGCHUNKBITS)
311 #define PERM6464(d,d0,d1,cpp,p) \
312 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
313 #define PERM3264(d,d0,d1,cpp,p) \
314 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
315
316 STATIC void permute(cp, out, p, chars_in)
317 unsigned char *cp;
318 C_block *out;
319 register C_block *p;
320 int chars_in;
321 {
322 register DCL_BLOCK(D,D0,D1);
323 register C_block *tp;
324 register int t;
325
326 ZERO(D,D0,D1);
327 do {
328 t = *cp++;
329 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
330 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
331 } while (--chars_in > 0);
332 STORE(D,D0,D1,*out);
333 }
334 #endif /* LARGEDATA */
335
336
337 /* ===== (mostly) Standard DES Tables ==================== */
338
339 static unsigned char IP[] = { /* initial permutation */
340 58, 50, 42, 34, 26, 18, 10, 2,
341 60, 52, 44, 36, 28, 20, 12, 4,
342 62, 54, 46, 38, 30, 22, 14, 6,
343 64, 56, 48, 40, 32, 24, 16, 8,
344 57, 49, 41, 33, 25, 17, 9, 1,
345 59, 51, 43, 35, 27, 19, 11, 3,
346 61, 53, 45, 37, 29, 21, 13, 5,
347 63, 55, 47, 39, 31, 23, 15, 7,
348 };
349
350 /* The final permutation is the inverse of IP - no table is necessary */
351
352 static unsigned char ExpandTr[] = { /* expansion operation */
353 32, 1, 2, 3, 4, 5,
354 4, 5, 6, 7, 8, 9,
355 8, 9, 10, 11, 12, 13,
356 12, 13, 14, 15, 16, 17,
357 16, 17, 18, 19, 20, 21,
358 20, 21, 22, 23, 24, 25,
359 24, 25, 26, 27, 28, 29,
360 28, 29, 30, 31, 32, 1,
361 };
362
363 static unsigned char PC1[] = { /* permuted choice table 1 */
364 57, 49, 41, 33, 25, 17, 9,
365 1, 58, 50, 42, 34, 26, 18,
366 10, 2, 59, 51, 43, 35, 27,
367 19, 11, 3, 60, 52, 44, 36,
368
369 63, 55, 47, 39, 31, 23, 15,
370 7, 62, 54, 46, 38, 30, 22,
371 14, 6, 61, 53, 45, 37, 29,
372 21, 13, 5, 28, 20, 12, 4,
373 };
374
375 static unsigned char Rotates[] = { /* PC1 rotation schedule */
376 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
377 };
378
379 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
380 static unsigned char PC2[] = { /* permuted choice table 2 */
381 9, 18, 14, 17, 11, 24, 1, 5,
382 22, 25, 3, 28, 15, 6, 21, 10,
383 35, 38, 23, 19, 12, 4, 26, 8,
384 43, 54, 16, 7, 27, 20, 13, 2,
385
386 0, 0, 41, 52, 31, 37, 47, 55,
387 0, 0, 30, 40, 51, 45, 33, 48,
388 0, 0, 44, 49, 39, 56, 34, 53,
389 0, 0, 46, 42, 50, 36, 29, 32,
390 };
391
392 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
393 /* S[1] */
394 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
395 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
396 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
397 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
398 /* S[2] */
399 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
400 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
401 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
402 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
403 /* S[3] */
404 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
405 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
406 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
407 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
408 /* S[4] */
409 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
410 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
411 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
412 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
413 /* S[5] */
414 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
415 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
416 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
417 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
418 /* S[6] */
419 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
420 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
421 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
422 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
423 /* S[7] */
424 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
425 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
426 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
427 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
428 /* S[8] */
429 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
430 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
431 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
432 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
433 };
434
435 static unsigned char P32Tr[] = { /* 32-bit permutation function */
436 16, 7, 20, 21,
437 29, 12, 28, 17,
438 1, 15, 23, 26,
439 5, 18, 31, 10,
440 2, 8, 24, 14,
441 32, 27, 3, 9,
442 19, 13, 30, 6,
443 22, 11, 4, 25,
444 };
445
446 static unsigned char CIFP[] = { /* compressed/interleaved permutation */
447 1, 2, 3, 4, 17, 18, 19, 20,
448 5, 6, 7, 8, 21, 22, 23, 24,
449 9, 10, 11, 12, 25, 26, 27, 28,
450 13, 14, 15, 16, 29, 30, 31, 32,
451
452 33, 34, 35, 36, 49, 50, 51, 52,
453 37, 38, 39, 40, 53, 54, 55, 56,
454 41, 42, 43, 44, 57, 58, 59, 60,
455 45, 46, 47, 48, 61, 62, 63, 64,
456 };
457
458 static unsigned char itoa64[] = /* 0..63 => ascii-64 */
459 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
460
461
462 /* ===== Tables that are initialized at run time ==================== */
463
464
465 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
466
467 /* Initial key schedule permutation */
468 static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
469
470 /* Subsequent key schedule rotation permutations */
471 static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
472
473 /* Initial permutation/expansion table */
474 static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
475
476 /* Table that combines the S, P, and E operations. */
477 static long SPE[2][8][64];
478
479 /* compressed/interleaved => final permutation table */
480 static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
481
482
483 /* ==================================== */
484
485
486 static C_block constdatablock; /* encryption constant */
487 static char cryptresult[1+4+4+11+1]; /* encrypted result */
488
489 /*
490 * Return a pointer to static data consisting of the "setting"
491 * followed by an encryption produced by the "key" and "setting".
492 */
493 char *
494 crypt(key, setting)
495 register const char *key;
496 register const char *setting;
497 {
498 register char *encp;
499 register long i;
500 register int t;
501 long salt;
502 int num_iter, salt_size;
503 C_block keyblock, rsltblock;
504
505 for (i = 0; i < 8; i++) {
506 if ((t = 2*(unsigned char)(*key)) != 0)
507 key++;
508 keyblock.b[i] = t;
509 }
510 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
511 return (NULL);
512
513 encp = &cryptresult[0];
514 switch (*setting) {
515 case _PASSWORD_EFMT1:
516 /*
517 * Involve the rest of the password 8 characters at a time.
518 */
519 while (*key) {
520 if (des_cipher((char *)&keyblock,
521 (char *)&keyblock, 0L, 1))
522 return (NULL);
523 for (i = 0; i < 8; i++) {
524 if ((t = 2*(unsigned char)(*key)) != 0)
525 key++;
526 keyblock.b[i] ^= t;
527 }
528 if (des_setkey((char *)keyblock.b))
529 return (NULL);
530 }
531
532 *encp++ = *setting++;
533
534 /* get iteration count */
535 num_iter = 0;
536 for (i = 4; --i >= 0; ) {
537 if ((t = (unsigned char)setting[i]) == '\0')
538 t = '.';
539 encp[i] = t;
540 num_iter = (num_iter<<6) | a64toi[t];
541 }
542 setting += 4;
543 encp += 4;
544 salt_size = 4;
545 break;
546 default:
547 num_iter = 25;
548 salt_size = 2;
549 }
550
551 salt = 0;
552 for (i = salt_size; --i >= 0; ) {
553 if ((t = (unsigned char)setting[i]) == '\0')
554 t = '.';
555 encp[i] = t;
556 salt = (salt<<6) | a64toi[t];
557 }
558 encp += salt_size;
559 if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
560 salt, num_iter))
561 return (NULL);
562
563 /*
564 * Encode the 64 cipher bits as 11 ascii characters.
565 */
566 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
567 encp[3] = itoa64[i&0x3f]; i >>= 6;
568 encp[2] = itoa64[i&0x3f]; i >>= 6;
569 encp[1] = itoa64[i&0x3f]; i >>= 6;
570 encp[0] = itoa64[i]; encp += 4;
571 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
572 encp[3] = itoa64[i&0x3f]; i >>= 6;
573 encp[2] = itoa64[i&0x3f]; i >>= 6;
574 encp[1] = itoa64[i&0x3f]; i >>= 6;
575 encp[0] = itoa64[i]; encp += 4;
576 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
577 encp[2] = itoa64[i&0x3f]; i >>= 6;
578 encp[1] = itoa64[i&0x3f]; i >>= 6;
579 encp[0] = itoa64[i];
580
581 encp[3] = 0;
582
583 return (cryptresult);
584 }
585
586
587 /*
588 * The Key Schedule, filled in by des_setkey() or setkey().
589 */
590 #define KS_SIZE 16
591 static C_block KS[KS_SIZE];
592
593 /*
594 * Set up the key schedule from the key.
595 */
596 STATIC int des_setkey(key)
597 register const char *key;
598 {
599 register DCL_BLOCK(K, K0, K1);
600 register C_block *ptabp;
601 register int i;
602 static int des_ready = 0;
603
604 if (!des_ready) {
605 init_des();
606 des_ready = 1;
607 }
608
609 PERM6464(K,K0,K1,(unsigned char *)key,(C_block *)PC1ROT);
610 key = (char *)&KS[0];
611 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
612 for (i = 1; i < 16; i++) {
613 key += sizeof(C_block);
614 STORE(K,K0,K1,*(C_block *)key);
615 ptabp = (C_block *)PC2ROT[Rotates[i]-1];
616 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
617 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
618 }
619 return (0);
620 }
621
622 /*
623 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
624 * iterations of DES, using the the given 24-bit salt and the pre-computed key
625 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
626 *
627 * NOTE: the performance of this routine is critically dependent on your
628 * compiler and machine architecture.
629 */
630 STATIC int des_cipher(in, out, salt, num_iter)
631 const char *in;
632 char *out;
633 long salt;
634 int num_iter;
635 {
636 /* variables that we want in registers, most important first */
637 #if defined(pdp11)
638 register int j;
639 #endif
640 register long L0, L1, R0, R1, k;
641 register C_block *kp;
642 register int ks_inc, loop_count;
643 C_block B;
644
645 L0 = salt;
646 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
647
648 #if defined(vax) || defined(pdp11)
649 salt = ~salt; /* "x &~ y" is faster than "x & y". */
650 #define SALT (~salt)
651 #else
652 #define SALT salt
653 #endif
654
655 #if defined(MUST_ALIGN)
656 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
657 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
658 LOAD(L,L0,L1,B);
659 #else
660 LOAD(L,L0,L1,*(C_block *)in);
661 #endif
662 LOADREG(R,R0,R1,L,L0,L1);
663 L0 &= 0x55555555L;
664 L1 &= 0x55555555L;
665 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
666 R0 &= 0xaaaaaaaaL;
667 R1 = (R1 >> 1) & 0x55555555L;
668 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
669 STORE(L,L0,L1,B);
670 PERM3264(L,L0,L1,B.b, (C_block *)IE3264); /* even bits */
671 PERM3264(R,R0,R1,B.b+4,(C_block *)IE3264); /* odd bits */
672
673 if (num_iter >= 0)
674 { /* encryption */
675 kp = &KS[0];
676 ks_inc = sizeof(*kp);
677 }
678 else
679 { /* decryption */
680 num_iter = -num_iter;
681 kp = &KS[KS_SIZE-1];
682 ks_inc = -sizeof(*kp);
683 }
684
685 while (--num_iter >= 0) {
686 loop_count = 8;
687 do {
688
689 #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
690 #if defined(gould)
691 /* use this if B.b[i] is evaluated just once ... */
692 #define DOXOR(x,y,i) x^=SPTAB(SPE[0][i],B.b[i]); y^=SPTAB(SPE[1][i],B.b[i]);
693 #else
694 #if defined(pdp11)
695 /* use this if your "long" int indexing is slow */
696 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(SPE[0][i],j); y^=SPTAB(SPE[1][i],j);
697 #else
698 /* use this if "k" is allocated to a register ... */
699 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(SPE[0][i],k); y^=SPTAB(SPE[1][i],k);
700 #endif
701 #endif
702
703 #define CRUNCH(p0, p1, q0, q1) \
704 k = (q0 ^ q1) & SALT; \
705 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
706 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
707 kp = (C_block *)((char *)kp+ks_inc); \
708 \
709 DOXOR(p0, p1, 0); \
710 DOXOR(p0, p1, 1); \
711 DOXOR(p0, p1, 2); \
712 DOXOR(p0, p1, 3); \
713 DOXOR(p0, p1, 4); \
714 DOXOR(p0, p1, 5); \
715 DOXOR(p0, p1, 6); \
716 DOXOR(p0, p1, 7);
717
718 CRUNCH(L0, L1, R0, R1);
719 CRUNCH(R0, R1, L0, L1);
720 } while (--loop_count != 0);
721 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
722
723
724 /* swap L and R */
725 L0 ^= R0; L1 ^= R1;
726 R0 ^= L0; R1 ^= L1;
727 L0 ^= R0; L1 ^= R1;
728 }
729
730 /* store the encrypted (or decrypted) result */
731 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
732 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
733 STORE(L,L0,L1,B);
734 PERM6464(L,L0,L1,B.b, (C_block *)CF6464);
735 #if defined(MUST_ALIGN)
736 STORE(L,L0,L1,B);
737 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
738 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
739 #else
740 STORE(L,L0,L1,*(C_block *)out);
741 #endif
742 return (0);
743 }
744
745
746 /*
747 * Initialize various tables. This need only be done once. It could even be
748 * done at compile time, if the compiler were capable of that sort of thing.
749 */
750 STATIC void init_des()
751 {
752 register int i, j;
753 register long k;
754 register int tableno;
755 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
756
757 /*
758 * table that converts chars "./0-9A-Za-z"to integers 0-63.
759 */
760 for (i = 0; i < 64; i++)
761 a64toi[itoa64[i]] = i;
762
763 /*
764 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
765 */
766 for (i = 0; i < 64; i++)
767 perm[i] = 0;
768 for (i = 0; i < 64; i++) {
769 if ((k = PC2[i]) == 0)
770 continue;
771 k += Rotates[0]-1;
772 if ((k%28) < Rotates[0]) k -= 28;
773 k = PC1[k];
774 if (k > 0) {
775 k--;
776 k = (k|07) - (k&07);
777 k++;
778 }
779 perm[i] = k;
780 }
781 #ifdef DEBUG
782 prtab("pc1tab", perm, 8);
783 #endif
784 init_perm(PC1ROT, perm, 8, 8);
785
786 /*
787 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
788 */
789 for (j = 0; j < 2; j++) {
790 unsigned char pc2inv[64];
791 for (i = 0; i < 64; i++)
792 perm[i] = pc2inv[i] = 0;
793 for (i = 0; i < 64; i++) {
794 if ((k = PC2[i]) == 0)
795 continue;
796 pc2inv[k-1] = i+1;
797 }
798 for (i = 0; i < 64; i++) {
799 if ((k = PC2[i]) == 0)
800 continue;
801 k += j;
802 if ((k%28) <= j) k -= 28;
803 perm[i] = pc2inv[k];
804 }
805 #ifdef DEBUG
806 prtab("pc2tab", perm, 8);
807 #endif
808 init_perm(PC2ROT[j], perm, 8, 8);
809 }
810
811 /*
812 * Bit reverse, then initial permutation, then expansion.
813 */
814 for (i = 0; i < 8; i++) {
815 for (j = 0; j < 8; j++) {
816 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
817 if (k > 32)
818 k -= 32;
819 else if (k > 0)
820 k--;
821 if (k > 0) {
822 k--;
823 k = (k|07) - (k&07);
824 k++;
825 }
826 perm[i*8+j] = k;
827 }
828 }
829 #ifdef DEBUG
830 prtab("ietab", perm, 8);
831 #endif
832 init_perm(IE3264, perm, 4, 8);
833
834 /*
835 * Compression, then final permutation, then bit reverse.
836 */
837 for (i = 0; i < 64; i++) {
838 k = IP[CIFP[i]-1];
839 if (k > 0) {
840 k--;
841 k = (k|07) - (k&07);
842 k++;
843 }
844 perm[k-1] = i+1;
845 }
846 #ifdef DEBUG
847 prtab("cftab", perm, 8);
848 #endif
849 init_perm(CF6464, perm, 8, 8);
850
851 /*
852 * SPE table
853 */
854 for (i = 0; i < 48; i++)
855 perm[i] = P32Tr[ExpandTr[i]-1];
856 for (tableno = 0; tableno < 8; tableno++) {
857 for (j = 0; j < 64; j++) {
858 k = (((j >> 0) &01) << 5)|
859 (((j >> 1) &01) << 3)|
860 (((j >> 2) &01) << 2)|
861 (((j >> 3) &01) << 1)|
862 (((j >> 4) &01) << 0)|
863 (((j >> 5) &01) << 4);
864 k = S[tableno][k];
865 k = (((k >> 3)&01) << 0)|
866 (((k >> 2)&01) << 1)|
867 (((k >> 1)&01) << 2)|
868 (((k >> 0)&01) << 3);
869 for (i = 0; i < 32; i++)
870 tmp32[i] = 0;
871 for (i = 0; i < 4; i++)
872 tmp32[4 * tableno + i] = (k >> i) & 01;
873 k = 0;
874 for (i = 24; --i >= 0; )
875 k = (k<<1) | tmp32[perm[i]-1];
876 TO_SIX_BIT(SPE[0][tableno][j], k);
877 k = 0;
878 for (i = 24; --i >= 0; )
879 k = (k<<1) | tmp32[perm[i+24]-1];
880 TO_SIX_BIT(SPE[1][tableno][j], k);
881 }
882 }
883 }
884
885 /*
886 * Initialize "perm" to represent transformation "p", which rearranges
887 * (perhaps with expansion and/or contraction) one packed array of bits
888 * (of size "chars_in" characters) into another array (of size "chars_out"
889 * characters).
890 *
891 * "perm" must be all-zeroes on entry to this routine.
892 */
893 STATIC void init_perm(perm, p, chars_in, chars_out)
894 C_block perm[64/CHUNKBITS][1<<CHUNKBITS];
895 unsigned char p[64];
896 int chars_in, chars_out;
897 {
898 register int i, j, k, l;
899
900 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
901 l = p[k] - 1; /* where this bit comes from */
902 if (l < 0)
903 continue; /* output bit is always 0 */
904 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
905 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
906 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
907 if ((j & l) != 0)
908 perm[i][j].b[k>>3] |= 1<<(k&07);
909 }
910 }
911 }
912
913 /*
914 * "setkey" routine (for backwards compatibility)
915 */
916 int setkey(key)
917 register const char *key;
918 {
919 register int i, j, k;
920 C_block keyblock;
921
922 for (i = 0; i < 8; i++) {
923 k = 0;
924 for (j = 0; j < 8; j++) {
925 k <<= 1;
926 k |= (unsigned char)*key++;
927 }
928 keyblock.b[i] = k;
929 }
930 return (des_setkey((char *)keyblock.b));
931 }
932
933 /*
934 * "encrypt" routine (for backwards compatibility)
935 */
936 int encrypt(block, flag)
937 register char *block;
938 int flag;
939 {
940 register int i, j, k;
941 C_block cblock;
942
943 for (i = 0; i < 8; i++) {
944 k = 0;
945 for (j = 0; j < 8; j++) {
946 k <<= 1;
947 k |= (unsigned char)*block++;
948 }
949 cblock.b[i] = k;
950 }
951 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
952 return (1);
953 for (i = 7; i >= 0; i--) {
954 k = cblock.b[i];
955 for (j = 7; j >= 0; j--) {
956 *--block = k&01;
957 k >>= 1;
958 }
959 }
960 return (0);
961 }
962
963 #ifdef DEBUG
964 STATIC
965 prtab(s, t, num_rows)
966 char *s;
967 unsigned char *t;
968 int num_rows;
969 {
970 register int i, j;
971
972 (void)printf("%s:\n", s);
973 for (i = 0; i < num_rows; i++) {
974 for (j = 0; j < 8; j++) {
975 (void)printf("%3d", t[i*8+j]);
976 }
977 (void)printf("\n");
978 }
979 (void)printf("\n");
980 }
981 #endif