]> git.saurik.com Git - apple/libc.git/blob - gen/FreeBSD/rand48.3
Libc-391.tar.gz
[apple/libc.git] / gen / FreeBSD / rand48.3
1 .\" Copyright (c) 1993 Martin Birgmeier
2 .\" All rights reserved.
3 .\"
4 .\" You may redistribute unmodified or modified versions of this source
5 .\" code provided that the above copyright notice and this and the
6 .\" following conditions are retained.
7 .\"
8 .\" This software is provided ``as is'', and comes with no warranties
9 .\" of any kind. I shall in no event be liable for anything that happens
10 .\" to anyone/anything when using this software.
11 .\"
12 .\" @(#)rand48.3 V1.0 MB 8 Oct 1993
13 .\" $FreeBSD: src/lib/libc/gen/rand48.3,v 1.16 2004/07/02 23:52:10 ru Exp $
14 .\"
15 .Dd October 8, 1993
16 .Dt RAND48 3
17 .Os
18 .Sh NAME
19 .Nm drand48 ,
20 .Nm erand48 ,
21 .Nm lrand48 ,
22 .Nm nrand48 ,
23 .Nm mrand48 ,
24 .Nm jrand48 ,
25 .Nm srand48 ,
26 .Nm seed48 ,
27 .Nm lcong48
28 .Nd pseudo random number generators and initialization routines
29 .Sh LIBRARY
30 .Lb libc
31 .Sh SYNOPSIS
32 .In stdlib.h
33 .Ft double
34 .Fn drand48 void
35 .Ft double
36 .Fn erand48 "unsigned short xseed[3]"
37 .Ft long
38 .Fn lrand48 void
39 .Ft long
40 .Fn nrand48 "unsigned short xseed[3]"
41 .Ft long
42 .Fn mrand48 void
43 .Ft long
44 .Fn jrand48 "unsigned short xseed[3]"
45 .Ft void
46 .Fn srand48 "long seed"
47 .Ft "unsigned short *"
48 .Fn seed48 "unsigned short xseed[3]"
49 .Ft void
50 .Fn lcong48 "unsigned short p[7]"
51 .Sh DESCRIPTION
52 The
53 .Fn rand48
54 family of functions generates pseudo-random numbers using a linear
55 congruential algorithm working on integers 48 bits in size.
56 The
57 particular formula employed is
58 r(n+1) = (a * r(n) + c) mod m
59 where the default values are
60 for the multiplicand a = 0xfdeece66d = 25214903917 and
61 the addend c = 0xb = 11.
62 The modulo is always fixed at m = 2 ** 48.
63 r(n) is called the seed of the random number generator.
64 .Pp
65 For all the six generator routines described next, the first
66 computational step is to perform a single iteration of the algorithm.
67 .Pp
68 The
69 .Fn drand48
70 and
71 .Fn erand48
72 functions
73 return values of type double.
74 The full 48 bits of r(n+1) are
75 loaded into the mantissa of the returned value, with the exponent set
76 such that the values produced lie in the interval [0.0, 1.0).
77 .Pp
78 The
79 .Fn lrand48
80 and
81 .Fn nrand48
82 functions
83 return values of type long in the range
84 [0, 2**31-1].
85 The high-order (31) bits of
86 r(n+1) are loaded into the lower bits of the returned value, with
87 the topmost (sign) bit set to zero.
88 .Pp
89 The
90 .Fn mrand48
91 and
92 .Fn jrand48
93 functions
94 return values of type long in the range
95 [-2**31, 2**31-1].
96 The high-order (32) bits of
97 r(n+1) are loaded into the returned value.
98 .Pp
99 The
100 .Fn drand48 ,
101 .Fn lrand48 ,
102 and
103 .Fn mrand48
104 functions
105 use an internal buffer to store r(n).
106 For these functions
107 the initial value of r(0) = 0x1234abcd330e = 20017429951246.
108 .Pp
109 On the other hand,
110 .Fn erand48 ,
111 .Fn nrand48 ,
112 and
113 .Fn jrand48
114 use a user-supplied buffer to store the seed r(n),
115 which consists of an array of 3 shorts, where the zeroth member
116 holds the least significant bits.
117 .Pp
118 All functions share the same multiplicand and addend.
119 .Pp
120 The
121 .Fn srand48
122 function
123 is used to initialize the internal buffer r(n) of
124 .Fn drand48 ,
125 .Fn lrand48 ,
126 and
127 .Fn mrand48
128 such that the 32 bits of the seed value are copied into the upper 32 bits
129 of r(n), with the lower 16 bits of r(n) arbitrarily being set to 0x330e.
130 Additionally, the constant multiplicand and addend of the algorithm are
131 reset to the default values given above.
132 .Pp
133 The
134 .Fn seed48
135 function
136 also initializes the internal buffer r(n) of
137 .Fn drand48 ,
138 .Fn lrand48 ,
139 and
140 .Fn mrand48 ,
141 but here all 48 bits of the seed can be specified in an array of 3 shorts,
142 where the zeroth member specifies the lowest bits.
143 Again,
144 the constant multiplicand and addend of the algorithm are
145 reset to the default values given above.
146 The
147 .Fn seed48
148 function
149 returns a pointer to an array of 3 shorts which contains the old seed.
150 This array is statically allocated, thus its contents are lost after
151 each new call to
152 .Fn seed48 .
153 .Pp
154 Finally,
155 .Fn lcong48
156 allows full control over the multiplicand and addend used in
157 .Fn drand48 ,
158 .Fn erand48 ,
159 .Fn lrand48 ,
160 .Fn nrand48 ,
161 .Fn mrand48 ,
162 and
163 .Fn jrand48 ,
164 and the seed used in
165 .Fn drand48 ,
166 .Fn lrand48 ,
167 and
168 .Fn mrand48 .
169 An array of 7 shorts is passed as argument; the first three shorts are
170 used to initialize the seed; the second three are used to initialize the
171 multiplicand; and the last short is used to initialize the addend.
172 It is thus not possible to use values greater than 0xffff as the addend.
173 .Pp
174 Note that all three methods of seeding the random number generator
175 always also set the multiplicand and addend for any of the six
176 generator calls.
177 .Pp
178 For a more powerful random number generator, see
179 .Xr random 3 .
180 .Sh AUTHORS
181 .An Martin Birgmeier
182 .Sh SEE ALSO
183 .Xr rand 3 ,
184 .Xr random 3