]> git.saurik.com Git - apple/libc.git/blob - gen.subproj/crypt.c
Libc-186.tar.gz
[apple/libc.git] / gen.subproj / crypt.c
1 /*
2 * Copyright (c) 1999 Apple Computer, Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * The contents of this file constitute Original Code as defined in and
7 * are subject to the Apple Public Source License Version 1.1 (the
8 * "License"). You may not use this file except in compliance with the
9 * License. Please obtain a copy of the License at
10 * http://www.apple.com/publicsource and read it before using this file.
11 *
12 * This Original Code and all software distributed under the License are
13 * distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, EITHER
14 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
15 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT. Please see the
17 * License for the specific language governing rights and limitations
18 * under the License.
19 *
20 * @APPLE_LICENSE_HEADER_END@
21 */
22 /*
23 * Copyright (c) 1989, 1993
24 * The Regents of the University of California. All rights reserved.
25 *
26 * This code is derived from software contributed to Berkeley by
27 * Tom Truscott.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 * 1. Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * 2. Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in the
36 * documentation and/or other materials provided with the distribution.
37 * 3. All advertising materials mentioning features or use of this software
38 * must display the following acknowledgement:
39 * This product includes software developed by the University of
40 * California, Berkeley and its contributors.
41 * 4. Neither the name of the University nor the names of its contributors
42 * may be used to endorse or promote products derived from this software
43 * without specific prior written permission.
44 *
45 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
46 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
47 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
48 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
49 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
50 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
51 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
52 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
53 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
54 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
55 * SUCH DAMAGE.
56 */
57
58
59 #include <unistd.h>
60 #include <limits.h>
61 #include <pwd.h>
62 #include <stdlib.h>
63
64 /*
65 * UNIX password, and DES, encryption.
66 * By Tom Truscott, trt@rti.rti.org,
67 * from algorithms by Robert W. Baldwin and James Gillogly.
68 *
69 * References:
70 * "Mathematical Cryptology for Computer Scientists and Mathematicians,"
71 * by Wayne Patterson, 1987, ISBN 0-8476-7438-X.
72 *
73 * "Password Security: A Case History," R. Morris and Ken Thompson,
74 * Communications of the ACM, vol. 22, pp. 594-597, Nov. 1979.
75 *
76 * "DES will be Totally Insecure within Ten Years," M.E. Hellman,
77 * IEEE Spectrum, vol. 16, pp. 32-39, July 1979.
78 */
79
80 /* ===== Configuration ==================== */
81
82 /*
83 * define "MUST_ALIGN" if your compiler cannot load/store
84 * long integers at arbitrary (e.g. odd) memory locations.
85 * (Either that or never pass unaligned addresses to des_cipher!)
86 */
87 #if !defined(vax)
88 #define MUST_ALIGN
89 #endif
90
91 #ifdef CHAR_BITS
92 #if CHAR_BITS != 8
93 #error C_block structure assumes 8 bit characters
94 #endif
95 #endif
96
97 /*
98 * define "LONG_IS_32_BITS" only if sizeof(long)==4.
99 * This avoids use of bit fields (your compiler may be sloppy with them).
100 */
101 #if !defined(cray)
102 #define LONG_IS_32_BITS
103 #endif
104
105 /*
106 * define "B64" to be the declaration for a 64 bit integer.
107 * XXX this feature is currently unused, see "endian" comment below.
108 */
109 #if defined(cray)
110 #define B64 long
111 #endif
112 #if defined(convex)
113 #define B64 long long
114 #endif
115
116 /*
117 * define "LARGEDATA" to get faster permutations, by using about 72 kilobytes
118 * of lookup tables. This speeds up des_setkey() and des_cipher(), but has
119 * little effect on crypt().
120 */
121 #if defined(notdef)
122 #define LARGEDATA
123 #endif
124
125 /* compile with "-DSTATIC=int" when profiling */
126 #ifndef STATIC
127 #define STATIC static
128 #endif
129 STATIC void init_des(), init_perm(), permute();
130 #ifdef DEBUG
131 STATIC prtab();
132 #endif
133
134 /* ==================================== */
135
136 /*
137 * Cipher-block representation (Bob Baldwin):
138 *
139 * DES operates on groups of 64 bits, numbered 1..64 (sigh). One
140 * representation is to store one bit per byte in an array of bytes. Bit N of
141 * the NBS spec is stored as the LSB of the Nth byte (index N-1) in the array.
142 * Another representation stores the 64 bits in 8 bytes, with bits 1..8 in the
143 * first byte, 9..16 in the second, and so on. The DES spec apparently has
144 * bit 1 in the MSB of the first byte, but that is particularly noxious so we
145 * bit-reverse each byte so that bit 1 is the LSB of the first byte, bit 8 is
146 * the MSB of the first byte. Specifically, the 64-bit input data and key are
147 * converted to LSB format, and the output 64-bit block is converted back into
148 * MSB format.
149 *
150 * DES operates internally on groups of 32 bits which are expanded to 48 bits
151 * by permutation E and shrunk back to 32 bits by the S boxes. To speed up
152 * the computation, the expansion is applied only once, the expanded
153 * representation is maintained during the encryption, and a compression
154 * permutation is applied only at the end. To speed up the S-box lookups,
155 * the 48 bits are maintained as eight 6 bit groups, one per byte, which
156 * directly feed the eight S-boxes. Within each byte, the 6 bits are the
157 * most significant ones. The low two bits of each byte are zero. (Thus,
158 * bit 1 of the 48 bit E expansion is stored as the "4"-valued bit of the
159 * first byte in the eight byte representation, bit 2 of the 48 bit value is
160 * the "8"-valued bit, and so on.) In fact, a combined "SPE"-box lookup is
161 * used, in which the output is the 64 bit result of an S-box lookup which
162 * has been permuted by P and expanded by E, and is ready for use in the next
163 * iteration. Two 32-bit wide tables, SPE[0] and SPE[1], are used for this
164 * lookup. Since each byte in the 48 bit path is a multiple of four, indexed
165 * lookup of SPE[0] and SPE[1] is simple and fast. The key schedule and
166 * "salt" are also converted to this 8*(6+2) format. The SPE table size is
167 * 8*64*8 = 4K bytes.
168 *
169 * To speed up bit-parallel operations (such as XOR), the 8 byte
170 * representation is "union"ed with 32 bit values "i0" and "i1", and, on
171 * machines which support it, a 64 bit value "b64". This data structure,
172 * "C_block", has two problems. First, alignment restrictions must be
173 * honored. Second, the byte-order (e.g. little-endian or big-endian) of
174 * the architecture becomes visible.
175 *
176 * The byte-order problem is unfortunate, since on the one hand it is good
177 * to have a machine-independent C_block representation (bits 1..8 in the
178 * first byte, etc.), and on the other hand it is good for the LSB of the
179 * first byte to be the LSB of i0. We cannot have both these things, so we
180 * currently use the "little-endian" representation and avoid any multi-byte
181 * operations that depend on byte order. This largely precludes use of the
182 * 64-bit datatype since the relative order of i0 and i1 are unknown. It
183 * also inhibits grouping the SPE table to look up 12 bits at a time. (The
184 * 12 bits can be stored in a 16-bit field with 3 low-order zeroes and 1
185 * high-order zero, providing fast indexing into a 64-bit wide SPE.) On the
186 * other hand, 64-bit datatypes are currently rare, and a 12-bit SPE lookup
187 * requires a 128 kilobyte table, so perhaps this is not a big loss.
188 *
189 * Permutation representation (Jim Gillogly):
190 *
191 * A transformation is defined by its effect on each of the 8 bytes of the
192 * 64-bit input. For each byte we give a 64-bit output that has the bits in
193 * the input distributed appropriately. The transformation is then the OR
194 * of the 8 sets of 64-bits. This uses 8*256*8 = 16K bytes of storage for
195 * each transformation. Unless LARGEDATA is defined, however, a more compact
196 * table is used which looks up 16 4-bit "chunks" rather than 8 8-bit chunks.
197 * The smaller table uses 16*16*8 = 2K bytes for each transformation. This
198 * is slower but tolerable, particularly for password encryption in which
199 * the SPE transformation is iterated many times. The small tables total 9K
200 * bytes, the large tables total 72K bytes.
201 *
202 * The transformations used are:
203 * IE3264: MSB->LSB conversion, initial permutation, and expansion.
204 * This is done by collecting the 32 even-numbered bits and applying
205 * a 32->64 bit transformation, and then collecting the 32 odd-numbered
206 * bits and applying the same transformation. Since there are only
207 * 32 input bits, the IE3264 transformation table is half the size of
208 * the usual table.
209 * CF6464: Compression, final permutation, and LSB->MSB conversion.
210 * This is done by two trivial 48->32 bit compressions to obtain
211 * a 64-bit block (the bit numbering is given in the "CIFP" table)
212 * followed by a 64->64 bit "cleanup" transformation. (It would
213 * be possible to group the bits in the 64-bit block so that 2
214 * identical 32->32 bit transformations could be used instead,
215 * saving a factor of 4 in space and possibly 2 in time, but
216 * byte-ordering and other complications rear their ugly head.
217 * Similar opportunities/problems arise in the key schedule
218 * transforms.)
219 * PC1ROT: MSB->LSB, PC1 permutation, rotate, and PC2 permutation.
220 * This admittedly baroque 64->64 bit transformation is used to
221 * produce the first code (in 8*(6+2) format) of the key schedule.
222 * PC2ROT[0]: Inverse PC2 permutation, rotate, and PC2 permutation.
223 * It would be possible to define 15 more transformations, each
224 * with a different rotation, to generate the entire key schedule.
225 * To save space, however, we instead permute each code into the
226 * next by using a transformation that "undoes" the PC2 permutation,
227 * rotates the code, and then applies PC2. Unfortunately, PC2
228 * transforms 56 bits into 48 bits, dropping 8 bits, so PC2 is not
229 * invertible. We get around that problem by using a modified PC2
230 * which retains the 8 otherwise-lost bits in the unused low-order
231 * bits of each byte. The low-order bits are cleared when the
232 * codes are stored into the key schedule.
233 * PC2ROT[1]: Same as PC2ROT[0], but with two rotations.
234 * This is faster than applying PC2ROT[0] twice,
235 *
236 * The Bell Labs "salt" (Bob Baldwin):
237 *
238 * The salting is a simple permutation applied to the 48-bit result of E.
239 * Specifically, if bit i (1 <= i <= 24) of the salt is set then bits i and
240 * i+24 of the result are swapped. The salt is thus a 24 bit number, with
241 * 16777216 possible values. (The original salt was 12 bits and could not
242 * swap bits 13..24 with 36..48.)
243 *
244 * It is possible, but ugly, to warp the SPE table to account for the salt
245 * permutation. Fortunately, the conditional bit swapping requires only
246 * about four machine instructions and can be done on-the-fly with about an
247 * 8% performance penalty.
248 */
249
250 typedef union {
251 unsigned char b[8];
252 struct {
253 #if defined(LONG_IS_32_BITS)
254 /* long is often faster than a 32-bit bit field */
255 long i0;
256 long i1;
257 #else
258 long i0: 32;
259 long i1: 32;
260 #endif
261 } b32;
262 #if defined(B64)
263 B64 b64;
264 #endif
265 } C_block;
266
267 /*
268 * Convert twenty-four-bit long in host-order
269 * to six bits (and 2 low-order zeroes) per char little-endian format.
270 */
271 #define TO_SIX_BIT(rslt, src) { \
272 C_block cvt; \
273 cvt.b[0] = src; src >>= 6; \
274 cvt.b[1] = src; src >>= 6; \
275 cvt.b[2] = src; src >>= 6; \
276 cvt.b[3] = src; \
277 rslt = (cvt.b32.i0 & 0x3f3f3f3fL) << 2; \
278 }
279
280 /*
281 * These macros may someday permit efficient use of 64-bit integers.
282 */
283 #define ZERO(d,d0,d1) d0 = 0, d1 = 0
284 #define LOAD(d,d0,d1,bl) d0 = (bl).b32.i0, d1 = (bl).b32.i1
285 #define LOADREG(d,d0,d1,s,s0,s1) d0 = s0, d1 = s1
286 #define OR(d,d0,d1,bl) d0 |= (bl).b32.i0, d1 |= (bl).b32.i1
287 #define STORE(s,s0,s1,bl) (bl).b32.i0 = s0, (bl).b32.i1 = s1
288 #define DCL_BLOCK(d,d0,d1) long d0, d1
289
290 #if defined(LARGEDATA)
291 /* Waste memory like crazy. Also, do permutations in line */
292 #define LGCHUNKBITS 3
293 #define CHUNKBITS (1<<LGCHUNKBITS)
294 #define PERM6464(d,d0,d1,cpp,p) \
295 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
296 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
297 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
298 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]); \
299 OR (d,d0,d1,(p)[(4<<CHUNKBITS)+(cpp)[4]]); \
300 OR (d,d0,d1,(p)[(5<<CHUNKBITS)+(cpp)[5]]); \
301 OR (d,d0,d1,(p)[(6<<CHUNKBITS)+(cpp)[6]]); \
302 OR (d,d0,d1,(p)[(7<<CHUNKBITS)+(cpp)[7]]);
303 #define PERM3264(d,d0,d1,cpp,p) \
304 LOAD(d,d0,d1,(p)[(0<<CHUNKBITS)+(cpp)[0]]); \
305 OR (d,d0,d1,(p)[(1<<CHUNKBITS)+(cpp)[1]]); \
306 OR (d,d0,d1,(p)[(2<<CHUNKBITS)+(cpp)[2]]); \
307 OR (d,d0,d1,(p)[(3<<CHUNKBITS)+(cpp)[3]]);
308 #else
309 /* "small data" */
310 #define LGCHUNKBITS 2
311 #define CHUNKBITS (1<<LGCHUNKBITS)
312 #define PERM6464(d,d0,d1,cpp,p) \
313 { C_block tblk; permute(cpp,&tblk,p,8); LOAD (d,d0,d1,tblk); }
314 #define PERM3264(d,d0,d1,cpp,p) \
315 { C_block tblk; permute(cpp,&tblk,p,4); LOAD (d,d0,d1,tblk); }
316
317 STATIC void permute(cp, out, p, chars_in)
318 unsigned char *cp;
319 C_block *out;
320 register C_block *p;
321 int chars_in;
322 {
323 register DCL_BLOCK(D,D0,D1);
324 register C_block *tp;
325 register int t;
326
327 ZERO(D,D0,D1);
328 do {
329 t = *cp++;
330 tp = &p[t&0xf]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
331 tp = &p[t>>4]; OR(D,D0,D1,*tp); p += (1<<CHUNKBITS);
332 } while (--chars_in > 0);
333 STORE(D,D0,D1,*out);
334 }
335 #endif /* LARGEDATA */
336
337
338 /* ===== (mostly) Standard DES Tables ==================== */
339
340 static unsigned char IP[] = { /* initial permutation */
341 58, 50, 42, 34, 26, 18, 10, 2,
342 60, 52, 44, 36, 28, 20, 12, 4,
343 62, 54, 46, 38, 30, 22, 14, 6,
344 64, 56, 48, 40, 32, 24, 16, 8,
345 57, 49, 41, 33, 25, 17, 9, 1,
346 59, 51, 43, 35, 27, 19, 11, 3,
347 61, 53, 45, 37, 29, 21, 13, 5,
348 63, 55, 47, 39, 31, 23, 15, 7,
349 };
350
351 /* The final permutation is the inverse of IP - no table is necessary */
352
353 static unsigned char ExpandTr[] = { /* expansion operation */
354 32, 1, 2, 3, 4, 5,
355 4, 5, 6, 7, 8, 9,
356 8, 9, 10, 11, 12, 13,
357 12, 13, 14, 15, 16, 17,
358 16, 17, 18, 19, 20, 21,
359 20, 21, 22, 23, 24, 25,
360 24, 25, 26, 27, 28, 29,
361 28, 29, 30, 31, 32, 1,
362 };
363
364 static unsigned char PC1[] = { /* permuted choice table 1 */
365 57, 49, 41, 33, 25, 17, 9,
366 1, 58, 50, 42, 34, 26, 18,
367 10, 2, 59, 51, 43, 35, 27,
368 19, 11, 3, 60, 52, 44, 36,
369
370 63, 55, 47, 39, 31, 23, 15,
371 7, 62, 54, 46, 38, 30, 22,
372 14, 6, 61, 53, 45, 37, 29,
373 21, 13, 5, 28, 20, 12, 4,
374 };
375
376 static unsigned char Rotates[] = { /* PC1 rotation schedule */
377 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1,
378 };
379
380 /* note: each "row" of PC2 is left-padded with bits that make it invertible */
381 static unsigned char PC2[] = { /* permuted choice table 2 */
382 9, 18, 14, 17, 11, 24, 1, 5,
383 22, 25, 3, 28, 15, 6, 21, 10,
384 35, 38, 23, 19, 12, 4, 26, 8,
385 43, 54, 16, 7, 27, 20, 13, 2,
386
387 0, 0, 41, 52, 31, 37, 47, 55,
388 0, 0, 30, 40, 51, 45, 33, 48,
389 0, 0, 44, 49, 39, 56, 34, 53,
390 0, 0, 46, 42, 50, 36, 29, 32,
391 };
392
393 static const unsigned char S[8][64] = { /* 48->32 bit substitution tables */
394 /* S[1] */
395 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
396 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
397 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
398 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
399 /* S[2] */
400 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
401 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
402 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
403 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
404 /* S[3] */
405 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
406 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
407 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
408 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
409 /* S[4] */
410 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
411 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
412 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
413 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
414 /* S[5] */
415 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
416 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
417 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
418 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
419 /* S[6] */
420 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
421 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
422 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
423 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
424 /* S[7] */
425 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
426 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
427 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
428 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
429 /* S[8] */
430 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
431 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
432 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
433 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11,
434 };
435
436 static unsigned char P32Tr[] = { /* 32-bit permutation function */
437 16, 7, 20, 21,
438 29, 12, 28, 17,
439 1, 15, 23, 26,
440 5, 18, 31, 10,
441 2, 8, 24, 14,
442 32, 27, 3, 9,
443 19, 13, 30, 6,
444 22, 11, 4, 25,
445 };
446
447 static unsigned char CIFP[] = { /* compressed/interleaved permutation */
448 1, 2, 3, 4, 17, 18, 19, 20,
449 5, 6, 7, 8, 21, 22, 23, 24,
450 9, 10, 11, 12, 25, 26, 27, 28,
451 13, 14, 15, 16, 29, 30, 31, 32,
452
453 33, 34, 35, 36, 49, 50, 51, 52,
454 37, 38, 39, 40, 53, 54, 55, 56,
455 41, 42, 43, 44, 57, 58, 59, 60,
456 45, 46, 47, 48, 61, 62, 63, 64,
457 };
458
459 static unsigned char itoa64[] = /* 0..63 => ascii-64 */
460 "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
461
462
463 /* ===== Tables that are initialized at run time ==================== */
464
465
466 static unsigned char a64toi[128]; /* ascii-64 => 0..63 */
467
468 /* Initial key schedule permutation */
469 // static C_block PC1ROT[64/CHUNKBITS][1<<CHUNKBITS];
470 static C_block *PC1ROT;
471
472 /* Subsequent key schedule rotation permutations */
473 // static C_block PC2ROT[2][64/CHUNKBITS][1<<CHUNKBITS];
474 static C_block *PC2ROT[2];
475
476 /* Initial permutation/expansion table */
477 // static C_block IE3264[32/CHUNKBITS][1<<CHUNKBITS];
478 static C_block *IE3264;
479
480 /* Table that combines the S, P, and E operations. */
481 // static long SPE[2][8][64];
482 static long *SPE;
483
484 /* compressed/interleaved => final permutation table */
485 // static C_block CF6464[64/CHUNKBITS][1<<CHUNKBITS];
486 static C_block *CF6464;
487
488
489 /* ==================================== */
490
491
492 static C_block constdatablock; /* encryption constant */
493 static char cryptresult[1+4+4+11+1]; /* encrypted result */
494
495 /*
496 * Return a pointer to static data consisting of the "setting"
497 * followed by an encryption produced by the "key" and "setting".
498 */
499 char *
500 crypt(key, setting)
501 register const char *key;
502 register const char *setting;
503 {
504 register char *encp;
505 register long i;
506 register int t;
507 long salt;
508 int num_iter, salt_size;
509 C_block keyblock, rsltblock;
510
511 for (i = 0; i < 8; i++) {
512 if ((t = 2*(unsigned char)(*key)) != 0)
513 key++;
514 keyblock.b[i] = t;
515 }
516 if (des_setkey((char *)keyblock.b)) /* also initializes "a64toi" */
517 return (NULL);
518
519 encp = &cryptresult[0];
520 switch (*setting) {
521 case _PASSWORD_EFMT1:
522 /*
523 * Involve the rest of the password 8 characters at a time.
524 */
525 while (*key) {
526 if (des_cipher((char *)&keyblock,
527 (char *)&keyblock, 0L, 1))
528 return (NULL);
529 for (i = 0; i < 8; i++) {
530 if ((t = 2*(unsigned char)(*key)) != 0)
531 key++;
532 keyblock.b[i] ^= t;
533 }
534 if (des_setkey((char *)keyblock.b))
535 return (NULL);
536 }
537
538 *encp++ = *setting++;
539
540 /* get iteration count */
541 num_iter = 0;
542 for (i = 4; --i >= 0; ) {
543 if ((t = (unsigned char)setting[i]) == '\0')
544 t = '.';
545 encp[i] = t;
546 num_iter = (num_iter<<6) | a64toi[t];
547 }
548 setting += 4;
549 encp += 4;
550 salt_size = 4;
551 break;
552 default:
553 num_iter = 25;
554 salt_size = 2;
555 }
556
557 salt = 0;
558 for (i = salt_size; --i >= 0; ) {
559 if ((t = (unsigned char)setting[i]) == '\0')
560 t = '.';
561 encp[i] = t;
562 salt = (salt<<6) | a64toi[t];
563 }
564 encp += salt_size;
565 if (des_cipher((char *)&constdatablock, (char *)&rsltblock,
566 salt, num_iter))
567 return (NULL);
568
569 /*
570 * Encode the 64 cipher bits as 11 ascii characters.
571 */
572 i = ((long)((rsltblock.b[0]<<8) | rsltblock.b[1])<<8) | rsltblock.b[2];
573 encp[3] = itoa64[i&0x3f]; i >>= 6;
574 encp[2] = itoa64[i&0x3f]; i >>= 6;
575 encp[1] = itoa64[i&0x3f]; i >>= 6;
576 encp[0] = itoa64[i]; encp += 4;
577 i = ((long)((rsltblock.b[3]<<8) | rsltblock.b[4])<<8) | rsltblock.b[5];
578 encp[3] = itoa64[i&0x3f]; i >>= 6;
579 encp[2] = itoa64[i&0x3f]; i >>= 6;
580 encp[1] = itoa64[i&0x3f]; i >>= 6;
581 encp[0] = itoa64[i]; encp += 4;
582 i = ((long)((rsltblock.b[6])<<8) | rsltblock.b[7])<<2;
583 encp[2] = itoa64[i&0x3f]; i >>= 6;
584 encp[1] = itoa64[i&0x3f]; i >>= 6;
585 encp[0] = itoa64[i];
586
587 encp[3] = 0;
588
589 return (cryptresult);
590 }
591
592
593 /*
594 * The Key Schedule, filled in by des_setkey() or setkey().
595 */
596 #define KS_SIZE 16
597 static C_block KS[KS_SIZE];
598
599 /*
600 * Set up the key schedule from the key.
601 */
602 STATIC int des_setkey(key)
603 register const char *key;
604 {
605 register DCL_BLOCK(K, K0, K1);
606 register C_block *ptabp;
607 register int i;
608 static int des_ready = 0;
609
610 if (!des_ready) {
611 init_des();
612 des_ready = 1;
613 }
614
615 PERM6464(K,K0,K1,(unsigned char *)key,PC1ROT);
616 key = (char *)&KS[0];
617 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
618 for (i = 1; i < 16; i++) {
619 key += sizeof(C_block);
620 STORE(K,K0,K1,*(C_block *)key);
621 ptabp = PC2ROT[Rotates[i]-1];
622 PERM6464(K,K0,K1,(unsigned char *)key,ptabp);
623 STORE(K&~0x03030303L, K0&~0x03030303L, K1, *(C_block *)key);
624 }
625 return (0);
626 }
627
628 /*
629 * Encrypt (or decrypt if num_iter < 0) the 8 chars at "in" with abs(num_iter)
630 * iterations of DES, using the the given 24-bit salt and the pre-computed key
631 * schedule, and store the resulting 8 chars at "out" (in == out is permitted).
632 *
633 * NOTE: the performance of this routine is critically dependent on your
634 * compiler and machine architecture.
635 */
636 STATIC int des_cipher(in, out, salt, num_iter)
637 const char *in;
638 char *out;
639 long salt;
640 int num_iter;
641 {
642 /* variables that we want in registers, most important first */
643 #if defined(pdp11)
644 register int j;
645 #endif
646 register long L0, L1, R0, R1, k;
647 register C_block *kp;
648 register int ks_inc, loop_count;
649 C_block B;
650
651 L0 = salt;
652 TO_SIX_BIT(salt, L0); /* convert to 4*(6+2) format */
653
654 #if defined(vax) || defined(pdp11)
655 salt = ~salt; /* "x &~ y" is faster than "x & y". */
656 #define SALT (~salt)
657 #else
658 #define SALT salt
659 #endif
660
661 #if defined(MUST_ALIGN)
662 B.b[0] = in[0]; B.b[1] = in[1]; B.b[2] = in[2]; B.b[3] = in[3];
663 B.b[4] = in[4]; B.b[5] = in[5]; B.b[6] = in[6]; B.b[7] = in[7];
664 LOAD(L,L0,L1,B);
665 #else
666 LOAD(L,L0,L1,*(C_block *)in);
667 #endif
668 LOADREG(R,R0,R1,L,L0,L1);
669 L0 &= 0x55555555L;
670 L1 &= 0x55555555L;
671 L0 = (L0 << 1) | L1; /* L0 is the even-numbered input bits */
672 R0 &= 0xaaaaaaaaL;
673 R1 = (R1 >> 1) & 0x55555555L;
674 L1 = R0 | R1; /* L1 is the odd-numbered input bits */
675 STORE(L,L0,L1,B);
676 PERM3264(L,L0,L1,B.b,IE3264); /* even bits */
677 PERM3264(R,R0,R1,B.b+4,IE3264); /* odd bits */
678
679 if (num_iter >= 0)
680 { /* encryption */
681 kp = &KS[0];
682 ks_inc = sizeof(*kp);
683 }
684 else
685 { /* decryption */
686 num_iter = -num_iter;
687 kp = &KS[KS_SIZE-1];
688 ks_inc = -sizeof(*kp);
689 }
690
691 while (--num_iter >= 0) {
692 loop_count = 8;
693 do {
694
695 #define SPTAB(t, i) (*(long *)((unsigned char *)t + i*(sizeof(long)/4)))
696 #if defined(gould)
697 /* use this if B.b[i] is evaluated just once ... */
698 #define DOXOR(x,y,i) x^=SPTAB(&SPE[i * 64],B.b[i]); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],B.b[i]);
699 #else
700 #if defined(pdp11)
701 /* use this if your "long" int indexing is slow */
702 #define DOXOR(x,y,i) j=B.b[i]; x^=SPTAB(&SPE[i * 64],j); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],j);
703 #else
704 /* use this if "k" is allocated to a register ... */
705 #define DOXOR(x,y,i) k=B.b[i]; x^=SPTAB(&SPE[i * 64],k); y^=SPTAB(&SPE[(8 * 64) + (i * 64)],k);
706 #endif
707 #endif
708
709 #define CRUNCH(p0, p1, q0, q1) \
710 k = (q0 ^ q1) & SALT; \
711 B.b32.i0 = k ^ q0 ^ kp->b32.i0; \
712 B.b32.i1 = k ^ q1 ^ kp->b32.i1; \
713 kp = (C_block *)((char *)kp+ks_inc); \
714 \
715 DOXOR(p0, p1, 0); \
716 DOXOR(p0, p1, 1); \
717 DOXOR(p0, p1, 2); \
718 DOXOR(p0, p1, 3); \
719 DOXOR(p0, p1, 4); \
720 DOXOR(p0, p1, 5); \
721 DOXOR(p0, p1, 6); \
722 DOXOR(p0, p1, 7);
723
724 CRUNCH(L0, L1, R0, R1);
725 CRUNCH(R0, R1, L0, L1);
726 } while (--loop_count != 0);
727 kp = (C_block *)((char *)kp-(ks_inc*KS_SIZE));
728
729
730 /* swap L and R */
731 L0 ^= R0; L1 ^= R1;
732 R0 ^= L0; R1 ^= L1;
733 L0 ^= R0; L1 ^= R1;
734 }
735
736 /* store the encrypted (or decrypted) result */
737 L0 = ((L0 >> 3) & 0x0f0f0f0fL) | ((L1 << 1) & 0xf0f0f0f0L);
738 L1 = ((R0 >> 3) & 0x0f0f0f0fL) | ((R1 << 1) & 0xf0f0f0f0L);
739 STORE(L,L0,L1,B);
740 PERM6464(L,L0,L1,B.b,CF6464);
741 #if defined(MUST_ALIGN)
742 STORE(L,L0,L1,B);
743 out[0] = B.b[0]; out[1] = B.b[1]; out[2] = B.b[2]; out[3] = B.b[3];
744 out[4] = B.b[4]; out[5] = B.b[5]; out[6] = B.b[6]; out[7] = B.b[7];
745 #else
746 STORE(L,L0,L1,*(C_block *)out);
747 #endif
748 return (0);
749 }
750
751
752 /*
753 * Initialize various tables. This need only be done once. It could even be
754 * done at compile time, if the compiler were capable of that sort of thing.
755 */
756 STATIC void init_des()
757 {
758 register int i, j;
759 register long k;
760 register int tableno;
761 static unsigned char perm[64], tmp32[32]; /* "static" for speed */
762
763 /*
764 * table that converts chars "./0-9A-Za-z"to integers 0-63.
765 */
766 for (i = 0; i < 64; i++)
767 a64toi[itoa64[i]] = i;
768
769 /*
770 * PC1ROT - bit reverse, then PC1, then Rotate, then PC2.
771 */
772 for (i = 0; i < 64; i++)
773 perm[i] = 0;
774 for (i = 0; i < 64; i++) {
775 if ((k = PC2[i]) == 0)
776 continue;
777 k += Rotates[0]-1;
778 if ((k%28) < Rotates[0]) k -= 28;
779 k = PC1[k];
780 if (k > 0) {
781 k--;
782 k = (k|07) - (k&07);
783 k++;
784 }
785 perm[i] = k;
786 }
787 #ifdef DEBUG
788 prtab("pc1tab", perm, 8);
789 #endif
790 PC1ROT = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
791 for (i = 0; i < 2; i++)
792 PC2ROT[i] = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
793 init_perm(PC1ROT, perm, 8, 8);
794
795 /*
796 * PC2ROT - PC2 inverse, then Rotate (once or twice), then PC2.
797 */
798 for (j = 0; j < 2; j++) {
799 unsigned char pc2inv[64];
800 for (i = 0; i < 64; i++)
801 perm[i] = pc2inv[i] = 0;
802 for (i = 0; i < 64; i++) {
803 if ((k = PC2[i]) == 0)
804 continue;
805 pc2inv[k-1] = i+1;
806 }
807 for (i = 0; i < 64; i++) {
808 if ((k = PC2[i]) == 0)
809 continue;
810 k += j;
811 if ((k%28) <= j) k -= 28;
812 perm[i] = pc2inv[k];
813 }
814 #ifdef DEBUG
815 prtab("pc2tab", perm, 8);
816 #endif
817 init_perm(PC2ROT[j], perm, 8, 8);
818 }
819
820 /*
821 * Bit reverse, then initial permutation, then expansion.
822 */
823 for (i = 0; i < 8; i++) {
824 for (j = 0; j < 8; j++) {
825 k = (j < 2)? 0: IP[ExpandTr[i*6+j-2]-1];
826 if (k > 32)
827 k -= 32;
828 else if (k > 0)
829 k--;
830 if (k > 0) {
831 k--;
832 k = (k|07) - (k&07);
833 k++;
834 }
835 perm[i*8+j] = k;
836 }
837 }
838 #ifdef DEBUG
839 prtab("ietab", perm, 8);
840 #endif
841 IE3264 = (C_block *)calloc(sizeof(C_block), (32/CHUNKBITS) * (1<<CHUNKBITS));
842 init_perm(IE3264, perm, 4, 8);
843
844 /*
845 * Compression, then final permutation, then bit reverse.
846 */
847 for (i = 0; i < 64; i++) {
848 k = IP[CIFP[i]-1];
849 if (k > 0) {
850 k--;
851 k = (k|07) - (k&07);
852 k++;
853 }
854 perm[k-1] = i+1;
855 }
856 #ifdef DEBUG
857 prtab("cftab", perm, 8);
858 #endif
859 CF6464 = (C_block *)calloc(sizeof(C_block), (64/CHUNKBITS) * (1<<CHUNKBITS));
860 SPE = (long *)calloc(sizeof(long), 2 * 8 * 64);
861 init_perm(CF6464, perm, 8, 8);
862
863 /*
864 * SPE table
865 */
866 for (i = 0; i < 48; i++)
867 perm[i] = P32Tr[ExpandTr[i]-1];
868 for (tableno = 0; tableno < 8; tableno++) {
869 for (j = 0; j < 64; j++) {
870 k = (((j >> 0) &01) << 5)|
871 (((j >> 1) &01) << 3)|
872 (((j >> 2) &01) << 2)|
873 (((j >> 3) &01) << 1)|
874 (((j >> 4) &01) << 0)|
875 (((j >> 5) &01) << 4);
876 k = S[tableno][k];
877 k = (((k >> 3)&01) << 0)|
878 (((k >> 2)&01) << 1)|
879 (((k >> 1)&01) << 2)|
880 (((k >> 0)&01) << 3);
881 for (i = 0; i < 32; i++)
882 tmp32[i] = 0;
883 for (i = 0; i < 4; i++)
884 tmp32[4 * tableno + i] = (k >> i) & 01;
885 k = 0;
886 for (i = 24; --i >= 0; )
887 k = (k<<1) | tmp32[perm[i]-1];
888 TO_SIX_BIT(SPE[(tableno * 64) + j], k);
889 k = 0;
890 for (i = 24; --i >= 0; )
891 k = (k<<1) | tmp32[perm[i+24]-1];
892 TO_SIX_BIT(SPE[(8 * 64) + (tableno * 64) + j], k);
893 }
894 }
895 }
896
897 /*
898 * Initialize "perm" to represent transformation "p", which rearranges
899 * (perhaps with expansion and/or contraction) one packed array of bits
900 * (of size "chars_in" characters) into another array (of size "chars_out"
901 * characters).
902 *
903 * "perm" must be all-zeroes on entry to this routine.
904 */
905 STATIC void init_perm(perm, p, chars_in, chars_out)
906 C_block *perm;
907 unsigned char p[64];
908 int chars_in, chars_out;
909 {
910 register int i, j, k, l;
911
912 for (k = 0; k < chars_out*8; k++) { /* each output bit position */
913 l = p[k] - 1; /* where this bit comes from */
914 if (l < 0)
915 continue; /* output bit is always 0 */
916 i = l>>LGCHUNKBITS; /* which chunk this bit comes from */
917 l = 1<<(l&(CHUNKBITS-1)); /* mask for this bit */
918 for (j = 0; j < (1<<CHUNKBITS); j++) { /* each chunk value */
919 if ((j & l) != 0)
920 perm[(i * (1<<CHUNKBITS)) + j].b[k>>3] |= 1<<(k&07);
921 }
922 }
923 }
924
925 /*
926 * "setkey" routine (for backwards compatibility)
927 */
928 int setkey(key)
929 register const char *key;
930 {
931 register int i, j, k;
932 C_block keyblock;
933
934 for (i = 0; i < 8; i++) {
935 k = 0;
936 for (j = 0; j < 8; j++) {
937 k <<= 1;
938 k |= (unsigned char)*key++;
939 }
940 keyblock.b[i] = k;
941 }
942 return (des_setkey((char *)keyblock.b));
943 }
944
945 /*
946 * "encrypt" routine (for backwards compatibility)
947 */
948 int encrypt(block, flag)
949 register char *block;
950 int flag;
951 {
952 register int i, j, k;
953 C_block cblock;
954
955 for (i = 0; i < 8; i++) {
956 k = 0;
957 for (j = 0; j < 8; j++) {
958 k <<= 1;
959 k |= (unsigned char)*block++;
960 }
961 cblock.b[i] = k;
962 }
963 if (des_cipher((char *)&cblock, (char *)&cblock, 0L, (flag ? -1: 1)))
964 return (1);
965 for (i = 7; i >= 0; i--) {
966 k = cblock.b[i];
967 for (j = 7; j >= 0; j--) {
968 *--block = k&01;
969 k >>= 1;
970 }
971 }
972 return (0);
973 }
974
975 #ifdef DEBUG
976 STATIC
977 prtab(s, t, num_rows)
978 char *s;
979 unsigned char *t;
980 int num_rows;
981 {
982 register int i, j;
983
984 (void)printf("%s:\n", s);
985 for (i = 0; i < num_rows; i++) {
986 for (j = 0; j < 8; j++) {
987 (void)printf("%3d", t[i*8+j]);
988 }
989 (void)printf("\n");
990 }
991 (void)printf("\n");
992 }
993 #endif