]> git.saurik.com Git - apple/libc.git/blob - gen/nanosleep.c
Libc-498.tar.gz
[apple/libc.git] / gen / nanosleep.c
1 /*
2 * Copyright (c) 1999, 2003, 2006, 2007 Apple Inc. All rights reserved.
3 *
4 * @APPLE_LICENSE_HEADER_START@
5 *
6 * This file contains Original Code and/or Modifications of Original Code
7 * as defined in and that are subject to the Apple Public Source License
8 * Version 2.0 (the 'License'). You may not use this file except in
9 * compliance with the License. Please obtain a copy of the License at
10 * http://www.opensource.apple.com/apsl/ and read it before using this
11 * file.
12 *
13 * The Original Code and all software distributed under the License are
14 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18 * Please see the License for the specific language governing rights and
19 * limitations under the License.
20 *
21 * @APPLE_LICENSE_HEADER_END@
22 */
23
24 #include <errno.h>
25 #include <sys/time.h>
26 #include <mach/mach_error.h>
27 #include <mach/mach_time.h>
28 #include <stdio.h>
29
30
31 #if __DARWIN_UNIX03
32 #include "pthread_internals.h"
33 #include <mach/clock.h>
34
35 extern int __unix_conforming;
36 extern mach_port_t clock_port;
37 extern semaphore_t clock_sem;
38 #ifdef VARIANT_CANCELABLE
39 extern void _pthread_testcancel(pthread_t thread, int isconforming);
40 extern int __semwait_signal(int cond_sem, int mutex_sem, int timeout, int relative, time_t tv_sec, __int32_t tv_nsec);
41 #define SEMWAIT_SIGNAL __semwait_signal
42 #else /* !VARIANT_CANCELABLE */
43 extern int __semwait_signal_nocancel(int cond_sem, int mutex_sem, int timeout, int relative, time_t tv_sec, __int32_t tv_nsec);
44 #define SEMWAIT_SIGNAL __semwait_signal_nocancel
45 #endif /* VARIANT_CANCELABLE */
46
47 int
48 nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) {
49 kern_return_t kret;
50 int ret;
51 mach_timespec_t remain;
52 mach_timespec_t current;
53
54 if (__unix_conforming == 0)
55 __unix_conforming = 1;
56
57 #ifdef VARIANT_CANCELABLE
58 _pthread_testcancel(pthread_self(), 1);
59 #endif /* VARIANT_CANCELABLE */
60
61 if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec >= NSEC_PER_SEC)) {
62 errno = EINVAL;
63 return -1;
64 }
65
66
67 if (remaining_time != NULL) {
68 kret = clock_get_time(clock_port, &current);
69 if (kret != KERN_SUCCESS) {
70 fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(kret));
71 return -1;
72 }
73 }
74 ret = SEMWAIT_SIGNAL(clock_sem, MACH_PORT_NULL, 1, 1, requested_time->tv_sec, requested_time->tv_nsec);
75 if (ret < 0) {
76 if (errno == ETIMEDOUT) {
77 return 0;
78 } else if (errno == EINTR) {
79 if (remaining_time != NULL) {
80 ret = clock_get_time(clock_port, &remain);
81 if (ret != KERN_SUCCESS) {
82 fprintf(stderr, "clock_get_time() failed: %s\n", mach_error_string(ret));
83 return -1;
84 }
85 /* This depends on the layout of a mach_timespec_t and timespec_t being equivalent */
86 ADD_MACH_TIMESPEC(&current, requested_time);
87 SUB_MACH_TIMESPEC(&current, &remain);
88 remaining_time->tv_sec = current.tv_sec;
89 remaining_time->tv_nsec = current.tv_nsec;
90 }
91 } else {
92 errno = EINVAL;
93 }
94 }
95 return -1;
96 }
97
98
99 #else /* !__DARWIN_UNIX03 */
100
101 typedef struct {
102 uint64_t high;
103 uint64_t low;
104 } uint128_t;
105
106 /* 128-bit addition: acc += add */
107 static inline void
108 add128_128(uint128_t *acc, uint128_t *add)
109 {
110 acc->high += add->high;
111 acc->low += add->low;
112 if(acc->low < add->low)
113 acc->high++; // carry
114 }
115
116 /* 128-bit subtraction: acc -= sub */
117 static inline void
118 sub128_128(uint128_t *acc, uint128_t *sub)
119 {
120 acc->high -= sub->high;
121 if(acc->low < sub->low)
122 acc->high--; // borrow
123 acc->low -= sub->low;
124 }
125
126 #define TWO64 (((double)(1ULL << 32)) * ((double)(1ULL << 32)))
127
128 static inline double
129 uint128_double(uint128_t *u)
130 {
131 return TWO64 * u->high + u->low; // may loses precision
132 }
133
134 /* 64x64 -> 128 bit multiplication */
135 static inline void
136 mul64x64(uint64_t x, uint64_t y, uint128_t *prod)
137 {
138 uint128_t add;
139 /*
140 * Split the two 64-bit multiplicands into 32-bit parts:
141 * x => 2^32 * x1 + x2
142 * y => 2^32 * y1 + y2
143 */
144 uint32_t x1 = (uint32_t)(x >> 32);
145 uint32_t x2 = (uint32_t)x;
146 uint32_t y1 = (uint32_t)(y >> 32);
147 uint32_t y2 = (uint32_t)y;
148 /*
149 * direct multiplication:
150 * x * y => 2^64 * (x1 * y1) + 2^32 (x1 * y2 + x2 * y1) + (x2 * y2)
151 * The first and last terms are direct assignmenet into the uint128_t
152 * structure. Then we add the middle two terms separately, to avoid
153 * 64-bit overflow. (We could use the Karatsuba algorithm to save
154 * one multiply, but it is harder to deal with 64-bit overflows.)
155 */
156 prod->high = (uint64_t)x1 * (uint64_t)y1;
157 prod->low = (uint64_t)x2 * (uint64_t)y2;
158 add.low = (uint64_t)x1 * (uint64_t)y2;
159 add.high = (add.low >> 32);
160 add.low <<= 32;
161 add128_128(prod, &add);
162 add.low = (uint64_t)x2 * (uint64_t)y1;
163 add.high = (add.low >> 32);
164 add.low <<= 32;
165 add128_128(prod, &add);
166 }
167
168 /* calculate (x * y / divisor), using 128-bit internal calculations */
169 static int
170 muldiv128(uint64_t x, uint64_t y, uint64_t divisor, uint64_t *res)
171 {
172 uint128_t temp;
173 uint128_t divisor128 = {0, divisor};
174 uint64_t result = 0;
175 double recip;
176
177 /* calculate (x * y) */
178 mul64x64(x, y, &temp);
179 /*
180 * Now divide by the divisor. We use floating point to calculate an
181 * approximate answer and update the results. Then we iterate and
182 * calculate a correction from the difference.
183 */
184 recip = 1.0 / ((double)divisor);
185 while(temp.high || temp.low >= divisor) {
186 uint128_t backmul;
187 uint64_t uapprox;
188 double approx = uint128_double(&temp) * recip;
189
190 if(approx > __LONG_LONG_MAX__)
191 return 0; // answer overflows 64-bits
192 uapprox = (uint64_t)approx;
193 mul64x64(uapprox, divisor, &backmul);
194 /*
195 * Because we are using unsigned integers, we need to approach the
196 * answer from the lesser side. So if our estimate is too large
197 * we need to decrease it until it is smaller.
198 */
199 while(backmul.high > temp.high || backmul.high == temp.high && backmul.low > temp.low) {
200 sub128_128(&backmul, &divisor128);
201 uapprox--;
202 }
203 sub128_128(&temp, &backmul);
204 result += uapprox;
205 }
206 *res = result;
207 return 1;
208 }
209
210 int
211 nanosleep(const struct timespec *requested_time, struct timespec *remaining_time) {
212 kern_return_t ret;
213 uint64_t end, units;
214 static struct mach_timebase_info info = {0, 0};
215 static int unity;
216
217 if ((requested_time == NULL) || (requested_time->tv_sec < 0) || (requested_time->tv_nsec > NSEC_PER_SEC)) {
218 errno = EINVAL;
219 return -1;
220 }
221
222 if (info.denom == 0) {
223 ret = mach_timebase_info(&info);
224 if (ret != KERN_SUCCESS) {
225 fprintf(stderr, "mach_timebase_info() failed: %s\n", mach_error_string(ret));
226 errno = EAGAIN;
227 return -1;
228 }
229 /* If numer == denom == 1 (as in intel), no conversion needed */
230 unity = (info.numer == info.denom);
231 }
232
233 if(unity)
234 units = (uint64_t)requested_time->tv_sec * NSEC_PER_SEC;
235 else if(!muldiv128((uint64_t)info.denom * NSEC_PER_SEC,
236 (uint64_t)requested_time->tv_sec,
237 (uint64_t)info.numer,
238 &units))
239 {
240 errno = EINVAL;
241 return -1;
242 }
243 end = mach_absolute_time()
244 + units
245 + (uint64_t)info.denom * requested_time->tv_nsec / info.numer;
246 ret = mach_wait_until(end);
247 if (ret != KERN_SUCCESS) {
248 if (ret == KERN_ABORTED) {
249 errno = EINTR;
250 if (remaining_time != NULL) {
251 uint64_t now = mach_absolute_time();
252 if (now >= end) {
253 remaining_time->tv_sec = 0;
254 remaining_time->tv_nsec = 0;
255 } else {
256 if(unity)
257 units = (end - now);
258 else
259 muldiv128((uint64_t)info.numer,
260 (end - now),
261 (uint64_t)info.denom,
262 &units); // this can't overflow
263 remaining_time->tv_sec = units / NSEC_PER_SEC;
264 remaining_time->tv_nsec = units % NSEC_PER_SEC;
265 }
266 }
267 } else {
268 errno = EINVAL;
269 }
270 return -1;
271 }
272 return 0;
273 }
274
275
276 #endif /* __DARWIN_UNIX03 */