]>
Commit | Line | Data |
---|---|---|
224c7076 A |
1 | /*- |
2 | * Copyright (c) 1990, 1993, 1994 | |
3 | * The Regents of the University of California. All rights reserved. | |
4 | * | |
5 | * This code is derived from software contributed to Berkeley by | |
6 | * Margo Seltzer. | |
7 | * | |
8 | * Redistribution and use in source and binary forms, with or without | |
9 | * modification, are permitted provided that the following conditions | |
10 | * are met: | |
11 | * 1. Redistributions of source code must retain the above copyright | |
12 | * notice, this list of conditions and the following disclaimer. | |
13 | * 2. Redistributions in binary form must reproduce the above copyright | |
14 | * notice, this list of conditions and the following disclaimer in the | |
15 | * documentation and/or other materials provided with the distribution. | |
16 | * 3. All advertising materials mentioning features or use of this software | |
17 | * must display the following acknowledgement: | |
18 | * This product includes software developed by the University of | |
19 | * California, Berkeley and its contributors. | |
20 | * 4. Neither the name of the University nor the names of its contributors | |
21 | * may be used to endorse or promote products derived from this software | |
22 | * without specific prior written permission. | |
23 | * | |
24 | * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
25 | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
26 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
27 | * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
28 | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
29 | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
30 | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
31 | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
32 | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
33 | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
34 | * SUCH DAMAGE. | |
35 | */ | |
36 | ||
37 | #if defined(LIBC_SCCS) && !defined(lint) | |
38 | static char sccsid[] = "@(#)hash_bigkey.c 8.3 (Berkeley) 5/31/94"; | |
39 | #endif /* LIBC_SCCS and not lint */ | |
40 | #include <sys/cdefs.h> | |
41 | __FBSDID("$FreeBSD: src/lib/libc/db/hash/hash_bigkey.c,v 1.5 2003/02/16 17:29:09 nectar Exp $"); | |
42 | ||
43 | /* | |
44 | * PACKAGE: hash | |
45 | * DESCRIPTION: | |
46 | * Big key/data handling for the hashing package. | |
47 | * | |
48 | * ROUTINES: | |
49 | * External | |
50 | * __big_keydata | |
51 | * __big_split | |
52 | * __big_insert | |
53 | * __big_return | |
54 | * __big_delete | |
55 | * __find_last_page | |
56 | * Internal | |
57 | * collect_key | |
58 | * collect_data | |
59 | */ | |
60 | ||
61 | #include <sys/param.h> | |
62 | ||
63 | #include <errno.h> | |
64 | #include <stdio.h> | |
65 | #include <stdlib.h> | |
66 | #include <string.h> | |
67 | ||
68 | #ifdef DEBUG | |
69 | #include <assert.h> | |
70 | #endif | |
71 | ||
72 | #include <db.h> | |
73 | #include "hash.h" | |
74 | #include "page.h" | |
75 | #include "hash_extern.h" | |
76 | ||
77 | static int collect_key(HTAB *, BUFHEAD *, int, DBT *, int); | |
78 | static int collect_data(HTAB *, BUFHEAD *, int, int); | |
79 | ||
80 | /* | |
81 | * Big_insert | |
82 | * | |
83 | * You need to do an insert and the key/data pair is too big | |
84 | * | |
85 | * Returns: | |
86 | * 0 ==> OK | |
87 | *-1 ==> ERROR | |
88 | */ | |
89 | extern int | |
90 | __big_insert(hashp, bufp, key, val) | |
91 | HTAB *hashp; | |
92 | BUFHEAD *bufp; | |
93 | const DBT *key, *val; | |
94 | { | |
95 | u_int16_t *p; | |
96 | int key_size, n, val_size; | |
97 | u_int16_t space, move_bytes, off; | |
98 | char *cp, *key_data, *val_data; | |
99 | ||
100 | cp = bufp->page; /* Character pointer of p. */ | |
101 | p = (u_int16_t *)cp; | |
102 | ||
103 | key_data = (char *)key->data; | |
104 | key_size = key->size; | |
105 | val_data = (char *)val->data; | |
106 | val_size = val->size; | |
107 | ||
108 | /* First move the Key */ | |
109 | for (space = FREESPACE(p) - BIGOVERHEAD; key_size; | |
110 | space = FREESPACE(p) - BIGOVERHEAD) { | |
111 | move_bytes = MIN(space, key_size); | |
112 | off = OFFSET(p) - move_bytes; | |
113 | memmove(cp + off, key_data, move_bytes); | |
114 | key_size -= move_bytes; | |
115 | key_data += move_bytes; | |
116 | n = p[0]; | |
117 | p[++n] = off; | |
118 | p[0] = ++n; | |
119 | FREESPACE(p) = off - PAGE_META(n); | |
120 | OFFSET(p) = off; | |
121 | p[n] = PARTIAL_KEY; | |
122 | bufp = __add_ovflpage(hashp, bufp); | |
123 | if (!bufp) | |
124 | return (-1); | |
125 | n = p[0]; | |
126 | if (!key_size) { | |
127 | if (FREESPACE(p)) { | |
128 | move_bytes = MIN(FREESPACE(p), val_size); | |
129 | off = OFFSET(p) - move_bytes; | |
130 | p[n] = off; | |
131 | memmove(cp + off, val_data, move_bytes); | |
132 | val_data += move_bytes; | |
133 | val_size -= move_bytes; | |
134 | p[n - 2] = FULL_KEY_DATA; | |
135 | FREESPACE(p) = FREESPACE(p) - move_bytes; | |
136 | OFFSET(p) = off; | |
137 | } else | |
138 | p[n - 2] = FULL_KEY; | |
139 | } | |
140 | p = (u_int16_t *)bufp->page; | |
141 | cp = bufp->page; | |
142 | bufp->flags |= BUF_MOD; | |
143 | } | |
144 | ||
145 | /* Now move the data */ | |
146 | for (space = FREESPACE(p) - BIGOVERHEAD; val_size; | |
147 | space = FREESPACE(p) - BIGOVERHEAD) { | |
148 | move_bytes = MIN(space, val_size); | |
149 | /* | |
150 | * Here's the hack to make sure that if the data ends on the | |
151 | * same page as the key ends, FREESPACE is at least one. | |
152 | */ | |
153 | if (space == val_size && val_size == val->size) | |
154 | move_bytes--; | |
155 | off = OFFSET(p) - move_bytes; | |
156 | memmove(cp + off, val_data, move_bytes); | |
157 | val_size -= move_bytes; | |
158 | val_data += move_bytes; | |
159 | n = p[0]; | |
160 | p[++n] = off; | |
161 | p[0] = ++n; | |
162 | FREESPACE(p) = off - PAGE_META(n); | |
163 | OFFSET(p) = off; | |
164 | if (val_size) { | |
165 | p[n] = FULL_KEY; | |
166 | bufp = __add_ovflpage(hashp, bufp); | |
167 | if (!bufp) | |
168 | return (-1); | |
169 | cp = bufp->page; | |
170 | p = (u_int16_t *)cp; | |
171 | } else | |
172 | p[n] = FULL_KEY_DATA; | |
173 | bufp->flags |= BUF_MOD; | |
174 | } | |
175 | return (0); | |
176 | } | |
177 | ||
178 | /* | |
179 | * Called when bufp's page contains a partial key (index should be 1) | |
180 | * | |
181 | * All pages in the big key/data pair except bufp are freed. We cannot | |
182 | * free bufp because the page pointing to it is lost and we can't get rid | |
183 | * of its pointer. | |
184 | * | |
185 | * Returns: | |
186 | * 0 => OK | |
187 | *-1 => ERROR | |
188 | */ | |
189 | extern int | |
190 | __big_delete(hashp, bufp) | |
191 | HTAB *hashp; | |
192 | BUFHEAD *bufp; | |
193 | { | |
194 | BUFHEAD *last_bfp, *rbufp; | |
195 | u_int16_t *bp, pageno; | |
196 | int key_done, n; | |
197 | ||
198 | rbufp = bufp; | |
199 | last_bfp = NULL; | |
200 | bp = (u_int16_t *)bufp->page; | |
201 | pageno = 0; | |
202 | key_done = 0; | |
203 | ||
204 | while (!key_done || (bp[2] != FULL_KEY_DATA)) { | |
205 | if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) | |
206 | key_done = 1; | |
207 | ||
208 | /* | |
209 | * If there is freespace left on a FULL_KEY_DATA page, then | |
210 | * the data is short and fits entirely on this page, and this | |
211 | * is the last page. | |
212 | */ | |
213 | if (bp[2] == FULL_KEY_DATA && FREESPACE(bp)) | |
214 | break; | |
215 | pageno = bp[bp[0] - 1]; | |
216 | rbufp->flags |= BUF_MOD; | |
217 | rbufp = __get_buf(hashp, pageno, rbufp, 0); | |
218 | if (last_bfp) | |
219 | __free_ovflpage(hashp, last_bfp); | |
220 | last_bfp = rbufp; | |
221 | if (!rbufp) | |
222 | return (-1); /* Error. */ | |
223 | bp = (u_int16_t *)rbufp->page; | |
224 | } | |
225 | ||
226 | /* | |
227 | * If we get here then rbufp points to the last page of the big | |
228 | * key/data pair. Bufp points to the first one -- it should now be | |
229 | * empty pointing to the next page after this pair. Can't free it | |
230 | * because we don't have the page pointing to it. | |
231 | */ | |
232 | ||
233 | /* This is information from the last page of the pair. */ | |
234 | n = bp[0]; | |
235 | pageno = bp[n - 1]; | |
236 | ||
237 | /* Now, bp is the first page of the pair. */ | |
238 | bp = (u_int16_t *)bufp->page; | |
239 | if (n > 2) { | |
240 | /* There is an overflow page. */ | |
241 | bp[1] = pageno; | |
242 | bp[2] = OVFLPAGE; | |
243 | bufp->ovfl = rbufp->ovfl; | |
244 | } else | |
245 | /* This is the last page. */ | |
246 | bufp->ovfl = NULL; | |
247 | n -= 2; | |
248 | bp[0] = n; | |
249 | FREESPACE(bp) = hashp->BSIZE - PAGE_META(n); | |
250 | OFFSET(bp) = hashp->BSIZE - 1; | |
251 | ||
252 | bufp->flags |= BUF_MOD; | |
253 | if (rbufp) | |
254 | __free_ovflpage(hashp, rbufp); | |
255 | if (last_bfp != rbufp) | |
256 | __free_ovflpage(hashp, last_bfp); | |
257 | ||
258 | hashp->NKEYS--; | |
259 | return (0); | |
260 | } | |
261 | /* | |
262 | * Returns: | |
263 | * 0 = key not found | |
264 | * -1 = get next overflow page | |
265 | * -2 means key not found and this is big key/data | |
266 | * -3 error | |
267 | */ | |
268 | extern int | |
269 | __find_bigpair(hashp, bufp, ndx, key, size) | |
270 | HTAB *hashp; | |
271 | BUFHEAD *bufp; | |
272 | int ndx; | |
273 | char *key; | |
274 | int size; | |
275 | { | |
276 | u_int16_t *bp; | |
277 | char *p; | |
278 | int ksize; | |
279 | u_int16_t bytes; | |
280 | char *kkey; | |
281 | ||
282 | bp = (u_int16_t *)bufp->page; | |
283 | p = bufp->page; | |
284 | ksize = size; | |
285 | kkey = key; | |
286 | ||
287 | for (bytes = hashp->BSIZE - bp[ndx]; | |
288 | bytes <= size && bp[ndx + 1] == PARTIAL_KEY; | |
289 | bytes = hashp->BSIZE - bp[ndx]) { | |
290 | if (memcmp(p + bp[ndx], kkey, bytes)) | |
291 | return (-2); | |
292 | kkey += bytes; | |
293 | ksize -= bytes; | |
294 | bufp = __get_buf(hashp, bp[ndx + 2], bufp, 0); | |
295 | if (!bufp) | |
296 | return (-3); | |
297 | p = bufp->page; | |
298 | bp = (u_int16_t *)p; | |
299 | ndx = 1; | |
300 | } | |
301 | ||
302 | if (bytes != ksize || memcmp(p + bp[ndx], kkey, bytes)) { | |
303 | #ifdef HASH_STATISTICS | |
304 | ++hash_collisions; | |
305 | #endif | |
306 | return (-2); | |
307 | } else | |
308 | return (ndx); | |
309 | } | |
310 | ||
311 | /* | |
312 | * Given the buffer pointer of the first overflow page of a big pair, | |
313 | * find the end of the big pair | |
314 | * | |
315 | * This will set bpp to the buffer header of the last page of the big pair. | |
316 | * It will return the pageno of the overflow page following the last page | |
317 | * of the pair; 0 if there isn't any (i.e. big pair is the last key in the | |
318 | * bucket) | |
319 | */ | |
320 | extern u_int16_t | |
321 | __find_last_page(hashp, bpp) | |
322 | HTAB *hashp; | |
323 | BUFHEAD **bpp; | |
324 | { | |
325 | BUFHEAD *bufp; | |
326 | u_int16_t *bp, pageno; | |
327 | int n; | |
328 | ||
329 | bufp = *bpp; | |
330 | bp = (u_int16_t *)bufp->page; | |
331 | for (;;) { | |
332 | n = bp[0]; | |
333 | ||
334 | /* | |
335 | * This is the last page if: the tag is FULL_KEY_DATA and | |
336 | * either only 2 entries OVFLPAGE marker is explicit there | |
337 | * is freespace on the page. | |
338 | */ | |
339 | if (bp[2] == FULL_KEY_DATA && | |
340 | ((n == 2) || (bp[n] == OVFLPAGE) || (FREESPACE(bp)))) | |
341 | break; | |
342 | ||
343 | pageno = bp[n - 1]; | |
344 | bufp = __get_buf(hashp, pageno, bufp, 0); | |
345 | if (!bufp) | |
346 | return (0); /* Need to indicate an error! */ | |
347 | bp = (u_int16_t *)bufp->page; | |
348 | } | |
349 | ||
350 | *bpp = bufp; | |
351 | if (bp[0] > 2) | |
352 | return (bp[3]); | |
353 | else | |
354 | return (0); | |
355 | } | |
356 | ||
357 | /* | |
358 | * Return the data for the key/data pair that begins on this page at this | |
359 | * index (index should always be 1). | |
360 | */ | |
361 | extern int | |
362 | __big_return(hashp, bufp, ndx, val, set_current) | |
363 | HTAB *hashp; | |
364 | BUFHEAD *bufp; | |
365 | int ndx; | |
366 | DBT *val; | |
367 | int set_current; | |
368 | { | |
369 | BUFHEAD *save_p; | |
370 | u_int16_t *bp, len, off, save_addr; | |
371 | char *tp; | |
372 | ||
373 | bp = (u_int16_t *)bufp->page; | |
374 | while (bp[ndx + 1] == PARTIAL_KEY) { | |
375 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
376 | if (!bufp) | |
377 | return (-1); | |
378 | bp = (u_int16_t *)bufp->page; | |
379 | ndx = 1; | |
380 | } | |
381 | ||
382 | if (bp[ndx + 1] == FULL_KEY) { | |
383 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
384 | if (!bufp) | |
385 | return (-1); | |
386 | bp = (u_int16_t *)bufp->page; | |
387 | save_p = bufp; | |
388 | save_addr = save_p->addr; | |
389 | off = bp[1]; | |
390 | len = 0; | |
391 | } else | |
392 | if (!FREESPACE(bp)) { | |
393 | /* | |
394 | * This is a hack. We can't distinguish between | |
395 | * FULL_KEY_DATA that contains complete data or | |
396 | * incomplete data, so we require that if the data | |
397 | * is complete, there is at least 1 byte of free | |
398 | * space left. | |
399 | */ | |
400 | off = bp[bp[0]]; | |
401 | len = bp[1] - off; | |
402 | save_p = bufp; | |
403 | save_addr = bufp->addr; | |
404 | bufp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
405 | if (!bufp) | |
406 | return (-1); | |
407 | bp = (u_int16_t *)bufp->page; | |
408 | } else { | |
409 | /* The data is all on one page. */ | |
410 | tp = (char *)bp; | |
411 | off = bp[bp[0]]; | |
412 | val->data = (u_char *)tp + off; | |
413 | val->size = bp[1] - off; | |
414 | if (set_current) { | |
415 | if (bp[0] == 2) { /* No more buckets in | |
416 | * chain */ | |
417 | hashp->cpage = NULL; | |
418 | hashp->cbucket++; | |
419 | hashp->cndx = 1; | |
420 | } else { | |
421 | hashp->cpage = __get_buf(hashp, | |
422 | bp[bp[0] - 1], bufp, 0); | |
423 | if (!hashp->cpage) | |
424 | return (-1); | |
425 | hashp->cndx = 1; | |
426 | if (!((u_int16_t *) | |
427 | hashp->cpage->page)[0]) { | |
428 | hashp->cbucket++; | |
429 | hashp->cpage = NULL; | |
430 | } | |
431 | } | |
432 | } | |
433 | return (0); | |
434 | } | |
435 | ||
436 | val->size = collect_data(hashp, bufp, (int)len, set_current); | |
437 | if (val->size == -1) | |
438 | return (-1); | |
439 | if (save_p->addr != save_addr) { | |
440 | /* We are pretty short on buffers. */ | |
441 | errno = EINVAL; /* OUT OF BUFFERS */ | |
442 | return (-1); | |
443 | } | |
444 | memmove(hashp->tmp_buf, (save_p->page) + off, len); | |
445 | val->data = (u_char *)hashp->tmp_buf; | |
446 | return (0); | |
447 | } | |
448 | /* | |
449 | * Count how big the total datasize is by recursing through the pages. Then | |
450 | * allocate a buffer and copy the data as you recurse up. | |
451 | */ | |
452 | static int | |
453 | collect_data(hashp, bufp, len, set) | |
454 | HTAB *hashp; | |
455 | BUFHEAD *bufp; | |
456 | int len, set; | |
457 | { | |
458 | u_int16_t *bp; | |
459 | char *p; | |
460 | BUFHEAD *xbp; | |
461 | u_int16_t save_addr; | |
462 | int mylen, totlen; | |
463 | ||
464 | p = bufp->page; | |
465 | bp = (u_int16_t *)p; | |
466 | mylen = hashp->BSIZE - bp[1]; | |
467 | save_addr = bufp->addr; | |
468 | ||
469 | if (bp[2] == FULL_KEY_DATA) { /* End of Data */ | |
470 | totlen = len + mylen; | |
471 | if (hashp->tmp_buf) | |
472 | free(hashp->tmp_buf); | |
473 | if ((hashp->tmp_buf = (char *)malloc(totlen)) == NULL) | |
474 | return (-1); | |
475 | if (set) { | |
476 | hashp->cndx = 1; | |
477 | if (bp[0] == 2) { /* No more buckets in chain */ | |
478 | hashp->cpage = NULL; | |
479 | hashp->cbucket++; | |
480 | } else { | |
481 | hashp->cpage = | |
482 | __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
483 | if (!hashp->cpage) | |
484 | return (-1); | |
485 | else if (!((u_int16_t *)hashp->cpage->page)[0]) { | |
486 | hashp->cbucket++; | |
487 | hashp->cpage = NULL; | |
488 | } | |
489 | } | |
490 | } | |
491 | } else { | |
492 | xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
493 | if (!xbp || ((totlen = | |
494 | collect_data(hashp, xbp, len + mylen, set)) < 1)) | |
495 | return (-1); | |
496 | } | |
497 | if (bufp->addr != save_addr) { | |
498 | errno = EINVAL; /* Out of buffers. */ | |
499 | return (-1); | |
500 | } | |
501 | memmove(&hashp->tmp_buf[len], (bufp->page) + bp[1], mylen); | |
502 | return (totlen); | |
503 | } | |
504 | ||
505 | /* | |
506 | * Fill in the key and data for this big pair. | |
507 | */ | |
508 | extern int | |
509 | __big_keydata(hashp, bufp, key, val, set) | |
510 | HTAB *hashp; | |
511 | BUFHEAD *bufp; | |
512 | DBT *key, *val; | |
513 | int set; | |
514 | { | |
515 | key->size = collect_key(hashp, bufp, 0, val, set); | |
516 | if (key->size == -1) | |
517 | return (-1); | |
518 | key->data = (u_char *)hashp->tmp_key; | |
519 | return (0); | |
520 | } | |
521 | ||
522 | /* | |
523 | * Count how big the total key size is by recursing through the pages. Then | |
524 | * collect the data, allocate a buffer and copy the key as you recurse up. | |
525 | */ | |
526 | static int | |
527 | collect_key(hashp, bufp, len, val, set) | |
528 | HTAB *hashp; | |
529 | BUFHEAD *bufp; | |
530 | int len; | |
531 | DBT *val; | |
532 | int set; | |
533 | { | |
534 | BUFHEAD *xbp; | |
535 | char *p; | |
536 | int mylen, totlen; | |
537 | u_int16_t *bp, save_addr; | |
538 | ||
539 | p = bufp->page; | |
540 | bp = (u_int16_t *)p; | |
541 | mylen = hashp->BSIZE - bp[1]; | |
542 | ||
543 | save_addr = bufp->addr; | |
544 | totlen = len + mylen; | |
545 | if (bp[2] == FULL_KEY || bp[2] == FULL_KEY_DATA) { /* End of Key. */ | |
546 | if (hashp->tmp_key != NULL) | |
547 | free(hashp->tmp_key); | |
548 | if ((hashp->tmp_key = (char *)malloc(totlen)) == NULL) | |
549 | return (-1); | |
550 | if (__big_return(hashp, bufp, 1, val, set)) | |
551 | return (-1); | |
552 | } else { | |
553 | xbp = __get_buf(hashp, bp[bp[0] - 1], bufp, 0); | |
554 | if (!xbp || ((totlen = | |
555 | collect_key(hashp, xbp, totlen, val, set)) < 1)) | |
556 | return (-1); | |
557 | } | |
558 | if (bufp->addr != save_addr) { | |
559 | errno = EINVAL; /* MIS -- OUT OF BUFFERS */ | |
560 | return (-1); | |
561 | } | |
562 | memmove(&hashp->tmp_key[len], (bufp->page) + bp[1], mylen); | |
563 | return (totlen); | |
564 | } | |
565 | ||
566 | /* | |
567 | * Returns: | |
568 | * 0 => OK | |
569 | * -1 => error | |
570 | */ | |
571 | extern int | |
572 | __big_split(hashp, op, np, big_keyp, addr, obucket, ret) | |
573 | HTAB *hashp; | |
574 | BUFHEAD *op; /* Pointer to where to put keys that go in old bucket */ | |
575 | BUFHEAD *np; /* Pointer to new bucket page */ | |
576 | /* Pointer to first page containing the big key/data */ | |
577 | BUFHEAD *big_keyp; | |
578 | int addr; /* Address of big_keyp */ | |
579 | u_int32_t obucket;/* Old Bucket */ | |
580 | SPLIT_RETURN *ret; | |
581 | { | |
582 | BUFHEAD *tmpp; | |
583 | u_int16_t *tp; | |
584 | BUFHEAD *bp; | |
585 | DBT key, val; | |
586 | u_int32_t change; | |
587 | u_int16_t free_space, n, off; | |
588 | ||
589 | bp = big_keyp; | |
590 | ||
591 | /* Now figure out where the big key/data goes */ | |
592 | if (__big_keydata(hashp, big_keyp, &key, &val, 0)) | |
593 | return (-1); | |
594 | change = (__call_hash(hashp, key.data, key.size) != obucket); | |
595 | ||
596 | if ( (ret->next_addr = __find_last_page(hashp, &big_keyp)) ) { | |
597 | if (!(ret->nextp = | |
598 | __get_buf(hashp, ret->next_addr, big_keyp, 0))) | |
599 | return (-1);; | |
600 | } else | |
601 | ret->nextp = NULL; | |
602 | ||
603 | /* Now make one of np/op point to the big key/data pair */ | |
604 | #ifdef DEBUG | |
605 | assert(np->ovfl == NULL); | |
606 | #endif | |
607 | if (change) | |
608 | tmpp = np; | |
609 | else | |
610 | tmpp = op; | |
611 | ||
612 | tmpp->flags |= BUF_MOD; | |
613 | #ifdef DEBUG1 | |
614 | (void)fprintf(stderr, | |
615 | "BIG_SPLIT: %d->ovfl was %d is now %d\n", tmpp->addr, | |
616 | (tmpp->ovfl ? tmpp->ovfl->addr : 0), (bp ? bp->addr : 0)); | |
617 | #endif | |
618 | tmpp->ovfl = bp; /* one of op/np point to big_keyp */ | |
619 | tp = (u_int16_t *)tmpp->page; | |
620 | #ifdef DEBUG | |
621 | assert(FREESPACE(tp) >= OVFLSIZE); | |
622 | #endif | |
623 | n = tp[0]; | |
624 | off = OFFSET(tp); | |
625 | free_space = FREESPACE(tp); | |
626 | tp[++n] = (u_int16_t)addr; | |
627 | tp[++n] = OVFLPAGE; | |
628 | tp[0] = n; | |
629 | OFFSET(tp) = off; | |
630 | FREESPACE(tp) = free_space - OVFLSIZE; | |
631 | ||
632 | /* | |
633 | * Finally, set the new and old return values. BIG_KEYP contains a | |
634 | * pointer to the last page of the big key_data pair. Make sure that | |
635 | * big_keyp has no following page (2 elements) or create an empty | |
636 | * following page. | |
637 | */ | |
638 | ||
639 | ret->newp = np; | |
640 | ret->oldp = op; | |
641 | ||
642 | tp = (u_int16_t *)big_keyp->page; | |
643 | big_keyp->flags |= BUF_MOD; | |
644 | if (tp[0] > 2) { | |
645 | /* | |
646 | * There may be either one or two offsets on this page. If | |
647 | * there is one, then the overflow page is linked on normally | |
648 | * and tp[4] is OVFLPAGE. If there are two, tp[4] contains | |
649 | * the second offset and needs to get stuffed in after the | |
650 | * next overflow page is added. | |
651 | */ | |
652 | n = tp[4]; | |
653 | free_space = FREESPACE(tp); | |
654 | off = OFFSET(tp); | |
655 | tp[0] -= 2; | |
656 | FREESPACE(tp) = free_space + OVFLSIZE; | |
657 | OFFSET(tp) = off; | |
658 | tmpp = __add_ovflpage(hashp, big_keyp); | |
659 | if (!tmpp) | |
660 | return (-1); | |
661 | tp[4] = n; | |
662 | } else | |
663 | tmpp = big_keyp; | |
664 | ||
665 | if (change) | |
666 | ret->newp = tmpp; | |
667 | else | |
668 | ret->oldp = tmpp; | |
669 | return (0); | |
670 | } |