]> git.saurik.com Git - apple/ld64.git/blob - src/ld/SymbolTable.cpp
ld64-302.3.1.tar.gz
[apple/ld64.git] / src / ld / SymbolTable.cpp
1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-*
2 *
3 * Copyright (c) 2009-2010 Apple Inc. All rights reserved.
4 *
5 * @APPLE_LICENSE_HEADER_START@
6 *
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
12 * file.
13 *
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
21 *
22 * @APPLE_LICENSE_HEADER_END@
23 */
24
25
26 #include <stdlib.h>
27 #include <sys/types.h>
28 #include <sys/stat.h>
29 #include <sys/mman.h>
30 #include <sys/sysctl.h>
31 #include <fcntl.h>
32 #include <errno.h>
33 #include <limits.h>
34 #include <unistd.h>
35 #include <assert.h>
36
37 #include <iostream>
38 #include <sstream>
39 #include <string>
40 #include <map>
41 #include <set>
42 #include <vector>
43 #include <algorithm>
44
45 #include "Options.h"
46
47 #include "ld.hpp"
48 #include "InputFiles.h"
49 #include "SymbolTable.h"
50
51
52
53 namespace ld {
54 namespace tool {
55
56
57 // HACK, I can't find a way to pass values in the compare classes (e.g. ContentFuncs)
58 // so use global variable to pass info.
59 static ld::IndirectBindingTable* _s_indirectBindingTable = NULL;
60
61
62 SymbolTable::SymbolTable(const Options& opts, std::vector<const ld::Atom*>& ibt)
63 : _options(opts), _cstringTable(6151), _indirectBindingTable(ibt), _hasExternalTentativeDefinitions(false)
64 {
65 _s_indirectBindingTable = this;
66 }
67
68
69 size_t SymbolTable::ContentFuncs::operator()(const ld::Atom* atom) const
70 {
71 return atom->contentHash(*_s_indirectBindingTable);
72 }
73
74 bool SymbolTable::ContentFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
75 {
76 return (memcmp(left->rawContentPointer(), right->rawContentPointer(), left->size()) == 0);
77 }
78
79
80
81 size_t SymbolTable::CStringHashFuncs::operator()(const ld::Atom* atom) const
82 {
83 return atom->contentHash(*_s_indirectBindingTable);
84 }
85
86 bool SymbolTable::CStringHashFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
87 {
88 return (strcmp((char*)left->rawContentPointer(), (char*)right->rawContentPointer()) == 0);
89 }
90
91
92 size_t SymbolTable::UTF16StringHashFuncs::operator()(const ld::Atom* atom) const
93 {
94 return atom->contentHash(*_s_indirectBindingTable);
95 }
96
97 bool SymbolTable::UTF16StringHashFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
98 {
99 if ( left == right )
100 return true;
101 const void* leftContent = left->rawContentPointer();
102 const void* rightContent = right->rawContentPointer();
103 unsigned int amount = left->size()-2;
104 bool result = (memcmp(leftContent, rightContent, amount) == 0);
105 return result;
106 }
107
108
109 size_t SymbolTable::ReferencesHashFuncs::operator()(const ld::Atom* atom) const
110 {
111 return atom->contentHash(*_s_indirectBindingTable);
112 }
113
114 bool SymbolTable::ReferencesHashFuncs::operator()(const ld::Atom* left, const ld::Atom* right) const
115 {
116 return left->canCoalesceWith(*right, *_s_indirectBindingTable);
117 }
118
119
120 void SymbolTable::addDuplicateSymbol(const char *name, const ld::Atom *atom)
121 {
122 // Look up or create the file list for name.
123 DuplicateSymbols::iterator symbolsIterator = _duplicateSymbols.find(name);
124 DuplicatedSymbolAtomList *atoms = NULL;
125 if (symbolsIterator != _duplicateSymbols.end()) {
126 atoms = symbolsIterator->second;
127 } else {
128 atoms = new std::vector<const ld::Atom *>;
129 _duplicateSymbols.insert(std::pair<const char *, DuplicatedSymbolAtomList *>(name, atoms));
130 }
131
132 // check if file is already in the list, add it if not
133 bool found = false;
134 for (DuplicatedSymbolAtomList::iterator it = atoms->begin(); !found && it != atoms->end(); it++)
135 if (strcmp((*it)->safeFilePath(), atom->safeFilePath()) == 0)
136 found = true;
137 if (!found)
138 atoms->push_back(atom);
139 }
140
141 void SymbolTable::checkDuplicateSymbols() const
142 {
143 bool foundDuplicate = false;
144 for (DuplicateSymbols::const_iterator symbolIt = _duplicateSymbols.begin(); symbolIt != _duplicateSymbols.end(); symbolIt++) {
145 DuplicatedSymbolAtomList *atoms = symbolIt->second;
146 bool reportDuplicate;
147 if (_options.deadCodeStrip()) {
148 // search for a live atom
149 reportDuplicate = false;
150 for (DuplicatedSymbolAtomList::iterator it = atoms->begin(); !reportDuplicate && it != atoms->end(); it++) {
151 if ((*it)->live())
152 reportDuplicate = true;
153 }
154 } else {
155 reportDuplicate = true;
156 }
157 if (reportDuplicate) {
158 foundDuplicate = true;
159 fprintf(stderr, "duplicate symbol %s in:\n", symbolIt->first);
160 for (DuplicatedSymbolAtomList::iterator atomIt = atoms->begin(); atomIt != atoms->end(); atomIt++) {
161 fprintf(stderr, " %s\n", (*atomIt)->safeFilePath());
162 }
163 }
164 }
165 if (foundDuplicate)
166 throwf("%d duplicate symbol%s", (int)_duplicateSymbols.size(), _duplicateSymbols.size()==1?"":"s");
167 }
168
169 // AtomPicker encapsulates the logic for picking which atom to use when adding an atom by name results in a collision
170 class NameCollisionResolution {
171 public:
172 NameCollisionResolution(const ld::Atom& a, const ld::Atom& b, bool ignoreDuplicates, const Options& options) : _atomA(a), _atomB(b), _options(options), _reportDuplicate(false), _ignoreDuplicates(ignoreDuplicates) {
173 pickAtom();
174 }
175
176 // Returns which atom to use
177 const ld::Atom& chosen() { return *_chosen; }
178 bool choseAtom(const ld::Atom& atom) { return _chosen == &atom; }
179
180 // Returns true if the two atoms should be reported as a duplicate symbol
181 bool reportDuplicate() { return _reportDuplicate; }
182
183 private:
184 const ld::Atom& _atomA;
185 const ld::Atom& _atomB;
186 const Options& _options;
187 const ld::Atom* _chosen;
188 bool _reportDuplicate;
189 bool _ignoreDuplicates;
190
191 void pickAtom(const ld::Atom& atom) { _chosen = &atom; } // primitive to set which atom is picked
192 void pickAtomA() { pickAtom(_atomA); } // primitive to pick atom A
193 void pickAtomB() { pickAtom(_atomB); } // primitive to pick atom B
194
195 // use atom A if pickA, otherwise use atom B
196 void pickAOrB(bool pickA) { if (pickA) pickAtomA(); else pickAtomB(); }
197
198 void pickHigherOrdinal() {
199 pickAOrB(_atomA.file()->ordinal() < _atomB.file()->ordinal());
200 }
201
202 void pickLowerOrdinal() {
203 pickAOrB(_atomA.file()->ordinal() > _atomB.file()->ordinal());
204 }
205
206 void pickLargerSize() {
207 if (_atomA.size() == _atomB.size())
208 pickLowerOrdinal();
209 else
210 pickAOrB(_atomA.size() > _atomB.size());
211 }
212
213 void pickGreaterAlignment() {
214 pickAOrB(_atomA.alignment().trailingZeros() > _atomB.alignment().trailingZeros());
215 }
216
217 void pickBetweenRegularAtoms() {
218 if ( _atomA.combine() == ld::Atom::combineByName ) {
219 if ( _atomB.combine() == ld::Atom::combineByName ) {
220 // <rdar://problem/9183821> always choose mach-o over llvm bit code, otherwise LTO may eliminate the llvm atom
221 const bool aIsLTO = (_atomA.contentType() == ld::Atom::typeLTOtemporary);
222 const bool bIsLTO = (_atomB.contentType() == ld::Atom::typeLTOtemporary);
223 // <rdar://problem/9183821> always choose mach-o over llvm bit code, otherwise LTO may eliminate the llvm atom
224 if ( aIsLTO != bIsLTO ) {
225 pickAOrB(!aIsLTO);
226 }
227 else {
228 // both weak, prefer non-auto-hide one
229 if ( _atomA.autoHide() != _atomB.autoHide() ) {
230 // <rdar://problem/6783167> support auto hidden weak symbols: .weak_def_can_be_hidden
231 pickAOrB(!_atomA.autoHide());
232 }
233 else if ( _atomA.autoHide() && _atomB.autoHide() ) {
234 // both have auto-hide, so use one with greater alignment
235 pickGreaterAlignment();
236 }
237 else {
238 // neither auto-hide, check visibility
239 if ( _atomA.scope() != _atomB.scope() ) {
240 // <rdar://problem/8304984> use more visible weak def symbol
241 pickAOrB(_atomA.scope() == ld::Atom::scopeGlobal);
242 }
243 else {
244 // both have same visibility, use one with greater alignment
245 pickGreaterAlignment();
246 }
247 }
248 }
249 }
250 else {
251 pickAtomB(); // pick not-weak
252
253 }
254 }
255 else {
256 if ( _atomB.combine() == ld::Atom::combineByName ) {
257 pickAtomA(); // pick not-weak
258
259 }
260 else {
261 // both are not-weak
262 if ( _atomA.section().type() == ld::Section::typeMachHeader ) {
263 pickAtomA();
264 }
265 else if ( _atomB.section().type() == ld::Section::typeMachHeader ) {
266 pickAtomB();
267 }
268 else {
269 if ( _ignoreDuplicates ) {
270 pickLowerOrdinal();
271 }
272 else {
273 _reportDuplicate = true;
274 }
275 }
276 }
277 }
278 }
279
280 void pickCommonsMode(const ld::Atom& dylib, const ld::Atom& proxy) {
281 assert(dylib.definition() == ld::Atom::definitionTentative);
282 assert(proxy.definition() == ld::Atom::definitionProxy);
283 switch ( _options.commonsMode() ) {
284 case Options::kCommonsIgnoreDylibs:
285 if ( _options.warnCommons() )
286 warning("using common symbol %s from %s and ignoring defintion from dylib %s",
287 proxy.name(), proxy.safeFilePath(), dylib.safeFilePath());
288 pickAtom(dylib);
289 break;
290 case Options::kCommonsOverriddenByDylibs:
291 if ( _options.warnCommons() )
292 warning("replacing common symbol %s from %s with true definition from dylib %s",
293 proxy.name(), proxy.safeFilePath(), dylib.safeFilePath());
294 pickAtom(proxy);
295 break;
296 case Options::kCommonsConflictsDylibsError:
297 throwf("common symbol %s from %s conflicts with defintion from dylib %s",
298 proxy.name(), proxy.safeFilePath(), dylib.safeFilePath());
299 }
300 }
301
302 void pickProxyAtom() {
303 // both atoms are definitionProxy
304 // <rdar://problem/5137732> ld should keep looking when it finds a weak definition in a dylib
305 if ( _atomA.combine() == ld::Atom::combineByName ) {
306 pickAtomB();
307 } else if ( _atomB.combine() == ld::Atom::combineByName ) {
308 pickAtomA();
309 } else {
310 throwf("symbol %s exported from both %s and %s\n", _atomA.name(), _atomA.safeFilePath(), _atomB.safeFilePath());
311 }
312 }
313
314 void pickAtom() {
315 //fprintf(stderr, "pickAtom(), a=%p, def=%d, b=%p, def=%d\n", &_atomA, _atomA.definition(), &_atomB, _atomB.definition());
316 // First, discriminate by definition
317 switch (_atomA.definition()) {
318 case ld::Atom::definitionRegular:
319 switch (_atomB.definition()) {
320 case ld::Atom::definitionRegular:
321 pickBetweenRegularAtoms();
322 break;
323 case ld::Atom::definitionTentative:
324 if ( _atomB.size() > _atomA.size() ) {
325 warning("tentative definition of '%s' with size %llu from '%s' is being replaced by real definition of smaller size %llu from '%s'",
326 _atomA.name(), _atomB.size(), _atomB.safeFilePath(), _atomA.size(), _atomA.safeFilePath());
327 }
328 pickAtomA();
329 break;
330 case ld::Atom::definitionAbsolute:
331 _reportDuplicate = true;
332 pickHigherOrdinal();
333 break;
334 case ld::Atom::definitionProxy:
335 pickAtomA();
336 break;
337 }
338 break;
339 case ld::Atom::definitionTentative:
340 switch (_atomB.definition()) {
341 case ld::Atom::definitionRegular:
342 if ( _atomA.size() > _atomB.size() ) {
343 warning("tentative definition of '%s' with size %llu from '%s' is being replaced by real definition of smaller size %llu from '%s'",
344 _atomA.name(), _atomA.size(),_atomA.safeFilePath(), _atomB.size(), _atomB.safeFilePath());
345 }
346 pickAtomB();
347 break;
348 case ld::Atom::definitionTentative:
349 pickLargerSize();
350 break;
351 case ld::Atom::definitionAbsolute:
352 pickHigherOrdinal();
353 break;
354 case ld::Atom::definitionProxy:
355 pickCommonsMode(_atomA, _atomB);
356 break;
357 }
358 break;
359 case ld::Atom::definitionAbsolute:
360 switch (_atomB.definition()) {
361 case ld::Atom::definitionRegular:
362 _reportDuplicate = true;
363 pickHigherOrdinal();
364 break;
365 case ld::Atom::definitionTentative:
366 pickAtomA();
367 break;
368 case ld::Atom::definitionAbsolute:
369 _reportDuplicate = true;
370 pickHigherOrdinal();
371 break;
372 case ld::Atom::definitionProxy:
373 pickAtomA();
374 break;
375 }
376 break;
377 case ld::Atom::definitionProxy:
378 switch (_atomB.definition()) {
379 case ld::Atom::definitionRegular:
380 pickAtomB();
381 break;
382 case ld::Atom::definitionTentative:
383 pickCommonsMode(_atomB, _atomA);
384 break;
385 case ld::Atom::definitionAbsolute:
386 pickAtomB();
387 break;
388 case ld::Atom::definitionProxy:
389 pickProxyAtom();
390 break;
391 }
392 break;
393 }
394 }
395 };
396
397 bool SymbolTable::addByName(const ld::Atom& newAtom, bool ignoreDuplicates)
398 {
399 bool useNew = true;
400 assert(newAtom.name() != NULL);
401 const char* name = newAtom.name();
402 IndirectBindingSlot slot = this->findSlotForName(name);
403 const ld::Atom* existingAtom = _indirectBindingTable[slot];
404 //fprintf(stderr, "addByName(%p) name=%s, slot=%u, existing=%p\n", &newAtom, newAtom.name(), slot, existingAtom);
405 if ( existingAtom != NULL ) {
406 assert(&newAtom != existingAtom);
407 NameCollisionResolution picker(newAtom, *existingAtom, ignoreDuplicates, _options);
408 if (picker.reportDuplicate()) {
409 addDuplicateSymbol(name, existingAtom);
410 addDuplicateSymbol(name, &newAtom);
411 }
412 useNew = picker.choseAtom(newAtom);
413 }
414 if ( useNew ) {
415 _indirectBindingTable[slot] = &newAtom;
416 if ( existingAtom != NULL ) {
417 markCoalescedAway(existingAtom);
418 }
419 if ( newAtom.scope() == ld::Atom::scopeGlobal ) {
420 if ( newAtom.definition() == ld::Atom::definitionTentative ) {
421 _hasExternalTentativeDefinitions = true;
422 }
423 }
424 }
425 else {
426 markCoalescedAway(&newAtom);
427 }
428 // return if existing atom in symbol table was replaced
429 return useNew && (existingAtom != NULL);
430 }
431
432
433 bool SymbolTable::addByContent(const ld::Atom& newAtom)
434 {
435 bool useNew = true;
436 const ld::Atom* existingAtom;
437 IndirectBindingSlot slot = this->findSlotForContent(&newAtom, &existingAtom);
438 //fprintf(stderr, "addByContent(%p) name=%s, slot=%u, existing=%p\n", &newAtom, newAtom.name(), slot, existingAtom);
439 if ( existingAtom != NULL ) {
440 // use existing unless new one has greater alignment requirements
441 useNew = ( newAtom.alignment().trailingZeros() > existingAtom->alignment().trailingZeros() );
442 }
443 if ( useNew ) {
444 _indirectBindingTable[slot] = &newAtom;
445 if ( existingAtom != NULL )
446 markCoalescedAway(existingAtom);
447 }
448 else {
449 _indirectBindingTable[slot] = existingAtom;
450 if ( existingAtom != &newAtom )
451 markCoalescedAway(&newAtom);
452 }
453 // return if existing atom in symbol table was replaced
454 return useNew && (existingAtom != NULL);
455 }
456
457 bool SymbolTable::addByReferences(const ld::Atom& newAtom)
458 {
459 bool useNew = true;
460 const ld::Atom* existingAtom;
461 IndirectBindingSlot slot = this->findSlotForReferences(&newAtom, &existingAtom);
462 //fprintf(stderr, "addByReferences(%p) name=%s, slot=%u, existing=%p\n", &newAtom, newAtom.name(), slot, existingAtom);
463 if ( existingAtom != NULL ) {
464 // use existing unless new one has greater alignment requirements
465 useNew = ( newAtom.alignment().trailingZeros() > existingAtom->alignment().trailingZeros() );
466 }
467 if ( useNew ) {
468 _indirectBindingTable[slot] = &newAtom;
469 if ( existingAtom != NULL )
470 markCoalescedAway(existingAtom);
471 }
472 else {
473 if ( existingAtom != &newAtom )
474 markCoalescedAway(&newAtom);
475 }
476 // return if existing atom in symbol table was replaced
477 return useNew && (existingAtom != NULL);
478 }
479
480
481 bool SymbolTable::add(const ld::Atom& atom, bool ignoreDuplicates)
482 {
483 //fprintf(stderr, "SymbolTable::add(%p), name=%s\n", &atom, atom.name());
484 assert(atom.scope() != ld::Atom::scopeTranslationUnit);
485 switch ( atom.combine() ) {
486 case ld::Atom::combineNever:
487 case ld::Atom::combineByName:
488 return this->addByName(atom, ignoreDuplicates);
489 break;
490 case ld::Atom::combineByNameAndContent:
491 return this->addByContent(atom);
492 break;
493 case ld::Atom::combineByNameAndReferences:
494 return this->addByReferences(atom);
495 break;
496 }
497
498 return false;
499 }
500
501 void SymbolTable::markCoalescedAway(const ld::Atom* atom)
502 {
503 // remove this from list of all atoms used
504 //fprintf(stderr, "markCoalescedAway(%p) from %s\n", atom, atom->safeFilePath());
505 (const_cast<ld::Atom*>(atom))->setCoalescedAway();
506
507 //
508 // The fixupNoneGroupSubordinate* fixup kind is used to model group comdat.
509 // The "signature" atom in the group has a fixupNoneGroupSubordinate* fixup to
510 // all other members of the group. So, if the signature atom is
511 // coalesced away, all other atoms in the group should also be removed.
512 //
513 for (ld::Fixup::iterator fit=atom->fixupsBegin(), fend=atom->fixupsEnd(); fit != fend; ++fit) {
514 switch ( fit->kind ) {
515 case ld::Fixup::kindNoneGroupSubordinate:
516 case ld::Fixup::kindNoneGroupSubordinateFDE:
517 case ld::Fixup::kindNoneGroupSubordinateLSDA:
518 assert(fit->binding == ld::Fixup::bindingDirectlyBound);
519 this->markCoalescedAway(fit->u.target);
520 break;
521 default:
522 break;
523 }
524 }
525
526 }
527
528
529 struct StrcmpSorter {
530 bool operator() (const char* i,const char* j) {
531 if (i==NULL)
532 return true;
533 if (j==NULL)
534 return false;
535 return strcmp(i, j)<0;}
536 };
537
538 void SymbolTable::undefines(std::vector<const char*>& undefs)
539 {
540 // return all names in _byNameTable that have no associated atom
541 for (NameToSlot::iterator it=_byNameTable.begin(); it != _byNameTable.end(); ++it) {
542 //fprintf(stderr, " _byNameTable[%s] = slot %d which has atom %p\n", it->first, it->second, _indirectBindingTable[it->second]);
543 if ( _indirectBindingTable[it->second] == NULL )
544 undefs.push_back(it->first);
545 }
546 // sort so that undefines are in a stable order (not dependent on hashing functions)
547 struct StrcmpSorter strcmpSorter;
548 std::sort(undefs.begin(), undefs.end(), strcmpSorter);
549 }
550
551
552 void SymbolTable::tentativeDefs(std::vector<const char*>& tents)
553 {
554 // return all names in _byNameTable that have no associated atom
555 for (NameToSlot::iterator it=_byNameTable.begin(); it != _byNameTable.end(); ++it) {
556 const char* name = it->first;
557 const ld::Atom* atom = _indirectBindingTable[it->second];
558 if ( (atom != NULL) && (atom->definition() == ld::Atom::definitionTentative) )
559 tents.push_back(name);
560 }
561 std::sort(tents.begin(), tents.end());
562 }
563
564
565 void SymbolTable::mustPreserveForBitcode(std::unordered_set<const char*>& syms)
566 {
567 // return all names in _byNameTable that have no associated atom
568 for (const auto &entry: _byNameTable) {
569 const char* name = entry.first;
570 const ld::Atom* atom = _indirectBindingTable[entry.second];
571 if ( (atom == NULL) || (atom->definition() == ld::Atom::definitionProxy) )
572 syms.insert(name);
573 }
574 }
575
576
577 bool SymbolTable::hasName(const char* name)
578 {
579 NameToSlot::iterator pos = _byNameTable.find(name);
580 if ( pos == _byNameTable.end() )
581 return false;
582 return (_indirectBindingTable[pos->second] != NULL);
583 }
584
585 // find existing or create new slot
586 SymbolTable::IndirectBindingSlot SymbolTable::findSlotForName(const char* name)
587 {
588 NameToSlot::iterator pos = _byNameTable.find(name);
589 if ( pos != _byNameTable.end() )
590 return pos->second;
591 // create new slot for this name
592 SymbolTable::IndirectBindingSlot slot = _indirectBindingTable.size();
593 _indirectBindingTable.push_back(NULL);
594 _byNameTable[name] = slot;
595 _byNameReverseTable[slot] = name;
596 return slot;
597 }
598
599 void SymbolTable::removeDeadAtoms()
600 {
601 // remove dead atoms from: _byNameTable, _byNameReverseTable, and _indirectBindingTable
602 std::vector<const char*> namesToRemove;
603 for (NameToSlot::iterator it=_byNameTable.begin(); it != _byNameTable.end(); ++it) {
604 IndirectBindingSlot slot = it->second;
605 const ld::Atom* atom = _indirectBindingTable[slot];
606 if ( atom != NULL ) {
607 if ( !atom->live() && !atom->dontDeadStrip() ) {
608 //fprintf(stderr, "removing from symbolTable[%u] %s\n", slot, atom->name());
609 _indirectBindingTable[slot] = NULL;
610 // <rdar://problem/16025786> need to completely remove dead atoms from symbol table
611 _byNameReverseTable.erase(slot);
612 // can't remove while iterating, do it after iteration
613 namesToRemove.push_back(it->first);
614 }
615 }
616 }
617 for (std::vector<const char*>::iterator it = namesToRemove.begin(); it != namesToRemove.end(); ++it) {
618 _byNameTable.erase(*it);
619 }
620
621 // remove dead atoms from _nonLazyPointerTable
622 for (ReferencesToSlot::iterator it=_nonLazyPointerTable.begin(); it != _nonLazyPointerTable.end(); ) {
623 const ld::Atom* atom = it->first;
624 assert(atom != NULL);
625 if ( !atom->live() && !atom->dontDeadStrip() )
626 it = _nonLazyPointerTable.erase(it);
627 else
628 ++it;
629 }
630
631 // remove dead atoms from _cstringTable
632 for (CStringToSlot::iterator it=_cstringTable.begin(); it != _cstringTable.end(); ) {
633 const ld::Atom* atom = it->first;
634 assert(atom != NULL);
635 if ( !atom->live() && !atom->dontDeadStrip() )
636 it = _cstringTable.erase(it);
637 else
638 ++it;
639 }
640
641 // remove dead atoms from _utf16Table
642 for (UTF16StringToSlot::iterator it=_utf16Table.begin(); it != _utf16Table.end(); ) {
643 const ld::Atom* atom = it->first;
644 assert(atom != NULL);
645 if ( !atom->live() && !atom->dontDeadStrip() )
646 it = _utf16Table.erase(it);
647 else
648 ++it;
649 }
650
651 // remove dead atoms from _cfStringTable
652 for (ReferencesToSlot::iterator it=_cfStringTable.begin(); it != _cfStringTable.end(); ) {
653 const ld::Atom* atom = it->first;
654 assert(atom != NULL);
655 if ( !atom->live() && !atom->dontDeadStrip() )
656 it = _cfStringTable.erase(it);
657 else
658 ++it;
659 }
660
661 // remove dead atoms from _literal4Table
662 for (ContentToSlot::iterator it=_literal4Table.begin(); it != _literal4Table.end(); ) {
663 const ld::Atom* atom = it->first;
664 assert(atom != NULL);
665 if ( !atom->live() && !atom->dontDeadStrip() )
666 it = _literal4Table.erase(it);
667 else
668 ++it;
669 }
670
671 // remove dead atoms from _literal8Table
672 for (ContentToSlot::iterator it=_literal8Table.begin(); it != _literal8Table.end(); ) {
673 const ld::Atom* atom = it->first;
674 assert(atom != NULL);
675 if ( !atom->live() && !atom->dontDeadStrip() )
676 it = _literal8Table.erase(it);
677 else
678 ++it;
679 }
680
681 // remove dead atoms from _literal16Table
682 for (ContentToSlot::iterator it=_literal16Table.begin(); it != _literal16Table.end(); ) {
683 const ld::Atom* atom = it->first;
684 assert(atom != NULL);
685 if ( !atom->live() && !atom->dontDeadStrip() )
686 it = _literal16Table.erase(it);
687 else
688 ++it;
689 }
690 }
691
692
693 // find existing or create new slot
694 SymbolTable::IndirectBindingSlot SymbolTable::findSlotForContent(const ld::Atom* atom, const ld::Atom** existingAtom)
695 {
696 //fprintf(stderr, "findSlotForContent(%p)\n", atom);
697 SymbolTable::IndirectBindingSlot slot = 0;
698 UTF16StringToSlot::iterator upos;
699 CStringToSlot::iterator cspos;
700 ContentToSlot::iterator pos;
701 switch ( atom->section().type() ) {
702 case ld::Section::typeCString:
703 cspos = _cstringTable.find(atom);
704 if ( cspos != _cstringTable.end() ) {
705 *existingAtom = _indirectBindingTable[cspos->second];
706 return cspos->second;
707 }
708 slot = _indirectBindingTable.size();
709 _cstringTable[atom] = slot;
710 break;
711 case ld::Section::typeNonStdCString:
712 {
713 // use seg/sect name is key to map to avoid coalescing across segments and sections
714 char segsect[64];
715 sprintf(segsect, "%s/%s", atom->section().segmentName(), atom->section().sectionName());
716 NameToMap::iterator mpos = _nonStdCStringSectionToMap.find(segsect);
717 CStringToSlot* map = NULL;
718 if ( mpos == _nonStdCStringSectionToMap.end() ) {
719 map = new CStringToSlot();
720 _nonStdCStringSectionToMap[strdup(segsect)] = map;
721 }
722 else {
723 map = mpos->second;
724 }
725 cspos = map->find(atom);
726 if ( cspos != map->end() ) {
727 *existingAtom = _indirectBindingTable[cspos->second];
728 return cspos->second;
729 }
730 slot = _indirectBindingTable.size();
731 map->operator[](atom) = slot;
732 }
733 break;
734 case ld::Section::typeUTF16Strings:
735 upos = _utf16Table.find(atom);
736 if ( upos != _utf16Table.end() ) {
737 *existingAtom = _indirectBindingTable[upos->second];
738 return upos->second;
739 }
740 slot = _indirectBindingTable.size();
741 _utf16Table[atom] = slot;
742 break;
743 case ld::Section::typeLiteral4:
744 pos = _literal4Table.find(atom);
745 if ( pos != _literal4Table.end() ) {
746 *existingAtom = _indirectBindingTable[pos->second];
747 return pos->second;
748 }
749 slot = _indirectBindingTable.size();
750 _literal4Table[atom] = slot;
751 break;
752 case ld::Section::typeLiteral8:
753 pos = _literal8Table.find(atom);
754 if ( pos != _literal8Table.end() ) {
755 *existingAtom = _indirectBindingTable[pos->second];
756 return pos->second;
757 }
758 slot = _indirectBindingTable.size();
759 _literal8Table[atom] = slot;
760 break;
761 case ld::Section::typeLiteral16:
762 pos = _literal16Table.find(atom);
763 if ( pos != _literal16Table.end() ) {
764 *existingAtom = _indirectBindingTable[pos->second];
765 return pos->second;
766 }
767 slot = _indirectBindingTable.size();
768 _literal16Table[atom] = slot;
769 break;
770 default:
771 assert(0 && "section type does not support coalescing by content");
772 }
773 _indirectBindingTable.push_back(atom);
774 *existingAtom = NULL;
775 return slot;
776 }
777
778
779
780 // find existing or create new slot
781 SymbolTable::IndirectBindingSlot SymbolTable::findSlotForReferences(const ld::Atom* atom, const ld::Atom** existingAtom)
782 {
783 //fprintf(stderr, "findSlotForReferences(%p)\n", atom);
784
785 SymbolTable::IndirectBindingSlot slot = 0;
786 ReferencesToSlot::iterator pos;
787 switch ( atom->section().type() ) {
788 case ld::Section::typeNonLazyPointer:
789 pos = _nonLazyPointerTable.find(atom);
790 if ( pos != _nonLazyPointerTable.end() ) {
791 *existingAtom = _indirectBindingTable[pos->second];
792 return pos->second;
793 }
794 slot = _indirectBindingTable.size();
795 _nonLazyPointerTable[atom] = slot;
796 break;
797 case ld::Section::typeCFString:
798 pos = _cfStringTable.find(atom);
799 if ( pos != _cfStringTable.end() ) {
800 *existingAtom = _indirectBindingTable[pos->second];
801 return pos->second;
802 }
803 slot = _indirectBindingTable.size();
804 _cfStringTable[atom] = slot;
805 break;
806 case ld::Section::typeObjCClassRefs:
807 pos = _objc2ClassRefTable.find(atom);
808 if ( pos != _objc2ClassRefTable.end() ) {
809 *existingAtom = _indirectBindingTable[pos->second];
810 return pos->second;
811 }
812 slot = _indirectBindingTable.size();
813 _objc2ClassRefTable[atom] = slot;
814 break;
815 case ld::Section::typeCStringPointer:
816 pos = _pointerToCStringTable.find(atom);
817 if ( pos != _pointerToCStringTable.end() ) {
818 *existingAtom = _indirectBindingTable[pos->second];
819 return pos->second;
820 }
821 slot = _indirectBindingTable.size();
822 _pointerToCStringTable[atom] = slot;
823 break;
824 case ld::Section::typeTLVPointers:
825 pos = _threadPointerTable.find(atom);
826 if ( pos != _threadPointerTable.end() ) {
827 *existingAtom = _indirectBindingTable[pos->second];
828 return pos->second;
829 }
830 slot = _indirectBindingTable.size();
831 _threadPointerTable[atom] = slot;
832 break;
833 default:
834 assert(0 && "section type does not support coalescing by references");
835 }
836 _indirectBindingTable.push_back(atom);
837 *existingAtom = NULL;
838 return slot;
839 }
840
841
842 const char* SymbolTable::indirectName(IndirectBindingSlot slot) const
843 {
844 assert(slot < _indirectBindingTable.size());
845 const ld::Atom* target = _indirectBindingTable[slot];
846 if ( target != NULL ) {
847 return target->name();
848 }
849 // handle case when by-name reference is indirected and no atom yet in _byNameTable
850 SlotToName::const_iterator pos = _byNameReverseTable.find(slot);
851 if ( pos != _byNameReverseTable.end() )
852 return pos->second;
853 assert(0);
854 return NULL;
855 }
856
857 const ld::Atom* SymbolTable::indirectAtom(IndirectBindingSlot slot) const
858 {
859 assert(slot < _indirectBindingTable.size());
860 return _indirectBindingTable[slot];
861 }
862
863 void SymbolTable::printStatistics()
864 {
865 // fprintf(stderr, "cstring table size: %lu, bucket count: %lu, hash func called %u times\n",
866 // _cstringTable.size(), _cstringTable.bucket_count(), cstringHashCount);
867 int count[11];
868 for(unsigned int b=0; b < 11; ++b) {
869 count[b] = 0;
870 }
871 for(unsigned int i=0; i < _cstringTable.bucket_count(); ++i) {
872 unsigned int n = _cstringTable.bucket_size(i);
873 if ( n < 10 )
874 count[n] += 1;
875 else
876 count[10] += 1;
877 }
878 fprintf(stderr, "cstring table distribution\n");
879 for(unsigned int b=0; b < 11; ++b) {
880 fprintf(stderr, "%u buckets have %u elements\n", count[b], b);
881 }
882 fprintf(stderr, "indirect table size: %lu\n", _indirectBindingTable.size());
883 fprintf(stderr, "by-name table size: %lu\n", _byNameTable.size());
884 // fprintf(stderr, "by-content table size: %lu, hash count: %u, equals count: %u, lookup count: %u\n",
885 // _byContentTable.size(), contentHashCount, contentEqualCount, contentLookupCount);
886 // fprintf(stderr, "by-ref table size: %lu, hashed count: %u, equals count: %u, lookup count: %u, insert count: %u\n",
887 // _byReferencesTable.size(), refHashCount, refEqualsCount, refLookupCount, refInsertCount);
888
889 //ReferencesHash obj;
890 //for(ReferencesHashToSlot::iterator it=_byReferencesTable.begin(); it != _byReferencesTable.end(); ++it) {
891 // if ( obj.operator()(it->first) == 0x2F3AC0EAC744EA70 ) {
892 // fprintf(stderr, "hash=0x2F3AC0EAC744EA70 for %p %s from %s\n", it->first, it->first->name(), it->first->safeFilePath());
893 //
894 // }
895 //}
896
897 }
898
899 } // namespace tool
900 } // namespace ld
901