1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
3 * Copyright (c) 2008-2013 Apple Inc. All rights reserved.
5 * @APPLE_LICENSE_HEADER_START@
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
22 * @APPLE_LICENSE_HEADER_END@
26 // processor specific parsing of dwarf unwind instructions
29 #ifndef __DWARF_INSTRUCTIONS_HPP__
30 #define __DWARF_INSTRUCTIONS_HPP__
39 #include <libunwind.h>
40 #include <mach-o/compact_unwind_encoding.h>
43 #include "AddressSpace.hpp"
44 #include "Registers.hpp"
45 #include "DwarfParser.hpp"
46 #include "InternalMacros.h"
47 //#include "CompactUnwinder.hpp"
49 #define EXTRACT_BITS(value, mask) \
50 ( (value >> __builtin_ctz(mask)) & (((1 << __builtin_popcount(mask)))-1) )
52 #define CFI_INVALID_ADDRESS ((pint_t)(-1))
58 /// Used by linker when parsing __eh_frame section
61 struct CFI_Reference {
62 typedef typename A::pint_t pint_t;
63 uint8_t encodingOfTargetAddress;
68 struct CFI_Atom_Info {
69 typedef typename A::pint_t pint_t;
75 CFI_Reference<A> function;
77 CFI_Reference<A> lsda;
78 uint32_t compactUnwindInfo;
81 CFI_Reference<A> personality;
86 typedef void (*WarnFunc)(void* ref, uint64_t funcAddr, const char* msg);
89 /// DwarfInstructions maps abtract dwarf unwind instructions to a particular architecture
91 template <typename A, typename R>
92 class DwarfInstructions
95 typedef typename A::pint_t pint_t;
96 typedef typename A::sint_t sint_t;
98 static const char* parseCFIs(A& addressSpace, pint_t ehSectionStart, uint32_t sectionLength,
99 const pint_t cuStarts[], uint32_t cuCount,
100 bool keepDwarfWhichHasCU, bool forceDwarfConversion, bool neverConvertToCU,
101 CFI_Atom_Info<A>* infos, uint32_t& infosCount, void* ref, WarnFunc warn);
104 static compact_unwind_encoding_t createCompactEncodingFromFDE(A& addressSpace, pint_t fdeStart,
105 pint_t* lsda, pint_t* personality,
106 char warningBuffer[1024]);
108 static int stepWithDwarf(A& addressSpace, pint_t pc, pint_t fdeStart, R& registers);
113 DW_X86_64_RET_ADDR = 16
120 static pint_t evaluateExpression(pint_t expression, A& addressSpace, const R& registers, pint_t initialStackValue);
121 static pint_t getSavedRegister(A& addressSpace, const R& registers, pint_t cfa,
122 const typename CFI_Parser<A>::RegisterLocation& savedReg);
123 static double getSavedFloatRegister(A& addressSpace, const R& registers, pint_t cfa,
124 const typename CFI_Parser<A>::RegisterLocation& savedReg);
125 static v128 getSavedVectorRegister(A& addressSpace, const R& registers, pint_t cfa,
126 const typename CFI_Parser<A>::RegisterLocation& savedReg);
128 // x86 specific variants
129 static int lastRestoreReg(const Registers_x86&);
130 static bool isReturnAddressRegister(int regNum, const Registers_x86&);
131 static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_x86&);
133 static uint32_t getEBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure);
134 static compact_unwind_encoding_t encodeToUseDwarf(const Registers_x86&);
135 static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
136 const Registers_x86&, const typename CFI_Parser<A>::PrologInfo& prolog,
137 char warningBuffer[1024]);
139 // x86_64 specific variants
140 static int lastRestoreReg(const Registers_x86_64&);
141 static bool isReturnAddressRegister(int regNum, const Registers_x86_64&);
142 static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_x86_64&);
144 static uint32_t getRBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure);
145 static compact_unwind_encoding_t encodeToUseDwarf(const Registers_x86_64&);
146 static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
147 const Registers_x86_64&, const typename CFI_Parser<A>::PrologInfo& prolog,
148 char warningBuffer[1024]);
150 // ppc specific variants
151 static int lastRestoreReg(const Registers_ppc&);
152 static bool isReturnAddressRegister(int regNum, const Registers_ppc&);
153 static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_ppc&);
154 static compact_unwind_encoding_t encodeToUseDwarf(const Registers_ppc&);
155 static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
156 const Registers_ppc&, const typename CFI_Parser<A>::PrologInfo& prolog,
157 char warningBuffer[1024]);
159 // arm64 specific variants
160 static bool isReturnAddressRegister(int regNum, const Registers_arm64&);
161 static int lastRestoreReg(const Registers_arm64&);
162 static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_arm64&);
163 static bool checkRegisterPair(uint32_t reg, const typename CFI_Parser<A>::PrologInfo& prolog,
164 int& offset, char warningBuffer[1024]);
165 static compact_unwind_encoding_t encodeToUseDwarf(const Registers_arm64&);
166 static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
167 const Registers_arm64&, const typename CFI_Parser<A>::PrologInfo& prolog,
168 char warningBuffer[1024]);
170 // arm specific variants
171 static bool isReturnAddressRegister(int regNum, const Registers_arm&);
172 static pint_t getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog, const Registers_arm&);
173 static compact_unwind_encoding_t encodeToUseDwarf(const Registers_arm&);
174 static compact_unwind_encoding_t createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
175 const Registers_arm&, const typename CFI_Parser<A>::PrologInfo& prolog,
176 char warningBuffer[1024]);
183 template <typename A, typename R>
184 const char* DwarfInstructions<A,R>::parseCFIs(A& addressSpace, pint_t ehSectionStart, uint32_t sectionLength,
185 const pint_t cuStarts[], uint32_t cuCount,
186 bool keepDwarfWhichHasCU, bool forceDwarfConversion, bool neverConvertToCU,
187 CFI_Atom_Info<A>* infos, uint32_t& infosCount, void* ref, WarnFunc warn)
189 typename CFI_Parser<A>::CIE_Info cieInfo;
190 CFI_Atom_Info<A>* entry = infos;
191 CFI_Atom_Info<A>* end = &infos[infosCount];
192 const pint_t ehSectionEnd = ehSectionStart + sectionLength;
193 for (pint_t p=ehSectionStart; p < ehSectionEnd; ) {
194 pint_t currentCFI = p;
195 uint64_t cfiLength = addressSpace.get32(p);
197 if ( cfiLength == 0xffffffff ) {
198 // 0xffffffff means length is really next 8 bytes
199 cfiLength = addressSpace.get64(p);
202 if ( cfiLength == 0 )
203 return NULL; // end marker
205 return "too little space allocated for parseCFIs";
206 pint_t nextCFI = p + cfiLength;
207 uint32_t id = addressSpace.get32(p);
210 const char* err = CFI_Parser<A>::parseCIE(addressSpace, currentCFI, &cieInfo);
213 entry->address = currentCFI;
214 entry->size = nextCFI - currentCFI;
216 entry->u.cieInfo.personality.targetAddress = cieInfo.personality;
217 entry->u.cieInfo.personality.offsetInCFI = cieInfo.personalityOffsetInCIE;
218 entry->u.cieInfo.personality.encodingOfTargetAddress = cieInfo.personalityEncoding;
223 entry->address = currentCFI;
224 entry->size = nextCFI - currentCFI;
225 entry->isCIE = false;
226 entry->u.fdeInfo.function.targetAddress = CFI_INVALID_ADDRESS;
227 entry->u.fdeInfo.cie.targetAddress = CFI_INVALID_ADDRESS;
228 entry->u.fdeInfo.lsda.targetAddress = CFI_INVALID_ADDRESS;
229 uint32_t ciePointer = addressSpace.get32(p);
230 pint_t cieStart = p-ciePointer;
231 // validate pointer to CIE is within section
232 if ( (cieStart < ehSectionStart) || (cieStart > ehSectionEnd) )
233 return "FDE points to CIE outside __eh_frame section";
234 // optimize usual case where cie is same for all FDEs
235 if ( cieStart != cieInfo.cieStart ) {
236 const char* err = CFI_Parser<A>::parseCIE(addressSpace, cieStart, &cieInfo);
240 entry->u.fdeInfo.cie.targetAddress = cieStart;
241 entry->u.fdeInfo.cie.offsetInCFI = p-currentCFI;
242 entry->u.fdeInfo.cie.encodingOfTargetAddress = DW_EH_PE_sdata4 | DW_EH_PE_pcrel;
244 // parse pc begin and range
245 pint_t offsetOfFunctionAddress = p-currentCFI;
246 pint_t pcStart = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding);
247 pint_t pcRange = addressSpace.getEncodedP(p, nextCFI, cieInfo.pointerEncoding & 0x0F);
248 //fprintf(stderr, "FDE with pcRange [0x%08llX, 0x%08llX)\n",(uint64_t)pcStart, (uint64_t)(pcStart+pcRange));
249 entry->u.fdeInfo.function.targetAddress = pcStart;
250 entry->u.fdeInfo.function.offsetInCFI = offsetOfFunctionAddress;
251 entry->u.fdeInfo.function.encodingOfTargetAddress = cieInfo.pointerEncoding;
252 // check for augmentation length
253 if ( cieInfo.fdesHaveAugmentationData ) {
254 uintptr_t augLen = addressSpace.getULEB128(p, nextCFI);
255 pint_t endOfAug = p + augLen;
256 if ( cieInfo.lsdaEncoding != 0 ) {
257 // peek at value (without indirection). Zero means no lsda
258 pint_t lsdaStart = p;
259 if ( addressSpace.getEncodedP(p, nextCFI, cieInfo.lsdaEncoding & 0x0F) != 0 ) {
260 // reset pointer and re-parse lsda address
262 pint_t offsetOfLSDAAddress = p-currentCFI;
263 entry->u.fdeInfo.lsda.targetAddress = addressSpace.getEncodedP(p, nextCFI, cieInfo.lsdaEncoding);
264 entry->u.fdeInfo.lsda.offsetInCFI = offsetOfLSDAAddress;
265 entry->u.fdeInfo.lsda.encodingOfTargetAddress = cieInfo.lsdaEncoding;
270 // See if already is a compact unwind for this address.
271 bool alreadyHaveCU = false;
272 for (uint32_t i=0; i < cuCount; ++i) {
273 if (cuStarts[i] == entry->u.fdeInfo.function.targetAddress) {
274 alreadyHaveCU = true;
278 if ( pcRange == 0 ) {
279 warn(ref, pcStart, "FDE found for zero size function");
282 //fprintf(stderr, "FDE for func at 0x%08X, alreadyHaveCU=%d\n", (uint32_t)entry->u.fdeInfo.function.targetAddress, alreadyHaveCU);
283 if ( alreadyHaveCU && !forceDwarfConversion ) {
284 if ( keepDwarfWhichHasCU )
288 if ( neverConvertToCU || ((cuCount != 0) && !forceDwarfConversion) ) {
289 // Have some compact unwind, so this is a new .o file, therefore anything without
290 // compact unwind must be something not expressable in compact unwind.
292 entry->u.fdeInfo.compactUnwindInfo = encodeToUseDwarf(dummy);
295 // compute compact unwind encoding by parsing dwarf
296 typename CFI_Parser<A>::FDE_Info fdeInfo;
297 fdeInfo.fdeStart = currentCFI;
298 fdeInfo.fdeLength = nextCFI - currentCFI;
299 fdeInfo.fdeInstructions = p;
300 fdeInfo.pcStart = pcStart;
301 fdeInfo.pcEnd = pcStart + pcRange;
302 fdeInfo.lsda = entry->u.fdeInfo.lsda.targetAddress;
303 typename CFI_Parser<A>::PrologInfo prolog;
304 R dummy; // for proper selection of architecture specific functions
305 if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, CFI_INVALID_ADDRESS, &prolog) ) {
306 char warningBuffer[1024];
307 entry->u.fdeInfo.compactUnwindInfo = createCompactEncodingFromProlog(addressSpace, fdeInfo.pcStart, dummy, prolog, warningBuffer);
308 if ( fdeInfo.lsda != CFI_INVALID_ADDRESS )
309 entry->u.fdeInfo.compactUnwindInfo |= UNWIND_HAS_LSDA;
310 if ( warningBuffer[0] != '\0' )
311 warn(ref, fdeInfo.pcStart, warningBuffer);
314 warn(ref, CFI_INVALID_ADDRESS, "dwarf unwind instructions could not be parsed");
315 entry->u.fdeInfo.compactUnwindInfo = encodeToUseDwarf(dummy);
323 if ( entry != end ) {
324 //fprintf(stderr, "DwarfInstructions<A,R>::parseCFIs() infosCount was %d on input, now %ld\n", infosCount, entry - infos);
325 infosCount = (entry - infos);
328 return NULL; // success
334 template <typename A, typename R>
335 compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromFDE(A& addressSpace, pint_t fdeStart,
336 pint_t* lsda, pint_t* personality,
337 char warningBuffer[1024])
339 typename CFI_Parser<A>::FDE_Info fdeInfo;
340 typename CFI_Parser<A>::CIE_Info cieInfo;
341 R dummy; // for proper selection of architecture specific functions
342 if ( CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL ) {
343 typename CFI_Parser<A>::PrologInfo prolog;
344 if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, CFI_INVALID_ADDRESS, &prolog) ) {
345 *lsda = fdeInfo.lsda;
346 *personality = cieInfo.personality;
347 compact_unwind_encoding_t encoding;
348 encoding = createCompactEncodingFromProlog(addressSpace, fdeInfo.pcStart, dummy, prolog, warningBuffer);
349 if ( fdeInfo.lsda != 0 )
350 encoding |= UNWIND_HAS_LSDA;
354 strcpy(warningBuffer, "dwarf unwind instructions could not be parsed");
355 return encodeToUseDwarf(dummy);
359 strcpy(warningBuffer, "dwarf FDE could not be parsed");
360 return encodeToUseDwarf(dummy);
365 template <typename A, typename R>
366 typename A::pint_t DwarfInstructions<A,R>::getSavedRegister(A& addressSpace, const R& registers, pint_t cfa,
367 const typename CFI_Parser<A>::RegisterLocation& savedReg)
369 switch ( savedReg.location ) {
370 case CFI_Parser<A>::kRegisterInCFA:
371 return addressSpace.getP(cfa + savedReg.value);
373 case CFI_Parser<A>::kRegisterAtExpression:
374 return addressSpace.getP(evaluateExpression(savedReg.value, addressSpace, registers, cfa));
376 case CFI_Parser<A>::kRegisterIsExpression:
377 return evaluateExpression(savedReg.value, addressSpace, registers, cfa);
379 case CFI_Parser<A>::kRegisterInRegister:
380 return registers.getRegister(savedReg.value);
382 case CFI_Parser<A>::kRegisterUnused:
383 case CFI_Parser<A>::kRegisterOffsetFromCFA:
387 ABORT("unsupported restore location for register");
390 template <typename A, typename R>
391 double DwarfInstructions<A,R>::getSavedFloatRegister(A& addressSpace, const R& registers, pint_t cfa,
392 const typename CFI_Parser<A>::RegisterLocation& savedReg)
394 switch ( savedReg.location ) {
395 case CFI_Parser<A>::kRegisterInCFA:
396 return addressSpace.getDouble(cfa + savedReg.value);
398 case CFI_Parser<A>::kRegisterAtExpression:
399 return addressSpace.getDouble(evaluateExpression(savedReg.value, addressSpace, registers, cfa));
401 case CFI_Parser<A>::kRegisterIsExpression:
402 case CFI_Parser<A>::kRegisterUnused:
403 case CFI_Parser<A>::kRegisterOffsetFromCFA:
404 case CFI_Parser<A>::kRegisterInRegister:
408 ABORT("unsupported restore location for float register");
411 template <typename A, typename R>
412 v128 DwarfInstructions<A,R>::getSavedVectorRegister(A& addressSpace, const R& registers, pint_t cfa,
413 const typename CFI_Parser<A>::RegisterLocation& savedReg)
415 switch ( savedReg.location ) {
416 case CFI_Parser<A>::kRegisterInCFA:
417 return addressSpace.getVector(cfa + savedReg.value);
419 case CFI_Parser<A>::kRegisterAtExpression:
420 return addressSpace.getVector(evaluateExpression(savedReg.value, addressSpace, registers, cfa));
422 case CFI_Parser<A>::kRegisterIsExpression:
423 case CFI_Parser<A>::kRegisterUnused:
424 case CFI_Parser<A>::kRegisterOffsetFromCFA:
425 case CFI_Parser<A>::kRegisterInRegister:
429 ABORT("unsupported restore location for vector register");
433 template <typename A, typename R>
434 int DwarfInstructions<A,R>::stepWithDwarf(A& addressSpace, pint_t pc, pint_t fdeStart, R& registers)
436 //fprintf(stderr, "stepWithDwarf(pc=0x%0llX, fdeStart=0x%0llX)\n", (uint64_t)pc, (uint64_t)fdeStart);
437 typename CFI_Parser<A>::FDE_Info fdeInfo;
438 typename CFI_Parser<A>::CIE_Info cieInfo;
439 if ( CFI_Parser<A>::decodeFDE(addressSpace, fdeStart, &fdeInfo, &cieInfo) == NULL ) {
440 typename CFI_Parser<A>::PrologInfo prolog;
441 if ( CFI_Parser<A>::parseFDEInstructions(addressSpace, fdeInfo, cieInfo, pc, &prolog) ) {
442 R newRegisters = registers;
444 // get pointer to cfa (architecture specific)
445 pint_t cfa = getCFA(addressSpace, prolog, registers);
447 // restore registers that dwarf says were saved
448 pint_t returnAddress = 0;
449 for (int i=0; i <= lastRestoreReg(newRegisters); ++i) {
450 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
451 if ( registers.validFloatRegister(i) )
452 newRegisters.setFloatRegister(i, getSavedFloatRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
453 else if ( registers.validVectorRegister(i) )
454 newRegisters.setVectorRegister(i, getSavedVectorRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
455 else if ( isReturnAddressRegister(i, registers) )
456 returnAddress = getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]);
457 else if ( registers.validRegister(i) )
458 newRegisters.setRegister(i, getSavedRegister(addressSpace, registers, cfa, prolog.savedRegisters[i]));
464 // by definition the CFA is the stack pointer at the call site, so restoring SP means setting it to CFA
465 newRegisters.setSP(cfa);
467 // return address is address after call site instruction, so setting IP to that does a return
468 newRegisters.setIP(returnAddress);
470 // do the actual step by replacing the register set with the new ones
471 registers = newRegisters;
473 return UNW_STEP_SUCCESS;
476 return UNW_EBADFRAME;
481 template <typename A, typename R>
482 typename A::pint_t DwarfInstructions<A,R>::evaluateExpression(pint_t expression, A& addressSpace,
483 const R& registers, pint_t initialStackValue)
485 const bool log = false;
486 pint_t p = expression;
487 pint_t expressionEnd = expression+20; // just need something until length is read
488 uint64_t length = addressSpace.getULEB128(p, expressionEnd);
489 expressionEnd = p + length;
490 if (log) fprintf(stderr, "evaluateExpression(): length=%llu\n", length);
493 *(++sp) = initialStackValue;
495 while ( p < expressionEnd ) {
497 for(pint_t* t = sp; t > stack; --t) {
498 fprintf(stderr, "sp[] = 0x%llX\n", (uint64_t)(*t));
501 uint8_t opcode = addressSpace.get8(p++);
507 // push immediate address sized value
508 value = addressSpace.getP(p);
511 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
515 // pop stack, dereference, push result
517 *(++sp) = addressSpace.getP(value);
518 if (log) fprintf(stderr, "dereference 0x%llX\n", (uint64_t)value);
522 // push immediate 1 byte value
523 value = addressSpace.get8(p);
526 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
530 // push immediate 1 byte signed value
531 svalue = (int8_t)addressSpace.get8(p);
534 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
538 // push immediate 2 byte value
539 value = addressSpace.get16(p);
542 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
546 // push immediate 2 byte signed value
547 svalue = (int16_t)addressSpace.get16(p);
550 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
554 // push immediate 4 byte value
555 value = addressSpace.get32(p);
558 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
562 // push immediate 4 byte signed value
563 svalue = (int32_t)addressSpace.get32(p);
566 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
570 // push immediate 8 byte value
571 value = addressSpace.get64(p);
574 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
578 // push immediate 8 byte signed value
579 value = (int32_t)addressSpace.get64(p);
582 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
586 // push immediate ULEB128 value
587 value = addressSpace.getULEB128(p, expressionEnd);
589 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)value);
593 // push immediate SLEB128 value
594 svalue = addressSpace.getSLEB128(p, expressionEnd);
596 if (log) fprintf(stderr, "push 0x%llX\n", (uint64_t)svalue);
603 if (log) fprintf(stderr, "duplicate top of stack\n");
609 if (log) fprintf(stderr, "pop top of stack\n");
616 if (log) fprintf(stderr, "duplicate second in stack\n");
621 reg = addressSpace.get8(p);
625 if (log) fprintf(stderr, "duplicate %d in stack\n", reg);
633 if (log) fprintf(stderr, "swap top of stack\n");
642 if (log) fprintf(stderr, "rotate top three of stack\n");
646 // pop stack, dereference, push result
648 *sp = *((uint64_t*)value);
649 if (log) fprintf(stderr, "x-dereference 0x%llX\n", (uint64_t)value);
656 if (log) fprintf(stderr, "abs\n");
662 if (log) fprintf(stderr, "and\n");
668 if (log) fprintf(stderr, "div\n");
674 if (log) fprintf(stderr, "minus\n");
680 if (log) fprintf(stderr, "module\n");
686 if (log) fprintf(stderr, "mul\n");
691 if (log) fprintf(stderr, "neg\n");
697 if (log) fprintf(stderr, "not\n");
703 if (log) fprintf(stderr, "or\n");
709 if (log) fprintf(stderr, "plus\n");
712 case DW_OP_plus_uconst:
713 // pop stack, add uelb128 constant, push result
714 *sp += addressSpace.getULEB128(p, expressionEnd);
715 if (log) fprintf(stderr, "add constant\n");
721 if (log) fprintf(stderr, "shift left\n");
727 if (log) fprintf(stderr, "shift left\n");
733 *sp = svalue >> value;
734 if (log) fprintf(stderr, "shift left arithmetric\n");
740 if (log) fprintf(stderr, "xor\n");
744 svalue = (int16_t)addressSpace.get16(p);
747 if (log) fprintf(stderr, "skip %lld\n", (uint64_t)svalue);
751 svalue = (int16_t)addressSpace.get16(p);
755 if (log) fprintf(stderr, "bra %lld\n", (uint64_t)svalue);
760 *sp = (*sp == value);
761 if (log) fprintf(stderr, "eq\n");
766 *sp = (*sp >= value);
767 if (log) fprintf(stderr, "ge\n");
773 if (log) fprintf(stderr, "gt\n");
778 *sp = (*sp <= value);
779 if (log) fprintf(stderr, "le\n");
785 if (log) fprintf(stderr, "lt\n");
790 *sp = (*sp != value);
791 if (log) fprintf(stderr, "ne\n");
826 value = opcode - DW_OP_lit0;
828 if (log) fprintf(stderr, "push literal 0x%llX\n", (uint64_t)value);
863 reg = opcode - DW_OP_reg0;
864 *(++sp) = registers.getRegister(reg);
865 if (log) fprintf(stderr, "push reg %d\n", reg);
869 reg = addressSpace.getULEB128(p, expressionEnd);
870 *(++sp) = registers.getRegister(reg);
871 if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
906 reg = opcode - DW_OP_breg0;
907 svalue = addressSpace.getSLEB128(p, expressionEnd);
908 *(++sp) = registers.getRegister(reg) + svalue;
909 if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
913 reg = addressSpace.getULEB128(p, expressionEnd);
914 svalue = addressSpace.getSLEB128(p, expressionEnd);
915 *(++sp) = registers.getRegister(reg) + svalue;
916 if (log) fprintf(stderr, "push reg %d + 0x%llX\n", reg, (uint64_t)svalue);
920 ABORT("DW_OP_fbreg not implemented");
924 ABORT("DW_OP_piece not implemented");
927 case DW_OP_deref_size:
928 // pop stack, dereference, push result
930 switch ( addressSpace.get8(p++) ) {
932 value = addressSpace.get8(value);
935 value = addressSpace.get16(value);
938 value = addressSpace.get32(value);
941 value = addressSpace.get64(value);
944 ABORT("DW_OP_deref_size with bad size");
947 if (log) fprintf(stderr, "sized dereference 0x%llX\n", (uint64_t)value);
950 case DW_OP_xderef_size:
952 case DW_OP_push_object_addres:
957 ABORT("dwarf opcode not implemented");
961 if (log) fprintf(stderr, "expression evaluates to 0x%llX\n", (uint64_t)*sp);
968 // x86_64 specific functions
971 template <typename A, typename R>
972 int DwarfInstructions<A,R>::lastRestoreReg(const Registers_x86_64&)
974 COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)DW_X86_64_RET_ADDR );
975 return DW_X86_64_RET_ADDR;
978 template <typename A, typename R>
979 bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_x86_64&)
981 return (regNum == DW_X86_64_RET_ADDR);
984 template <typename A, typename R>
985 typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
986 const Registers_x86_64& registers)
988 if ( prolog.cfaRegister != 0 )
989 return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
990 else if ( prolog.cfaExpression != 0 )
991 return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
993 ABORT("getCFA(): unknown location for x86_64 cfa");
998 template <typename A, typename R>
999 compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_x86_64&)
1001 return UNWIND_X86_64_MODE_DWARF;
1004 template <typename A, typename R>
1005 compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_x86&)
1007 return UNWIND_X86_MODE_DWARF;
1012 template <typename A, typename R>
1013 uint32_t DwarfInstructions<A,R>::getRBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure)
1015 if ( (regOffsetFromBaseOffset < 0) || (regOffsetFromBaseOffset > 32) ) {
1019 unsigned int slotIndex = regOffsetFromBaseOffset/8;
1022 case UNW_X86_64_RBX:
1023 return UNWIND_X86_64_REG_RBX << (slotIndex*3);
1024 case UNW_X86_64_R12:
1025 return UNWIND_X86_64_REG_R12 << (slotIndex*3);
1026 case UNW_X86_64_R13:
1027 return UNWIND_X86_64_REG_R13 << (slotIndex*3);
1028 case UNW_X86_64_R14:
1029 return UNWIND_X86_64_REG_R14 << (slotIndex*3);
1030 case UNW_X86_64_R15:
1031 return UNWIND_X86_64_REG_R15 << (slotIndex*3);
1041 template <typename A, typename R>
1042 compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
1043 const Registers_x86_64& r, const typename CFI_Parser<A>::PrologInfo& prolog,
1044 char warningBuffer[1024])
1046 warningBuffer[0] = '\0';
1048 if ( prolog.registerSavedTwiceInCIE == DW_X86_64_RET_ADDR ) {
1049 warningBuffer[0] = '\0'; // silently disable conversion to compact unwind by linker
1050 return UNWIND_X86_64_MODE_DWARF;
1052 // don't create compact unwind info for unsupported dwarf kinds
1053 if ( prolog.registerSavedMoreThanOnce ) {
1054 strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
1055 return UNWIND_X86_64_MODE_DWARF;
1057 if ( prolog.cfaOffsetWasNegative ) {
1058 strcpy(warningBuffer, "cfa had negative offset (dwarf might contain epilog)");
1059 return UNWIND_X86_64_MODE_DWARF;
1061 if ( prolog.spExtraArgSize != 0 ) {
1062 strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
1063 return UNWIND_X86_64_MODE_DWARF;
1065 if ( prolog.sameValueUsed ) {
1066 strcpy(warningBuffer, "dwarf uses DW_CFA_same_value");
1067 return UNWIND_X86_64_MODE_DWARF;
1070 // figure out which kind of frame this function uses
1071 bool standardRBPframe = (
1072 (prolog.cfaRegister == UNW_X86_64_RBP)
1073 && (prolog.cfaRegisterOffset == 16)
1074 && (prolog.savedRegisters[UNW_X86_64_RBP].location == CFI_Parser<A>::kRegisterInCFA)
1075 && (prolog.savedRegisters[UNW_X86_64_RBP].value == -16) );
1076 bool standardRSPframe = (prolog.cfaRegister == UNW_X86_64_RSP);
1077 if ( !standardRBPframe && !standardRSPframe ) {
1078 // no compact encoding for this
1079 strcpy(warningBuffer, "does not use RBP or RSP based frame");
1080 return UNWIND_X86_64_MODE_DWARF;
1083 // scan which registers are saved
1084 int saveRegisterCount = 0;
1085 bool rbxSaved = false;
1086 bool r12Saved = false;
1087 bool r13Saved = false;
1088 bool r14Saved = false;
1089 bool r15Saved = false;
1090 bool rbpSaved = false;
1091 for (int i=0; i < 64; ++i) {
1092 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
1093 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterInCFA ) {
1094 sprintf(warningBuffer, "register %d saved somewhere other than in frame", i);
1095 return UNWIND_X86_64_MODE_DWARF;
1098 case UNW_X86_64_RBX:
1100 ++saveRegisterCount;
1102 case UNW_X86_64_R12:
1104 ++saveRegisterCount;
1106 case UNW_X86_64_R13:
1108 ++saveRegisterCount;
1110 case UNW_X86_64_R14:
1112 ++saveRegisterCount;
1114 case UNW_X86_64_R15:
1116 ++saveRegisterCount;
1118 case UNW_X86_64_RBP:
1120 ++saveRegisterCount;
1122 case DW_X86_64_RET_ADDR:
1125 sprintf(warningBuffer, "non-standard register %d being saved in prolog", i);
1126 return UNWIND_X86_64_MODE_DWARF;
1130 const int64_t cfaOffsetRBX = prolog.savedRegisters[UNW_X86_64_RBX].value;
1131 const int64_t cfaOffsetR12 = prolog.savedRegisters[UNW_X86_64_R12].value;
1132 const int64_t cfaOffsetR13 = prolog.savedRegisters[UNW_X86_64_R13].value;
1133 const int64_t cfaOffsetR14 = prolog.savedRegisters[UNW_X86_64_R14].value;
1134 const int64_t cfaOffsetR15 = prolog.savedRegisters[UNW_X86_64_R15].value;
1135 const int64_t cfaOffsetRBP = prolog.savedRegisters[UNW_X86_64_RBP].value;
1137 // encode standard RBP frames
1138 compact_unwind_encoding_t encoding = 0;
1139 if ( standardRBPframe ) {
1141 // +--------------+ <- CFA
1145 // +--------------+ <- rbp
1149 // +--------------+ <- CFA - offset+16
1151 // +--------------+ <- CFA - offset+8
1153 // +--------------+ <- CFA - offset
1159 encoding = UNWIND_X86_64_MODE_RBP_FRAME;
1161 // find save location of farthest register from rbp
1162 int furthestCfaOffset = 0;
1163 if ( rbxSaved & (cfaOffsetRBX < furthestCfaOffset) )
1164 furthestCfaOffset = cfaOffsetRBX;
1165 if ( r12Saved & (cfaOffsetR12 < furthestCfaOffset) )
1166 furthestCfaOffset = cfaOffsetR12;
1167 if ( r13Saved & (cfaOffsetR13 < furthestCfaOffset) )
1168 furthestCfaOffset = cfaOffsetR13;
1169 if ( r14Saved & (cfaOffsetR14 < furthestCfaOffset) )
1170 furthestCfaOffset = cfaOffsetR14;
1171 if ( r15Saved & (cfaOffsetR15 < furthestCfaOffset) )
1172 furthestCfaOffset = cfaOffsetR15;
1174 if ( furthestCfaOffset == 0 ) {
1175 // no registers saved, nothing more to encode
1179 // add stack offset to encoding
1180 int rbpOffset = furthestCfaOffset + 16;
1181 int encodedOffset = rbpOffset/(-8);
1182 if ( encodedOffset > 255 ) {
1183 strcpy(warningBuffer, "offset of saved registers too far to encode");
1184 return UNWIND_X86_64_MODE_DWARF;
1186 encoding |= (encodedOffset << __builtin_ctz(UNWIND_X86_64_RBP_FRAME_OFFSET));
1188 // add register saved from each stack location
1189 bool encodingFailure = false;
1191 encoding |= getRBPEncodedRegister(UNW_X86_64_RBX, cfaOffsetRBX - furthestCfaOffset, encodingFailure);
1193 encoding |= getRBPEncodedRegister(UNW_X86_64_R12, cfaOffsetR12 - furthestCfaOffset, encodingFailure);
1195 encoding |= getRBPEncodedRegister(UNW_X86_64_R13, cfaOffsetR13 - furthestCfaOffset, encodingFailure);
1197 encoding |= getRBPEncodedRegister(UNW_X86_64_R14, cfaOffsetR14 - furthestCfaOffset, encodingFailure);
1199 encoding |= getRBPEncodedRegister(UNW_X86_64_R15, cfaOffsetR15 - furthestCfaOffset, encodingFailure);
1201 if ( encodingFailure ){
1202 strcpy(warningBuffer, "saved registers not contiguous");
1203 return UNWIND_X86_64_MODE_DWARF;
1210 // +--------------+ <- CFA
1214 // +--------------+ <- CFA - 16
1216 // +--------------+ <- CFA - 24
1218 // +--------------+ <- CFA - 32
1220 // +--------------+ <- CFA - 40
1222 // +--------------+ <- CFA - 48
1224 // +--------------+ <- CFA - 56
1229 // for RSP based frames we need to encode stack size in unwind info
1230 encoding = UNWIND_X86_64_MODE_STACK_IMMD;
1231 uint64_t stackValue = prolog.cfaRegisterOffset / 8;
1232 uint32_t stackAdjust = 0;
1233 bool immedStackSize = true;
1234 const uint32_t stackMaxImmedValue = EXTRACT_BITS(0xFFFFFFFF,UNWIND_X86_64_FRAMELESS_STACK_SIZE);
1235 if ( stackValue > stackMaxImmedValue ) {
1236 // stack size is too big to fit as an immediate value, so encode offset of subq instruction in function
1237 if ( prolog.codeOffsetAtStackDecrement == 0 ) {
1238 strcpy(warningBuffer, "stack size is large but stack subq instruction not found");
1239 return UNWIND_X86_64_MODE_DWARF;
1241 pint_t functionContentAdjustStackIns = funcAddr + prolog.codeOffsetAtStackDecrement - 4;
1245 uint32_t stackDecrementInCode = addressSpace.get32(functionContentAdjustStackIns);
1246 stackAdjust = (prolog.cfaRegisterOffset - stackDecrementInCode)/8;
1250 strcpy(warningBuffer, "stack size is large but stack subq instruction not found");
1251 return UNWIND_X86_64_MODE_DWARF;
1254 stackValue = functionContentAdjustStackIns - funcAddr;
1255 immedStackSize = false;
1256 if ( stackAdjust > 7 ) {
1257 strcpy(warningBuffer, "stack subq instruction is too different from dwarf stack size");
1258 return UNWIND_X86_64_MODE_DWARF;
1260 encoding = UNWIND_X86_64_MODE_STACK_IND;
1264 // validate that saved registers are all within 6 slots abutting return address
1266 for (int i=0; i < 6;++i)
1269 if ( cfaOffsetR15 < -56 ) {
1270 strcpy(warningBuffer, "r15 is saved too far from return address");
1271 return UNWIND_X86_64_MODE_DWARF;
1273 registers[(cfaOffsetR15+56)/8] = UNWIND_X86_64_REG_R15;
1276 if ( cfaOffsetR14 < -56 ) {
1277 strcpy(warningBuffer, "r14 is saved too far from return address");
1278 return UNWIND_X86_64_MODE_DWARF;
1280 registers[(cfaOffsetR14+56)/8] = UNWIND_X86_64_REG_R14;
1283 if ( cfaOffsetR13 < -56 ) {
1284 strcpy(warningBuffer, "r13 is saved too far from return address");
1285 return UNWIND_X86_64_MODE_DWARF;
1287 registers[(cfaOffsetR13+56)/8] = UNWIND_X86_64_REG_R13;
1290 if ( cfaOffsetR12 < -56 ) {
1291 strcpy(warningBuffer, "r12 is saved too far from return address");
1292 return UNWIND_X86_64_MODE_DWARF;
1294 registers[(cfaOffsetR12+56)/8] = UNWIND_X86_64_REG_R12;
1297 if ( cfaOffsetRBX < -56 ) {
1298 strcpy(warningBuffer, "rbx is saved too far from return address");
1299 return UNWIND_X86_64_MODE_DWARF;
1301 registers[(cfaOffsetRBX+56)/8] = UNWIND_X86_64_REG_RBX;
1304 if ( cfaOffsetRBP < -56 ) {
1305 strcpy(warningBuffer, "rbp is saved too far from return address");
1306 return UNWIND_X86_64_MODE_DWARF;
1308 registers[(cfaOffsetRBP+56)/8] = UNWIND_X86_64_REG_RBP;
1311 // validate that saved registers are contiguous and abut return address on stack
1312 for (int i=0; i < saveRegisterCount; ++i) {
1313 if ( registers[5-i] == 0 ) {
1314 strcpy(warningBuffer, "registers not save contiguously in stack");
1315 return UNWIND_X86_64_MODE_DWARF;
1319 // encode register permutation
1320 // the 10-bits are encoded differently depending on the number of registers saved
1322 for (int i=6-saveRegisterCount; i < 6; ++i) {
1324 for (int j=6-saveRegisterCount; j < i; ++j) {
1325 if ( registers[j] < registers[i] )
1328 renumregs[i] = registers[i] - countless -1;
1330 uint32_t permutationEncoding = 0;
1331 switch ( saveRegisterCount ) {
1333 permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] + 6*renumregs[2] + 2*renumregs[3] + renumregs[4]);
1336 permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] + 6*renumregs[3] + 2*renumregs[4] + renumregs[5]);
1339 permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] + 3*renumregs[4] + renumregs[5]);
1342 permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] + renumregs[5]);
1345 permutationEncoding |= (5*renumregs[4] + renumregs[5]);
1348 permutationEncoding |= (renumregs[5]);
1352 encoding |= (stackValue << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_SIZE));
1353 encoding |= (stackAdjust << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_ADJUST));
1354 encoding |= (saveRegisterCount << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT));
1355 encoding |= (permutationEncoding << __builtin_ctz(UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION));
1364 // x86 specific functions
1366 template <typename A, typename R>
1367 int DwarfInstructions<A,R>::lastRestoreReg(const Registers_x86&)
1369 COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)DW_X86_RET_ADDR );
1370 return DW_X86_RET_ADDR;
1373 template <typename A, typename R>
1374 bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_x86&)
1376 return (regNum == DW_X86_RET_ADDR);
1379 template <typename A, typename R>
1380 typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
1381 const Registers_x86& registers)
1383 if ( prolog.cfaRegister != 0 )
1384 return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
1385 else if ( prolog.cfaExpression != 0 )
1386 return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
1388 ABORT("getCFA(): unknown location for x86 cfa");
1395 template <typename A, typename R>
1396 uint32_t DwarfInstructions<A,R>::getEBPEncodedRegister(uint32_t reg, int32_t regOffsetFromBaseOffset, bool& failure)
1398 if ( (regOffsetFromBaseOffset < 0) || (regOffsetFromBaseOffset > 16) ) {
1402 unsigned int slotIndex = regOffsetFromBaseOffset/4;
1406 return UNWIND_X86_REG_EBX << (slotIndex*3);
1408 return UNWIND_X86_REG_ECX << (slotIndex*3);
1410 return UNWIND_X86_REG_EDX << (slotIndex*3);
1412 return UNWIND_X86_REG_EDI << (slotIndex*3);
1414 return UNWIND_X86_REG_ESI << (slotIndex*3);
1422 template <typename A, typename R>
1423 compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
1424 const Registers_x86& r, const typename CFI_Parser<A>::PrologInfo& prolog,
1425 char warningBuffer[1024])
1427 warningBuffer[0] = '\0';
1429 if ( prolog.registerSavedTwiceInCIE == DW_X86_RET_ADDR ) {
1430 warningBuffer[0] = '\0'; // silently disable conversion to compact unwind by linker
1431 return UNWIND_X86_64_MODE_DWARF;
1433 // don't create compact unwind info for unsupported dwarf kinds
1434 if ( prolog.registerSavedMoreThanOnce ) {
1435 strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
1436 return UNWIND_X86_MODE_DWARF;
1438 if ( prolog.spExtraArgSize != 0 ) {
1439 strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
1440 return UNWIND_X86_MODE_DWARF;
1442 if ( prolog.sameValueUsed ) {
1443 strcpy(warningBuffer, "dwarf uses DW_CFA_same_value");
1444 return UNWIND_X86_MODE_DWARF;
1447 // figure out which kind of frame this function uses
1448 bool standardEBPframe = (
1449 (prolog.cfaRegister == UNW_X86_EBP)
1450 && (prolog.cfaRegisterOffset == 8)
1451 && (prolog.savedRegisters[UNW_X86_EBP].location == CFI_Parser<A>::kRegisterInCFA)
1452 && (prolog.savedRegisters[UNW_X86_EBP].value == -8) );
1453 bool standardESPframe = (prolog.cfaRegister == UNW_X86_ESP);
1454 if ( !standardEBPframe && !standardESPframe ) {
1455 // no compact encoding for this
1456 strcpy(warningBuffer, "does not use EBP or ESP based frame");
1457 return UNWIND_X86_MODE_DWARF;
1460 // scan which registers are saved
1461 int saveRegisterCount = 0;
1462 bool ebxSaved = false;
1463 bool ecxSaved = false;
1464 bool edxSaved = false;
1465 bool esiSaved = false;
1466 bool ediSaved = false;
1467 bool ebpSaved = false;
1468 for (int i=0; i < 64; ++i) {
1469 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
1470 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterInCFA ) {
1471 sprintf(warningBuffer, "register %d saved somewhere other than in frame", i);
1472 return UNWIND_X86_MODE_DWARF;
1477 ++saveRegisterCount;
1481 ++saveRegisterCount;
1485 ++saveRegisterCount;
1489 ++saveRegisterCount;
1493 ++saveRegisterCount;
1497 ++saveRegisterCount;
1499 case DW_X86_RET_ADDR:
1502 sprintf(warningBuffer, "non-standard register %d being saved in prolog", i);
1503 return UNWIND_X86_MODE_DWARF;
1507 const int32_t cfaOffsetEBX = prolog.savedRegisters[UNW_X86_EBX].value;
1508 const int32_t cfaOffsetECX = prolog.savedRegisters[UNW_X86_ECX].value;
1509 const int32_t cfaOffsetEDX = prolog.savedRegisters[UNW_X86_EDX].value;
1510 const int32_t cfaOffsetEDI = prolog.savedRegisters[UNW_X86_EDI].value;
1511 const int32_t cfaOffsetESI = prolog.savedRegisters[UNW_X86_ESI].value;
1512 const int32_t cfaOffsetEBP = prolog.savedRegisters[UNW_X86_EBP].value;
1514 // encode standard RBP frames
1515 compact_unwind_encoding_t encoding = 0;
1516 if ( standardEBPframe ) {
1518 // +--------------+ <- CFA
1522 // +--------------+ <- ebp
1526 // +--------------+ <- CFA - offset+8
1528 // +--------------+ <- CFA - offset+e
1530 // +--------------+ <- CFA - offset
1536 encoding = UNWIND_X86_MODE_EBP_FRAME;
1538 // find save location of farthest register from ebp
1539 int furthestCfaOffset = 0;
1540 if ( ebxSaved & (cfaOffsetEBX < furthestCfaOffset) )
1541 furthestCfaOffset = cfaOffsetEBX;
1542 if ( ecxSaved & (cfaOffsetECX < furthestCfaOffset) )
1543 furthestCfaOffset = cfaOffsetECX;
1544 if ( edxSaved & (cfaOffsetEDX < furthestCfaOffset) )
1545 furthestCfaOffset = cfaOffsetEDX;
1546 if ( ediSaved & (cfaOffsetEDI < furthestCfaOffset) )
1547 furthestCfaOffset = cfaOffsetEDI;
1548 if ( esiSaved & (cfaOffsetESI < furthestCfaOffset) )
1549 furthestCfaOffset = cfaOffsetESI;
1551 if ( furthestCfaOffset == 0 ) {
1552 // no registers saved, nothing more to encode
1556 // add stack offset to encoding
1557 int ebpOffset = furthestCfaOffset + 8;
1558 int encodedOffset = ebpOffset/(-4);
1559 if ( encodedOffset > 255 ) {
1560 strcpy(warningBuffer, "offset of saved registers too far to encode");
1561 return UNWIND_X86_MODE_DWARF;
1563 encoding |= (encodedOffset << __builtin_ctz(UNWIND_X86_EBP_FRAME_OFFSET));
1565 // add register saved from each stack location
1566 bool encodingFailure = false;
1568 encoding |= getEBPEncodedRegister(UNW_X86_EBX, cfaOffsetEBX - furthestCfaOffset, encodingFailure);
1570 encoding |= getEBPEncodedRegister(UNW_X86_ECX, cfaOffsetECX - furthestCfaOffset, encodingFailure);
1572 encoding |= getEBPEncodedRegister(UNW_X86_EDX, cfaOffsetEDX - furthestCfaOffset, encodingFailure);
1574 encoding |= getEBPEncodedRegister(UNW_X86_EDI, cfaOffsetEDI - furthestCfaOffset, encodingFailure);
1576 encoding |= getEBPEncodedRegister(UNW_X86_ESI, cfaOffsetESI - furthestCfaOffset, encodingFailure);
1578 if ( encodingFailure ){
1579 strcpy(warningBuffer, "saved registers not contiguous");
1580 return UNWIND_X86_MODE_DWARF;
1587 // +--------------+ <- CFA
1591 // +--------------+ <- CFA - 8
1593 // +--------------+ <- CFA - 12
1595 // +--------------+ <- CFA - 16
1597 // +--------------+ <- CFA - 20
1599 // +--------------+ <- CFA - 24
1601 // +--------------+ <- CFA - 28
1606 // for ESP based frames we need to encode stack size in unwind info
1607 encoding = UNWIND_X86_MODE_STACK_IMMD;
1608 uint64_t stackValue = prolog.cfaRegisterOffset / 4;
1609 uint32_t stackAdjust = 0;
1610 bool immedStackSize = true;
1611 const uint32_t stackMaxImmedValue = EXTRACT_BITS(0xFFFFFFFF,UNWIND_X86_FRAMELESS_STACK_SIZE);
1612 if ( stackValue > stackMaxImmedValue ) {
1613 // stack size is too big to fit as an immediate value, so encode offset of subq instruction in function
1614 pint_t functionContentAdjustStackIns = funcAddr + prolog.codeOffsetAtStackDecrement - 4;
1618 uint32_t stackDecrementInCode = addressSpace.get32(functionContentAdjustStackIns);
1619 stackAdjust = (prolog.cfaRegisterOffset - stackDecrementInCode)/4;
1623 strcpy(warningBuffer, "stack size is large but stack subl instruction not found");
1624 return UNWIND_X86_MODE_DWARF;
1627 stackValue = functionContentAdjustStackIns - funcAddr;
1628 immedStackSize = false;
1629 if ( stackAdjust > 7 ) {
1630 strcpy(warningBuffer, "stack subl instruction is too different from dwarf stack size");
1631 return UNWIND_X86_MODE_DWARF;
1633 encoding = UNWIND_X86_MODE_STACK_IND;
1637 // validate that saved registers are all within 6 slots abutting return address
1639 for (int i=0; i < 6;++i)
1642 if ( cfaOffsetEBX < -28 ) {
1643 strcpy(warningBuffer, "ebx is saved too far from return address");
1644 return UNWIND_X86_MODE_DWARF;
1646 registers[(cfaOffsetEBX+28)/4] = UNWIND_X86_REG_EBX;
1649 if ( cfaOffsetECX < -28 ) {
1650 strcpy(warningBuffer, "ecx is saved too far from return address");
1651 return UNWIND_X86_MODE_DWARF;
1653 registers[(cfaOffsetECX+28)/4] = UNWIND_X86_REG_ECX;
1656 if ( cfaOffsetEDX < -28 ) {
1657 strcpy(warningBuffer, "edx is saved too far from return address");
1658 return UNWIND_X86_MODE_DWARF;
1660 registers[(cfaOffsetEDX+28)/4] = UNWIND_X86_REG_EDX;
1663 if ( cfaOffsetEDI < -28 ) {
1664 strcpy(warningBuffer, "edi is saved too far from return address");
1665 return UNWIND_X86_MODE_DWARF;
1667 registers[(cfaOffsetEDI+28)/4] = UNWIND_X86_REG_EDI;
1670 if ( cfaOffsetESI < -28 ) {
1671 strcpy(warningBuffer, "esi is saved too far from return address");
1672 return UNWIND_X86_MODE_DWARF;
1674 registers[(cfaOffsetESI+28)/4] = UNWIND_X86_REG_ESI;
1677 if ( cfaOffsetEBP < -28 ) {
1678 strcpy(warningBuffer, "ebp is saved too far from return address");
1679 return UNWIND_X86_MODE_DWARF;
1681 registers[(cfaOffsetEBP+28)/4] = UNWIND_X86_REG_EBP;
1684 // validate that saved registers are contiguous and abut return address on stack
1685 for (int i=0; i < saveRegisterCount; ++i) {
1686 if ( registers[5-i] == 0 ) {
1687 strcpy(warningBuffer, "registers not save contiguously in stack");
1688 return UNWIND_X86_MODE_DWARF;
1692 // encode register permutation
1693 // the 10-bits are encoded differently depending on the number of registers saved
1695 for (int i=6-saveRegisterCount; i < 6; ++i) {
1697 for (int j=6-saveRegisterCount; j < i; ++j) {
1698 if ( registers[j] < registers[i] )
1701 renumregs[i] = registers[i] - countless -1;
1703 uint32_t permutationEncoding = 0;
1704 switch ( saveRegisterCount ) {
1706 permutationEncoding |= (120*renumregs[0] + 24*renumregs[1] + 6*renumregs[2] + 2*renumregs[3] + renumregs[4]);
1709 permutationEncoding |= (120*renumregs[1] + 24*renumregs[2] + 6*renumregs[3] + 2*renumregs[4] + renumregs[5]);
1712 permutationEncoding |= (60*renumregs[2] + 12*renumregs[3] + 3*renumregs[4] + renumregs[5]);
1715 permutationEncoding |= (20*renumregs[3] + 4*renumregs[4] + renumregs[5]);
1718 permutationEncoding |= (5*renumregs[4] + renumregs[5]);
1721 permutationEncoding |= (renumregs[5]);
1725 encoding |= (stackValue << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_SIZE));
1726 encoding |= (stackAdjust << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_ADJUST));
1727 encoding |= (saveRegisterCount << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_REG_COUNT));
1728 encoding |= (permutationEncoding << __builtin_ctz(UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION));
1740 // ppc specific functions
1742 template <typename A, typename R>
1743 int DwarfInstructions<A,R>::lastRestoreReg(const Registers_ppc&)
1745 COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)UNW_PPC_SPEFSCR );
1746 return UNW_PPC_SPEFSCR;
1749 template <typename A, typename R>
1750 bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_ppc&)
1752 return (regNum == UNW_PPC_LR);
1755 template <typename A, typename R>
1756 typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
1757 const Registers_ppc& registers)
1759 if ( prolog.cfaRegister != 0 )
1760 return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
1761 else if ( prolog.cfaExpression != 0 )
1762 return evaluateExpression(prolog.cfaExpression, addressSpace, registers, 0);
1764 ABORT("getCFA(): unknown location for ppc cfa");
1768 template <typename A, typename R>
1769 compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_ppc&)
1771 return UNWIND_X86_MODE_DWARF;
1775 template <typename A, typename R>
1776 compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
1777 const Registers_ppc& r, const typename CFI_Parser<A>::PrologInfo& prolog,
1778 char warningBuffer[1024])
1780 warningBuffer[0] = '\0';
1781 return UNWIND_X86_MODE_DWARF;
1787 // arm64 specific functions
1790 template <typename A, typename R>
1791 compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_arm64&)
1793 return UNWIND_ARM64_MODE_DWARF;
1796 template <typename A, typename R>
1797 bool DwarfInstructions<A,R>::isReturnAddressRegister(int regNum, const Registers_arm64&)
1799 return (regNum == UNW_ARM64_LR);
1802 template <typename A, typename R>
1803 int DwarfInstructions<A,R>::lastRestoreReg(const Registers_arm64&)
1805 COMPILE_TIME_ASSERT( (int)CFI_Parser<A>::kMaxRegisterNumber > (int)UNW_ARM64_D31 );
1806 return UNW_ARM64_D31;
1810 template <typename A, typename R>
1811 typename A::pint_t DwarfInstructions<A,R>::getCFA(A& addressSpace, const typename CFI_Parser<A>::PrologInfo& prolog,
1812 const Registers_arm64& registers)
1814 if ( prolog.cfaRegister != 0 )
1815 return registers.getRegister(prolog.cfaRegister) + prolog.cfaRegisterOffset;
1817 ABORT("getCFA(): unsupported location for arm64 cfa");
1820 template <typename A, typename R>
1821 bool DwarfInstructions<A,R>::checkRegisterPair(uint32_t reg, const typename CFI_Parser<A>::PrologInfo& prolog,
1822 int& offset, char warningBuffer[1024])
1824 if ( (prolog.savedRegisters[reg].location != CFI_Parser<A>::kRegisterUnused)
1825 || (prolog.savedRegisters[reg+1].location != CFI_Parser<A>::kRegisterUnused) ) {
1826 if ( prolog.savedRegisters[reg].location != CFI_Parser<A>::kRegisterInCFA ) {
1827 sprintf(warningBuffer, "register %d saved somewhere other than in frame", reg);
1830 if ( prolog.savedRegisters[reg+1].location != CFI_Parser<A>::kRegisterInCFA ) {
1831 sprintf(warningBuffer, "register %d saved somewhere other than in frame", reg+1);
1834 if ( prolog.savedRegisters[reg].value != prolog.savedRegisters[reg+1].value + 8 ) {
1835 sprintf(warningBuffer, "registers %d and %d not saved contiguously in frame", reg, reg+1);
1838 if ( prolog.savedRegisters[reg].value != offset ) {
1839 sprintf(warningBuffer, "registers %d not saved contiguously in frame", reg);
1849 template <typename A, typename R>
1850 compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
1851 const Registers_arm64& r, const typename CFI_Parser<A>::PrologInfo& prolog,
1852 char warningBuffer[1024])
1854 warningBuffer[0] = '\0';
1856 if ( prolog.registerSavedTwiceInCIE == UNW_ARM64_LR ) {
1857 warningBuffer[0] = '\0'; // silently disable conversion to compact unwind by linker
1858 return UNWIND_ARM64_MODE_DWARF;
1860 // don't create compact unwind info for unsupported dwarf kinds
1861 if ( prolog.registerSavedMoreThanOnce ) {
1862 strcpy(warningBuffer, "register saved more than once (might be shrink wrap)");
1863 return UNWIND_ARM64_MODE_DWARF;
1865 if ( prolog.spExtraArgSize != 0 ) {
1866 strcpy(warningBuffer, "dwarf uses DW_CFA_GNU_args_size");
1867 return UNWIND_ARM64_MODE_DWARF;
1869 if ( prolog.sameValueUsed ) {
1870 strcpy(warningBuffer, "dwarf uses DW_CFA_same_value");
1871 return UNWIND_ARM64_MODE_DWARF;
1874 compact_unwind_encoding_t encoding = 0;
1877 // figure out which kind of frame this function uses
1878 bool standardFPframe = (
1879 (prolog.cfaRegister == UNW_ARM64_FP)
1880 && (prolog.cfaRegisterOffset == 16)
1881 && (prolog.savedRegisters[UNW_ARM64_FP].location == CFI_Parser<A>::kRegisterInCFA)
1882 && (prolog.savedRegisters[UNW_ARM64_FP].value == -16)
1883 && (prolog.savedRegisters[UNW_ARM64_LR].location == CFI_Parser<A>::kRegisterInCFA)
1884 && (prolog.savedRegisters[UNW_ARM64_LR].value == -8) );
1886 bool standardFrameless = ( prolog.cfaRegister == UNW_ARM64_SP );
1888 if ( standardFrameless ) {
1889 // verify enough space for registers saved
1891 for (int i=0; i < 96; ++i) {
1892 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused )
1895 if ( count * 8 > prolog.cfaRegisterOffset ) {
1896 strcpy(warningBuffer, "saved registers do not fit in stack size");
1897 return UNWIND_ARM64_MODE_DWARF;
1899 if ( (prolog.cfaRegisterOffset % 16) != 0 ) {
1900 strcpy(warningBuffer, "stack size is not 16-byte multiple");
1901 return UNWIND_ARM64_MODE_DWARF;
1903 const int32_t maxStack = (UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK >> __builtin_ctz(UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK));
1904 if ( (prolog.cfaRegisterOffset / 16) > maxStack ) {
1905 strcpy(warningBuffer, "stack size is too large for frameless function");
1906 return UNWIND_ARM64_MODE_DWARF;
1908 encoding = UNWIND_ARM64_MODE_FRAMELESS | ((prolog.cfaRegisterOffset/16) << __builtin_ctz(UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK));
1911 else if ( standardFPframe ) {
1912 encoding = UNWIND_ARM64_MODE_FRAME;
1916 // no compact encoding for this
1917 strcpy(warningBuffer, "does not use standard frame");
1918 return UNWIND_ARM64_MODE_DWARF;
1921 // make sure no volatile registers are saved
1922 for (int i=UNW_ARM64_X0; i < UNW_ARM64_X19; ++i) {
1923 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
1924 sprintf(warningBuffer, "non standard register %d saved in frame", i);
1925 return UNWIND_ARM64_MODE_DWARF;
1928 for (int i=UNW_ARM64_SP+1; i < UNW_ARM64_D8; ++i) {
1929 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
1930 sprintf(warningBuffer, "non standard register %d saved in frame", i);
1931 return UNWIND_ARM64_MODE_DWARF;
1934 for (int i=UNW_ARM64_D16; i < UNW_ARM64_D31+1; ++i) {
1935 if ( prolog.savedRegisters[i].location != CFI_Parser<A>::kRegisterUnused ) {
1936 sprintf(warningBuffer, "non standard register %d saved in frame", i);
1937 return UNWIND_ARM64_MODE_DWARF;
1942 bool X19_X20_saved = checkRegisterPair(UNW_ARM64_X19, prolog, offset, warningBuffer);
1943 bool X21_X22_saved = checkRegisterPair(UNW_ARM64_X21, prolog, offset, warningBuffer);
1944 bool X23_X24_saved = checkRegisterPair(UNW_ARM64_X23, prolog, offset, warningBuffer);
1945 bool X25_X26_saved = checkRegisterPair(UNW_ARM64_X25, prolog, offset, warningBuffer);
1946 bool X27_X28_saved = checkRegisterPair(UNW_ARM64_X27, prolog, offset, warningBuffer);
1947 bool D8_D9_saved = checkRegisterPair(UNW_ARM64_D8, prolog, offset, warningBuffer);
1948 bool D10_D11_saved = checkRegisterPair(UNW_ARM64_D10, prolog, offset, warningBuffer);
1949 bool D12_D13_saved = checkRegisterPair(UNW_ARM64_D12, prolog, offset, warningBuffer);
1950 bool D14_D15_saved = checkRegisterPair(UNW_ARM64_D14, prolog, offset, warningBuffer);
1951 if ( warningBuffer[0] != '\0' )
1952 return UNWIND_ARM64_MODE_DWARF;
1954 if ( X19_X20_saved )
1955 encoding |= UNWIND_ARM64_FRAME_X19_X20_PAIR;
1956 if ( X21_X22_saved )
1957 encoding |= UNWIND_ARM64_FRAME_X21_X22_PAIR;
1958 if ( X23_X24_saved )
1959 encoding |= UNWIND_ARM64_FRAME_X23_X24_PAIR;
1960 if ( X25_X26_saved )
1961 encoding |= UNWIND_ARM64_FRAME_X25_X26_PAIR;
1962 if ( X27_X28_saved )
1963 encoding |= UNWIND_ARM64_FRAME_X27_X28_PAIR;
1965 encoding |= UNWIND_ARM64_FRAME_D8_D9_PAIR;
1966 if ( D10_D11_saved )
1967 encoding |= UNWIND_ARM64_FRAME_D10_D11_PAIR;
1968 if ( D12_D13_saved )
1969 encoding |= UNWIND_ARM64_FRAME_D12_D13_PAIR;
1970 if ( D14_D15_saved )
1971 encoding |= UNWIND_ARM64_FRAME_D14_D15_PAIR;
1980 // arm specific functions
1983 template <typename A, typename R>
1984 compact_unwind_encoding_t DwarfInstructions<A,R>::encodeToUseDwarf(const Registers_arm&)
1986 return UNWIND_ARM_MODE_DWARF;
1990 template <typename A, typename R>
1991 compact_unwind_encoding_t DwarfInstructions<A,R>::createCompactEncodingFromProlog(A& addressSpace, pint_t funcAddr,
1992 const Registers_arm& r, const typename CFI_Parser<A>::PrologInfo& prolog,
1993 char warningBuffer[1024])
1995 warningBuffer[0] = '\0';
1996 return UNWIND_ARM_MODE_DWARF;
2000 } // namespace libunwind
2003 #endif // __DWARF_INSTRUCTIONS_HPP__