]> git.saurik.com Git - apple/ld64.git/blob - src/ObjectFile.h
ld64-77.1.tar.gz
[apple/ld64.git] / src / ObjectFile.h
1 /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*-
2 *
3 * Copyright (c) 2005-2007 Apple Inc. All rights reserved.
4 *
5 * @APPLE_LICENSE_HEADER_START@
6 *
7 * This file contains Original Code and/or Modifications of Original Code
8 * as defined in and that are subject to the Apple Public Source License
9 * Version 2.0 (the 'License'). You may not use this file except in
10 * compliance with the License. Please obtain a copy of the License at
11 * http://www.opensource.apple.com/apsl/ and read it before using this
12 * file.
13 *
14 * The Original Code and all software distributed under the License are
15 * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
16 * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
17 * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
19 * Please see the License for the specific language governing rights and
20 * limitations under the License.
21 *
22 * @APPLE_LICENSE_HEADER_END@
23 */
24
25
26 #ifndef __OBJECTFILE__
27 #define __OBJECTFILE__
28
29 #include <stdint.h>
30 #include <vector>
31 #include <map>
32
33
34
35 //
36 // These classes represent the abstract Atoms and References that are the basis of the linker.
37 // An Atom and a Reference correspond to a Node and Edge in graph theory.
38 //
39 // A Reader is a class which parses an object file and presents it as Atoms and References.
40 // All linking operations are done on Atoms and References. This makes the linker file
41 // format independent.
42 //
43 // A Writer takes a vector of Atoms with all References resolved and produces an executable file.
44 //
45 //
46
47
48 namespace ObjectFile {
49
50
51 struct LineInfo
52 {
53 uint32_t atomOffset;
54 const char* fileName;
55 uint32_t lineNumber;
56 };
57
58
59 class ReaderOptions
60 {
61 public:
62 ReaderOptions() : fFullyLoadArchives(false), fLoadAllObjcObjectsFromArchives(false), fFlatNamespace(false), fLinkingMainExecutable(false),
63 fForFinalLinkedImage(false), fForStatic(false), fForDyld(false), fMakeTentativeDefinitionsReal(false),
64 fWhyLoad(false), fRootSafe(false), fSetuidSafe(false),fDebugInfoStripping(kDebugInfoFull),
65 fLogObjectFiles(false), fLogAllFiles(false),
66 fTraceDylibs(false), fTraceIndirectDylibs(false), fTraceArchives(false),
67 fTraceOutputFile(NULL), fVersionMin(kMinUnset) {}
68 enum DebugInfoStripping { kDebugInfoNone, kDebugInfoMinimal, kDebugInfoFull };
69 enum VersionMin { kMinUnset, k10_1, k10_2, k10_3, k10_4, k10_5 };
70
71 struct AliasPair {
72 const char* realName;
73 const char* alias;
74 };
75
76 bool fFullyLoadArchives;
77 bool fLoadAllObjcObjectsFromArchives;
78 bool fFlatNamespace;
79 bool fLinkingMainExecutable;
80 bool fForFinalLinkedImage;
81 bool fForStatic;
82 bool fForDyld;
83 bool fMakeTentativeDefinitionsReal;
84 bool fWhyLoad;
85 bool fRootSafe;
86 bool fSetuidSafe;
87 DebugInfoStripping fDebugInfoStripping;
88 bool fLogObjectFiles;
89 bool fLogAllFiles;
90 bool fTraceDylibs;
91 bool fTraceIndirectDylibs;
92 bool fTraceArchives;
93 const char* fTraceOutputFile;
94 VersionMin fVersionMin;
95 std::vector<AliasPair> fAliases;
96 };
97
98
99 class Reader
100 {
101 public:
102 enum DebugInfoKind { kDebugInfoNone=0, kDebugInfoStabs=1, kDebugInfoDwarf=2, kDebugInfoStabsUUID=3 };
103 struct Stab
104 {
105 class Atom* atom;
106 uint8_t type;
107 uint8_t other;
108 uint16_t desc;
109 uint32_t value;
110 const char* string;
111 };
112 enum ObjcConstraint { kObjcNone, kObjcRetainRelease, kObjcRetainReleaseOrGC, kObjcGC };
113 enum CpuConstraint { kCpuAny, kCpuG3, kCpuG4, kCpuG5 };
114
115 class DylibHander
116 {
117 public:
118 virtual ~DylibHander() {}
119 virtual Reader* findDylib(const char* installPath, const char* fromPath) = 0;
120 };
121
122
123 static Reader* createReader(const char* path, const ReaderOptions& options);
124
125 virtual const char* getPath() = 0;
126 virtual time_t getModificationTime() = 0;
127 virtual DebugInfoKind getDebugInfoKind() = 0;
128 virtual std::vector<class Atom*>& getAtoms() = 0;
129 virtual std::vector<class Atom*>* getJustInTimeAtomsFor(const char* name) = 0;
130 virtual std::vector<Stab>* getStabs() = 0;
131 virtual ObjcConstraint getObjCConstraint() { return kObjcNone; }
132 virtual CpuConstraint getCpuConstraint() { return kCpuAny; }
133 virtual bool objcReplacementClasses() { return false; }
134
135 // For relocatable object files only
136 virtual bool canScatterAtoms() { return true; }
137 virtual void optimize(std::vector<ObjectFile::Atom*>&, std::vector<ObjectFile::Atom*>&, uint32_t) { }
138
139 // For Dynamic Libraries only
140 virtual const char* getInstallPath() { return NULL; }
141 virtual uint32_t getTimestamp() { return 0; }
142 virtual uint32_t getCurrentVersion() { return 0; }
143 virtual uint32_t getCompatibilityVersion() { return 0; }
144 virtual void processIndirectLibraries(DylibHander* handler) { }
145 virtual void setExplicitlyLinked() { }
146 virtual bool explicitlyLinked() { return false; }
147 virtual bool implicitlyLinked() { return false; }
148 virtual bool providedExportAtom() { return false; }
149 virtual const char* parentUmbrella() { return NULL; }
150 virtual std::vector<const char*>* getAllowableClients() { return NULL; }
151
152
153 protected:
154 Reader() {}
155 virtual ~Reader() {}
156 };
157
158 class Segment
159 {
160 public:
161 virtual const char* getName() const = 0;
162 virtual bool isContentReadable() const = 0;
163 virtual bool isContentWritable() const = 0;
164 virtual bool isContentExecutable() const = 0;
165
166 uint64_t getBaseAddress() const { return fBaseAddress; }
167 void setBaseAddress(uint64_t addr) { fBaseAddress = addr; }
168 virtual bool hasFixedAddress() const { return false; }
169
170 protected:
171 Segment() : fBaseAddress(0) {}
172 virtual ~Segment() {}
173 uint64_t fBaseAddress;
174 };
175
176 class Reference;
177
178 class Section
179 {
180 public:
181 unsigned int getIndex() { return fIndex; }
182 uint64_t getBaseAddress() { return fBaseAddress; }
183 void setBaseAddress(uint64_t addr) { fBaseAddress = addr; }
184 void* fOther;
185
186 protected:
187 Section() : fOther(NULL), fBaseAddress(0), fIndex(0) {}
188 uint64_t fBaseAddress;
189 unsigned int fIndex;
190 };
191
192
193 struct Alignment
194 {
195 Alignment(int p2, int m=0) : powerOf2(p2), modulus(m) {}
196 uint8_t trailingZeros() const { return (modulus==0) ? powerOf2 : __builtin_ctz(modulus); }
197 uint16_t powerOf2;
198 uint16_t modulus;
199 };
200
201 //
202 // An atom is the fundamental unit of linking. A C function or global variable is an atom.
203 // An atom has content and some attributes. The content of a function atom is the instructions
204 // that implement the function. The content of a global variable atom is its initial bits.
205 //
206 // Name:
207 // The name of an atom is the label name generated by the compiler. A C compiler names foo()
208 // as _foo. A C++ compiler names foo() as __Z3foov.
209 // The name refers to the first byte of the content. An atom cannot have multiple entry points.
210 // Such code is modeled as multiple atoms, each having a "follow on" reference to the next.
211 // A "follow on" reference is a contraint to the linker to the atoms must be laid out contiguously.
212 //
213 // Scope:
214 // An atom is in one of three scopes: translation-unit, linkage-unit, or global. These correspond
215 // to the C visibility of static, hidden, default.
216 //
217 // DefinitionKind:
218 // An atom is one of five defintion kinds:
219 // regular Most atoms.
220 // weak C++ compiler makes some functions weak if there might be multiple copies
221 // that the linker needs to coalesce.
222 // tentative A straggler from ancient C when the extern did not exist. "int foo;" is ambiguous.
223 // It could be a prototype or it could be a definition.
224 // external This is a "proxy" atom produced by a dylib reader. It has no content. It exists
225 // so that all References can be resolved.
226 // external-weak Same as external, but the definition in the dylib is weak.
227 //
228 // SymbolTableInclusion:
229 // An atom may or may not be in the symbol table in an object file.
230 // in Most atoms for functions or global data
231 // not-in Anonymous atoms such literal c-strings, or other compiler generated data
232 // in-never-strip Atom whose name the strip tool should never remove (e.g. REFERENCED_DYNAMICALLY in mach-o)
233 //
234 // Ordinal:
235 // When a reader is created it is given a base ordinal number. All atoms created by the reader
236 // should return a contiguous range of ordinal values that start at the base ordinal. The ordinal
237 // values are used by the linker to sort the atom graph when producing the output file.
238 //
239 class Atom
240 {
241 public:
242 enum Scope { scopeTranslationUnit, scopeLinkageUnit, scopeGlobal };
243 enum DefinitionKind { kRegularDefinition, kWeakDefinition, kTentativeDefinition, kExternalDefinition, kExternalWeakDefinition, kAbsoluteSymbol };
244 enum SymbolTableInclusion { kSymbolTableNotIn, kSymbolTableIn, kSymbolTableInAndNeverStrip, kSymbolTableInAsAbsolute };
245
246 virtual Reader* getFile() const = 0;
247 virtual bool getTranslationUnitSource(const char** dir, const char** name) const = 0;
248 virtual const char* getName() const = 0;
249 virtual const char* getDisplayName() const = 0;
250 virtual Scope getScope() const = 0;
251 virtual DefinitionKind getDefinitionKind() const = 0;
252 virtual SymbolTableInclusion getSymbolTableInclusion() const = 0;
253 virtual bool dontDeadStrip() const = 0;
254 virtual bool isZeroFill() const = 0;
255 virtual uint64_t getSize() const = 0;
256 virtual std::vector<ObjectFile::Reference*>& getReferences() const = 0;
257 virtual bool mustRemainInSection() const = 0;
258 virtual const char* getSectionName() const = 0;
259 virtual Segment& getSegment() const = 0;
260 virtual Atom& getFollowOnAtom() const = 0;
261 virtual uint32_t getOrdinal() const = 0;
262 virtual std::vector<LineInfo>* getLineInfo() const = 0;
263 virtual Alignment getAlignment() const = 0;
264 virtual void copyRawContent(uint8_t buffer[]) const = 0;
265 virtual void setScope(Scope) = 0;
266
267
268 uint64_t getSectionOffset() const { return fSectionOffset; }
269 uint64_t getAddress() const { return fSection->getBaseAddress() + fSectionOffset; }
270 class Section* getSection() const { return fSection; }
271
272 virtual void setSectionOffset(uint64_t offset) { fSectionOffset = offset; }
273 virtual void setSection(class Section* sect) { fSection = sect; }
274
275 protected:
276 Atom() : fSectionOffset(0), fSection(NULL) {}
277 virtual ~Atom() {}
278
279 uint64_t fSectionOffset;
280 class Section* fSection;
281 };
282
283
284 //
285 // A Reference is a directed edge to another Atom. When an instruction in
286 // the content of an Atom refers to another Atom, that is represented by a
287 // Reference.
288 //
289 // There are two kinds of references: direct and by-name. With a direct Reference,
290 // the target is bound by the Reader that created it. For instance a reference to a
291 // static would produce a direct reference. A by-name reference requires the linker
292 // to find the target Atom with the required name in order to be bound.
293 //
294 // For a link to succeed all References must be bound.
295 //
296 // A Reference has an optional "from" target. This is used when the content to fix-up
297 // is the difference of two Atom address. For instance, if a pointer sized data Atom
298 // is to contain A - B, then the Atom would have on Reference with a target of "A" and
299 // a from-target of "B".
300 //
301 // A Reference also has a fix-up-offset. This is the offset into the content of the
302 // Atom holding the reference where the fix-up (relocation) will be applied.
303 //
304 //
305 //
306 class Reference
307 {
308 public:
309 enum TargetBinding { kUnboundByName, kBoundDirectly, kBoundByName, kDontBind };
310
311 virtual TargetBinding getTargetBinding() const = 0;
312 virtual TargetBinding getFromTargetBinding() const = 0;
313 virtual uint8_t getKind() const = 0;
314 virtual uint64_t getFixUpOffset() const = 0;
315 virtual const char* getTargetName() const = 0;
316 virtual Atom& getTarget() const = 0;
317 virtual uint64_t getTargetOffset() const = 0;
318 virtual Atom& getFromTarget() const = 0;
319 virtual const char* getFromTargetName() const = 0;
320 virtual uint64_t getFromTargetOffset() const = 0;
321
322 virtual void setTarget(Atom&, uint64_t offset) = 0;
323 virtual void setFromTarget(Atom&) = 0;
324 virtual const char* getDescription() const = 0;
325
326 protected:
327 Reference() {}
328 virtual ~Reference() {}
329 };
330
331
332 }; // namespace ObjectFile
333
334
335 #endif // __OBJECTFILE__