]>
Commit | Line | Data |
---|---|---|
a645023d A |
1 | /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*- |
2 | * | |
3 | * Copyright (c) 2009 Apple Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_LICENSE_HEADER_START@ | |
6 | * | |
7 | * This file contains Original Code and/or Modifications of Original Code | |
8 | * as defined in and that are subject to the Apple Public Source License | |
9 | * Version 2.0 (the 'License'). You may not use this file except in | |
10 | * compliance with the License. Please obtain a copy of the License at | |
11 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
12 | * file. | |
13 | * | |
14 | * The Original Code and all software distributed under the License are | |
15 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
16 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
17 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
19 | * Please see the License for the specific language governing rights and | |
20 | * limitations under the License. | |
21 | * | |
22 | * @APPLE_LICENSE_HEADER_END@ | |
23 | */ | |
24 | ||
25 | ||
26 | #include <stdint.h> | |
27 | #include <math.h> | |
28 | #include <unistd.h> | |
29 | #include <dlfcn.h> | |
30 | #include <mach/machine.h> | |
31 | #include <mach-o/compact_unwind_encoding.h> | |
32 | ||
33 | #include <vector> | |
34 | #include <map> | |
35 | ||
36 | #include "ld.hpp" | |
37 | #include "compact_unwind.h" | |
38 | #include "Architectures.hpp" | |
39 | #include "MachOFileAbstraction.hpp" | |
40 | ||
41 | ||
42 | namespace ld { | |
43 | namespace passes { | |
44 | namespace compact_unwind { | |
45 | ||
46 | ||
47 | struct UnwindEntry { | |
48 | UnwindEntry(const ld::Atom* f, uint64_t a, uint32_t o, const ld::Atom* d, | |
49 | const ld::Atom* l, const ld::Atom* p, uint32_t en) | |
50 | : func(f), fde(d), lsda(l), personalityPointer(p), funcTentAddress(a), | |
51 | functionOffset(o), encoding(en) { } | |
52 | const ld::Atom* func; | |
53 | const ld::Atom* fde; | |
54 | const ld::Atom* lsda; | |
55 | const ld::Atom* personalityPointer; | |
56 | uint64_t funcTentAddress; | |
57 | uint32_t functionOffset; | |
58 | compact_unwind_encoding_t encoding; | |
59 | }; | |
60 | ||
61 | struct LSDAEntry { | |
62 | const ld::Atom* func; | |
63 | const ld::Atom* lsda; | |
64 | }; | |
65 | ||
66 | ||
67 | template <typename A> | |
68 | class UnwindInfoAtom : public ld::Atom { | |
69 | public: | |
70 | UnwindInfoAtom(const std::vector<UnwindEntry>& entries,uint64_t ehFrameSize); | |
71 | ~UnwindInfoAtom(); | |
72 | ||
73 | virtual const ld::File* file() const { return NULL; } | |
a645023d A |
74 | virtual const char* name() const { return "compact unwind info"; } |
75 | virtual uint64_t size() const { return _headerSize+_pagesSize; } | |
76 | virtual uint64_t objectAddress() const { return 0; } | |
77 | virtual void copyRawContent(uint8_t buffer[]) const; | |
78 | virtual void setScope(Scope) { } | |
79 | virtual ld::Fixup::iterator fixupsBegin() const { return (ld::Fixup*)&_fixups[0]; } | |
80 | virtual ld::Fixup::iterator fixupsEnd() const { return (ld::Fixup*)&_fixups[_fixups.size()]; } | |
81 | ||
82 | private: | |
83 | typedef typename A::P P; | |
84 | typedef typename A::P::E E; | |
85 | typedef typename A::P::uint_t pint_t; | |
86 | ||
87 | typedef macho_unwind_info_compressed_second_level_page_header<P> CSLP; | |
88 | ||
89 | bool encodingMeansUseDwarf(compact_unwind_encoding_t enc); | |
90 | void compressDuplicates(const std::vector<UnwindEntry>& entries, | |
91 | std::vector<UnwindEntry>& uniqueEntries); | |
92 | void makePersonalityIndexes(std::vector<UnwindEntry>& entries, | |
93 | std::map<const ld::Atom*, uint32_t>& personalityIndexMap); | |
94 | void findCommonEncoding(const std::vector<UnwindEntry>& entries, | |
95 | std::map<compact_unwind_encoding_t, unsigned int>& commonEncodings); | |
96 | void makeLsdaIndex(const std::vector<UnwindEntry>& entries, std::vector<LSDAEntry>& lsdaIndex, | |
97 | std::map<const ld::Atom*, uint32_t>& lsdaIndexOffsetMap); | |
98 | unsigned int makeCompressedSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, | |
99 | const std::map<compact_unwind_encoding_t,unsigned int> commonEncodings, | |
100 | uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd); | |
101 | unsigned int makeRegularSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, uint32_t pageSize, | |
102 | unsigned int endIndex, uint8_t*& pageEnd); | |
103 | void addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc); | |
104 | void addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde); | |
105 | void addRegularAddressFixup(uint32_t offset, const ld::Atom* func); | |
106 | void addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde); | |
107 | void addImageOffsetFixup(uint32_t offset, const ld::Atom* targ); | |
108 | void addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend); | |
109 | ||
110 | uint8_t* _pagesForDelete; | |
111 | uint8_t* _pages; | |
112 | uint64_t _pagesSize; | |
113 | uint8_t* _header; | |
114 | uint64_t _headerSize; | |
115 | std::vector<ld::Fixup> _fixups; | |
116 | ||
117 | static bool _s_log; | |
118 | static ld::Section _s_section; | |
119 | }; | |
120 | ||
121 | template <typename A> | |
122 | bool UnwindInfoAtom<A>::_s_log = false; | |
123 | ||
124 | template <typename A> | |
125 | ld::Section UnwindInfoAtom<A>::_s_section("__TEXT", "__unwind_info", ld::Section::typeUnwindInfo); | |
126 | ||
127 | ||
128 | template <typename A> | |
129 | UnwindInfoAtom<A>::UnwindInfoAtom(const std::vector<UnwindEntry>& entries, uint64_t ehFrameSize) | |
130 | : ld::Atom(_s_section, ld::Atom::definitionRegular, ld::Atom::combineNever, | |
131 | ld::Atom::scopeLinkageUnit, ld::Atom::typeUnclassified, | |
132 | symbolTableNotIn, false, false, false, ld::Atom::Alignment(0)), | |
133 | _pagesForDelete(NULL), _pages(NULL), _pagesSize(0), _header(NULL), _headerSize(0) | |
134 | { | |
135 | // build new compressed list by removing entries where next function has same encoding | |
136 | std::vector<UnwindEntry> uniqueEntries; | |
137 | compressDuplicates(entries, uniqueEntries); | |
138 | ||
139 | // reserve room so _fixups vector is not reallocated a bunch of times | |
140 | _fixups.reserve(uniqueEntries.size()*3); | |
141 | ||
142 | // build personality index, update encodings with personality index | |
143 | std::map<const ld::Atom*, uint32_t> personalityIndexMap; | |
144 | makePersonalityIndexes(uniqueEntries, personalityIndexMap); | |
145 | if ( personalityIndexMap.size() > 3 ) { | |
146 | warning("too many personality routines for compact unwind to encode"); | |
147 | return; | |
148 | } | |
149 | ||
150 | // put the most common encodings into the common table, but at most 127 of them | |
151 | std::map<compact_unwind_encoding_t, unsigned int> commonEncodings; | |
152 | findCommonEncoding(uniqueEntries, commonEncodings); | |
153 | ||
154 | // build lsda index | |
155 | std::map<const ld::Atom*, uint32_t> lsdaIndexOffsetMap; | |
156 | std::vector<LSDAEntry> lsdaIndex; | |
157 | makeLsdaIndex(uniqueEntries, lsdaIndex, lsdaIndexOffsetMap); | |
158 | ||
159 | ||
160 | // calculate worst case size for all unwind info pages when allocating buffer | |
161 | const unsigned int entriesPerRegularPage = (4096-sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry); | |
162 | assert(uniqueEntries.size() > 0); | |
163 | const unsigned int pageCount = ((uniqueEntries.size() - 1)/entriesPerRegularPage) + 1; | |
164 | _pagesForDelete = (uint8_t*)calloc(pageCount,4096); | |
165 | if ( _pagesForDelete == NULL ) { | |
166 | warning("could not allocate space for compact unwind info"); | |
167 | return; | |
168 | } | |
169 | ||
170 | // make last second level page smaller so that all other second level pages can be page aligned | |
171 | uint32_t maxLastPageSize = 4096 - (ehFrameSize % 4096); | |
172 | uint32_t tailPad = 0; | |
173 | if ( maxLastPageSize < 128 ) { | |
174 | tailPad = maxLastPageSize; | |
175 | maxLastPageSize = 4096; | |
176 | } | |
177 | ||
178 | // fill in pages in reverse order | |
179 | const ld::Atom* secondLevelFirstFuncs[pageCount*3]; | |
180 | uint8_t* secondLevelPagesStarts[pageCount*3]; | |
181 | unsigned int endIndex = uniqueEntries.size(); | |
182 | unsigned int secondLevelPageCount = 0; | |
183 | uint8_t* pageEnd = &_pagesForDelete[pageCount*4096]; | |
184 | uint32_t pageSize = maxLastPageSize; | |
185 | while ( endIndex > 0 ) { | |
186 | endIndex = makeCompressedSecondLevelPage(uniqueEntries, commonEncodings, pageSize, endIndex, pageEnd); | |
187 | secondLevelPagesStarts[secondLevelPageCount] = pageEnd; | |
188 | secondLevelFirstFuncs[secondLevelPageCount] = uniqueEntries[endIndex].func; | |
189 | ++secondLevelPageCount; | |
190 | pageSize = 4096; // last page can be odd size, make rest up to 4096 bytes in size | |
191 | } | |
192 | _pages = pageEnd; | |
193 | _pagesSize = &_pagesForDelete[pageCount*4096] - pageEnd; | |
194 | ||
195 | ||
196 | // calculate section layout | |
197 | const uint32_t commonEncodingsArraySectionOffset = sizeof(macho_unwind_info_section_header<P>); | |
198 | const uint32_t commonEncodingsArrayCount = commonEncodings.size(); | |
199 | const uint32_t commonEncodingsArraySize = commonEncodingsArrayCount * sizeof(compact_unwind_encoding_t); | |
200 | const uint32_t personalityArraySectionOffset = commonEncodingsArraySectionOffset + commonEncodingsArraySize; | |
201 | const uint32_t personalityArrayCount = personalityIndexMap.size(); | |
202 | const uint32_t personalityArraySize = personalityArrayCount * sizeof(uint32_t); | |
203 | const uint32_t indexSectionOffset = personalityArraySectionOffset + personalityArraySize; | |
204 | const uint32_t indexCount = secondLevelPageCount+1; | |
205 | const uint32_t indexSize = indexCount * sizeof(macho_unwind_info_section_header_index_entry<P>); | |
206 | const uint32_t lsdaIndexArraySectionOffset = indexSectionOffset + indexSize; | |
207 | const uint32_t lsdaIndexArrayCount = lsdaIndex.size(); | |
208 | const uint32_t lsdaIndexArraySize = lsdaIndexArrayCount * sizeof(macho_unwind_info_section_header_lsda_index_entry<P>); | |
209 | const uint32_t headerEndSectionOffset = lsdaIndexArraySectionOffset + lsdaIndexArraySize; | |
210 | ||
211 | // now that we know the size of the header, slide all existing fixups on the pages | |
212 | const int32_t fixupSlide = headerEndSectionOffset + (_pagesForDelete - _pages); | |
213 | for(std::vector<ld::Fixup>::iterator it = _fixups.begin(); it != _fixups.end(); ++it) { | |
214 | it->offsetInAtom += fixupSlide; | |
215 | } | |
216 | ||
217 | // allocate and fill in section header | |
218 | _headerSize = headerEndSectionOffset; | |
219 | _header = new uint8_t[_headerSize]; | |
220 | bzero(_header, _headerSize); | |
221 | macho_unwind_info_section_header<P>* sectionHeader = (macho_unwind_info_section_header<P>*)_header; | |
222 | sectionHeader->set_version(UNWIND_SECTION_VERSION); | |
223 | sectionHeader->set_commonEncodingsArraySectionOffset(commonEncodingsArraySectionOffset); | |
224 | sectionHeader->set_commonEncodingsArrayCount(commonEncodingsArrayCount); | |
225 | sectionHeader->set_personalityArraySectionOffset(personalityArraySectionOffset); | |
226 | sectionHeader->set_personalityArrayCount(personalityArrayCount); | |
227 | sectionHeader->set_indexSectionOffset(indexSectionOffset); | |
228 | sectionHeader->set_indexCount(indexCount); | |
229 | ||
230 | // copy common encodings | |
231 | uint32_t* commonEncodingsTable = (uint32_t*)&_header[commonEncodingsArraySectionOffset]; | |
232 | for (std::map<uint32_t, unsigned int>::iterator it=commonEncodings.begin(); it != commonEncodings.end(); ++it) | |
233 | E::set32(commonEncodingsTable[it->second], it->first); | |
234 | ||
235 | // make references for personality entries | |
236 | uint32_t* personalityArray = (uint32_t*)&_header[sectionHeader->personalityArraySectionOffset()]; | |
237 | for (std::map<const ld::Atom*, unsigned int>::iterator it=personalityIndexMap.begin(); it != personalityIndexMap.end(); ++it) { | |
238 | uint32_t offset = (uint8_t*)&personalityArray[it->second-1] - _header; | |
239 | this->addImageOffsetFixup(offset, it->first); | |
240 | } | |
241 | ||
242 | // build first level index and references | |
243 | macho_unwind_info_section_header_index_entry<P>* indexTable = (macho_unwind_info_section_header_index_entry<P>*)&_header[indexSectionOffset]; | |
244 | uint32_t refOffset; | |
245 | for (unsigned int i=0; i < secondLevelPageCount; ++i) { | |
246 | unsigned int reverseIndex = secondLevelPageCount - 1 - i; | |
247 | indexTable[i].set_functionOffset(0); | |
248 | indexTable[i].set_secondLevelPagesSectionOffset(secondLevelPagesStarts[reverseIndex]-_pages+headerEndSectionOffset); | |
249 | indexTable[i].set_lsdaIndexArraySectionOffset(lsdaIndexOffsetMap[secondLevelFirstFuncs[reverseIndex]]+lsdaIndexArraySectionOffset); | |
250 | refOffset = (uint8_t*)&indexTable[i] - _header; | |
251 | this->addImageOffsetFixup(refOffset, secondLevelFirstFuncs[reverseIndex]); | |
252 | } | |
253 | indexTable[secondLevelPageCount].set_functionOffset(0); | |
254 | indexTable[secondLevelPageCount].set_secondLevelPagesSectionOffset(0); | |
255 | indexTable[secondLevelPageCount].set_lsdaIndexArraySectionOffset(lsdaIndexArraySectionOffset+lsdaIndexArraySize); | |
256 | refOffset = (uint8_t*)&indexTable[secondLevelPageCount] - _header; | |
257 | this->addImageOffsetFixupPlusAddend(refOffset, entries.back().func, entries.back().func->size()+1); | |
258 | ||
259 | // build lsda references | |
260 | uint32_t lsdaEntrySectionOffset = lsdaIndexArraySectionOffset; | |
261 | for (std::vector<LSDAEntry>::iterator it = lsdaIndex.begin(); it != lsdaIndex.end(); ++it) { | |
262 | this->addImageOffsetFixup(lsdaEntrySectionOffset, it->func); | |
263 | this->addImageOffsetFixup(lsdaEntrySectionOffset+4, it->lsda); | |
264 | lsdaEntrySectionOffset += sizeof(unwind_info_section_header_lsda_index_entry); | |
265 | } | |
266 | ||
267 | } | |
268 | ||
269 | template <typename A> | |
270 | UnwindInfoAtom<A>::~UnwindInfoAtom() | |
271 | { | |
272 | free(_pagesForDelete); | |
273 | free(_header); | |
274 | } | |
275 | ||
276 | template <typename A> | |
277 | void UnwindInfoAtom<A>::copyRawContent(uint8_t buffer[]) const | |
278 | { | |
279 | // content is in two parts | |
280 | memcpy(buffer, _header, _headerSize); | |
281 | memcpy(&buffer[_headerSize], _pages, _pagesSize); | |
282 | } | |
283 | ||
284 | ||
285 | template <> | |
286 | bool UnwindInfoAtom<x86>::encodingMeansUseDwarf(compact_unwind_encoding_t enc) | |
287 | { | |
288 | return ((enc & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF); | |
289 | } | |
290 | ||
291 | template <> | |
292 | bool UnwindInfoAtom<x86_64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc) | |
293 | { | |
294 | return ((enc & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF); | |
295 | } | |
296 | ||
297 | template <typename A> | |
298 | void UnwindInfoAtom<A>::compressDuplicates(const std::vector<UnwindEntry>& entries, std::vector<UnwindEntry>& uniqueEntries) | |
299 | { | |
300 | // build new list removing entries where next function has same encoding | |
301 | uniqueEntries.reserve(entries.size()); | |
302 | UnwindEntry last(NULL, 0, 0, NULL, NULL, NULL, 0xFFFFFFFF); | |
303 | for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) { | |
304 | const UnwindEntry& next = *it; | |
305 | bool newNeedsDwarf = encodingMeansUseDwarf(next.encoding); | |
306 | // remove entries which have same encoding and personalityPointer as last one | |
307 | if ( newNeedsDwarf || (next.encoding != last.encoding) || (next.personalityPointer != last.personalityPointer) | |
308 | || (next.lsda != NULL) || (last.lsda != NULL) ) { | |
309 | uniqueEntries.push_back(next); | |
310 | } | |
311 | last = next; | |
312 | } | |
313 | if (_s_log) fprintf(stderr, "compressDuplicates() entries.size()=%lu, uniqueEntries.size()=%lu\n", | |
314 | entries.size(), uniqueEntries.size()); | |
315 | } | |
316 | ||
317 | template <typename A> | |
318 | void UnwindInfoAtom<A>::makePersonalityIndexes(std::vector<UnwindEntry>& entries, std::map<const ld::Atom*, uint32_t>& personalityIndexMap) | |
319 | { | |
320 | for(std::vector<UnwindEntry>::iterator it=entries.begin(); it != entries.end(); ++it) { | |
321 | if ( it->personalityPointer != NULL ) { | |
322 | std::map<const ld::Atom*, uint32_t>::iterator pos = personalityIndexMap.find(it->personalityPointer); | |
323 | if ( pos == personalityIndexMap.end() ) { | |
324 | const uint32_t nextIndex = personalityIndexMap.size() + 1; | |
325 | personalityIndexMap[it->personalityPointer] = nextIndex; | |
326 | } | |
327 | uint32_t personalityIndex = personalityIndexMap[it->personalityPointer]; | |
328 | it->encoding |= (personalityIndex << (__builtin_ctz(UNWIND_PERSONALITY_MASK)) ); | |
329 | } | |
330 | } | |
331 | if (_s_log) fprintf(stderr, "makePersonalityIndexes() %lu personality routines used\n", personalityIndexMap.size()); | |
332 | } | |
333 | ||
334 | ||
335 | template <typename A> | |
336 | void UnwindInfoAtom<A>::findCommonEncoding(const std::vector<UnwindEntry>& entries, | |
337 | std::map<compact_unwind_encoding_t, unsigned int>& commonEncodings) | |
338 | { | |
339 | // scan infos to get frequency counts for each encoding | |
340 | std::map<compact_unwind_encoding_t, unsigned int> encodingsUsed; | |
341 | unsigned int mostCommonEncodingUsageCount = 0; | |
342 | for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) { | |
343 | // never put dwarf into common table | |
344 | if ( encodingMeansUseDwarf(it->encoding) ) | |
345 | continue; | |
346 | std::map<compact_unwind_encoding_t, unsigned int>::iterator pos = encodingsUsed.find(it->encoding); | |
347 | if ( pos == encodingsUsed.end() ) { | |
348 | encodingsUsed[it->encoding] = 1; | |
349 | } | |
350 | else { | |
351 | encodingsUsed[it->encoding] += 1; | |
352 | if ( mostCommonEncodingUsageCount < encodingsUsed[it->encoding] ) | |
353 | mostCommonEncodingUsageCount = encodingsUsed[it->encoding]; | |
354 | } | |
355 | } | |
356 | // put the most common encodings into the common table, but at most 127 of them | |
357 | for(unsigned int usages=mostCommonEncodingUsageCount; usages > 1; --usages) { | |
358 | for (std::map<compact_unwind_encoding_t, unsigned int>::iterator euit=encodingsUsed.begin(); euit != encodingsUsed.end(); ++euit) { | |
359 | if ( euit->second == usages ) { | |
360 | unsigned int sz = commonEncodings.size(); | |
361 | if ( sz < 127 ) { | |
362 | commonEncodings[euit->first] = sz; | |
363 | } | |
364 | } | |
365 | } | |
366 | } | |
367 | if (_s_log) fprintf(stderr, "findCommonEncoding() %lu common encodings found\n", commonEncodings.size()); | |
368 | } | |
369 | ||
370 | ||
371 | template <typename A> | |
372 | void UnwindInfoAtom<A>::makeLsdaIndex(const std::vector<UnwindEntry>& entries, std::vector<LSDAEntry>& lsdaIndex, std::map<const ld::Atom*, uint32_t>& lsdaIndexOffsetMap) | |
373 | { | |
374 | for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) { | |
375 | lsdaIndexOffsetMap[it->func] = lsdaIndex.size() * sizeof(unwind_info_section_header_lsda_index_entry); | |
376 | if ( it->lsda != NULL ) { | |
377 | LSDAEntry entry; | |
378 | entry.func = it->func; | |
379 | entry.lsda = it->lsda; | |
380 | lsdaIndex.push_back(entry); | |
381 | } | |
382 | } | |
383 | if (_s_log) fprintf(stderr, "makeLsdaIndex() %lu LSDAs found\n", lsdaIndex.size()); | |
384 | } | |
385 | ||
386 | ||
387 | template <> | |
388 | void UnwindInfoAtom<x86>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc) | |
389 | { | |
390 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func)); | |
391 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc)); | |
392 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
393 | } | |
394 | ||
395 | template <> | |
396 | void UnwindInfoAtom<x86_64>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc) | |
397 | { | |
398 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func)); | |
399 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc)); | |
400 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
401 | } | |
402 | ||
403 | template <> | |
404 | void UnwindInfoAtom<x86>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde) | |
405 | { | |
406 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
407 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
408 | } | |
409 | ||
410 | template <> | |
411 | void UnwindInfoAtom<x86_64>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde) | |
412 | { | |
413 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
414 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
415 | } | |
416 | ||
417 | ||
418 | template <> | |
419 | void UnwindInfoAtom<x86>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func) | |
420 | { | |
421 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func)); | |
422 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
423 | } | |
424 | ||
425 | template <> | |
426 | void UnwindInfoAtom<x86_64>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func) | |
427 | { | |
428 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func)); | |
429 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
430 | } | |
431 | ||
432 | template <> | |
433 | void UnwindInfoAtom<x86>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde) | |
434 | { | |
435 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
436 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
437 | } | |
438 | ||
439 | template <> | |
440 | void UnwindInfoAtom<x86_64>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde) | |
441 | { | |
442 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
443 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
444 | } | |
445 | ||
446 | template <> | |
447 | void UnwindInfoAtom<x86>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ) | |
448 | { | |
449 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ)); | |
450 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
451 | } | |
452 | ||
453 | template <> | |
454 | void UnwindInfoAtom<x86_64>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ) | |
455 | { | |
456 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ)); | |
457 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
458 | } | |
459 | ||
460 | template <> | |
461 | void UnwindInfoAtom<x86>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend) | |
462 | { | |
463 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ)); | |
464 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend)); | |
465 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32)); | |
466 | } | |
467 | ||
468 | template <> | |
469 | void UnwindInfoAtom<x86_64>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend) | |
470 | { | |
471 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ)); | |
472 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend)); | |
473 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32)); | |
474 | } | |
475 | ||
476 | ||
477 | ||
478 | ||
479 | ||
480 | template <typename A> | |
481 | unsigned int UnwindInfoAtom<A>::makeRegularSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, uint32_t pageSize, | |
482 | unsigned int endIndex, uint8_t*& pageEnd) | |
483 | { | |
484 | const unsigned int maxEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry); | |
485 | const unsigned int entriesToAdd = ((endIndex > maxEntriesPerPage) ? maxEntriesPerPage : endIndex); | |
486 | uint8_t* pageStart = pageEnd | |
487 | - entriesToAdd*sizeof(unwind_info_regular_second_level_entry) | |
488 | - sizeof(unwind_info_regular_second_level_page_header); | |
489 | macho_unwind_info_regular_second_level_page_header<P>* page = (macho_unwind_info_regular_second_level_page_header<P>*)pageStart; | |
490 | page->set_kind(UNWIND_SECOND_LEVEL_REGULAR); | |
491 | page->set_entryPageOffset(sizeof(macho_unwind_info_regular_second_level_page_header<P>)); | |
492 | page->set_entryCount(entriesToAdd); | |
493 | macho_unwind_info_regular_second_level_entry<P>* entryTable = (macho_unwind_info_regular_second_level_entry<P>*)(pageStart + page->entryPageOffset()); | |
494 | for (unsigned int i=0; i < entriesToAdd; ++i) { | |
495 | const UnwindEntry& info = uniqueInfos[endIndex-entriesToAdd+i]; | |
496 | entryTable[i].set_functionOffset(0); | |
497 | entryTable[i].set_encoding(info.encoding); | |
498 | // add fixup for address part of entry | |
499 | uint32_t offset = (uint8_t*)(&entryTable[i]) - _pagesForDelete; | |
500 | this->addRegularAddressFixup(offset, info.func); | |
501 | if ( encodingMeansUseDwarf(info.encoding) ) { | |
502 | // add fixup for dwarf offset part of page specific encoding | |
503 | uint32_t encOffset = (uint8_t*)(&entryTable[i]) - _pagesForDelete; | |
504 | this->addRegularFDEOffsetFixup(encOffset, info.fde); | |
505 | } | |
506 | } | |
507 | if (_s_log) fprintf(stderr, "regular page with %u entries\n", entriesToAdd); | |
508 | pageEnd = pageStart; | |
509 | return endIndex - entriesToAdd; | |
510 | } | |
511 | ||
512 | ||
513 | template <typename A> | |
514 | unsigned int UnwindInfoAtom<A>::makeCompressedSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, | |
515 | const std::map<compact_unwind_encoding_t,unsigned int> commonEncodings, | |
516 | uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd) | |
517 | { | |
518 | if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(pageSize=%u, endIndex=%u)\n", pageSize, endIndex); | |
519 | // first pass calculates how many compressed entries we could fit in this sized page | |
520 | // keep adding entries to page until: | |
521 | // 1) encoding table plus entry table plus header exceed page size | |
522 | // 2) the file offset delta from the first to last function > 24 bits | |
523 | // 3) custom encoding index reachs 255 | |
524 | // 4) run out of uniqueInfos to encode | |
525 | std::map<compact_unwind_encoding_t, unsigned int> pageSpecificEncodings; | |
526 | uint32_t space4 = (pageSize - sizeof(unwind_info_compressed_second_level_page_header))/sizeof(uint32_t); | |
527 | std::vector<uint8_t> encodingIndexes; | |
528 | int index = endIndex-1; | |
529 | int entryCount = 0; | |
530 | uint64_t lastEntryAddress = uniqueInfos[index].funcTentAddress; | |
531 | bool canDo = true; | |
532 | while ( canDo && (index >= 0) ) { | |
533 | const UnwindEntry& info = uniqueInfos[index--]; | |
534 | // compute encoding index | |
535 | unsigned int encodingIndex; | |
536 | std::map<compact_unwind_encoding_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding); | |
537 | if ( pos != commonEncodings.end() ) { | |
538 | encodingIndex = pos->second; | |
539 | } | |
540 | else { | |
541 | // no commmon entry, so add one on this page | |
542 | uint32_t encoding = info.encoding; | |
543 | if ( encodingMeansUseDwarf(encoding) ) { | |
544 | // make unique pseudo encoding so this dwarf will gets is own encoding entry slot | |
545 | encoding += (index+1); | |
546 | } | |
547 | std::map<compact_unwind_encoding_t, unsigned int>::iterator ppos = pageSpecificEncodings.find(encoding); | |
548 | if ( ppos != pageSpecificEncodings.end() ) { | |
549 | encodingIndex = pos->second; | |
550 | } | |
551 | else { | |
552 | encodingIndex = commonEncodings.size() + pageSpecificEncodings.size(); | |
553 | if ( encodingIndex <= 255 ) { | |
554 | pageSpecificEncodings[encoding] = encodingIndex; | |
555 | } | |
556 | else { | |
557 | canDo = false; // case 3) | |
558 | if (_s_log) fprintf(stderr, "end of compressed page with %u entries, %lu custom encodings because too many custom encodings\n", | |
559 | entryCount, pageSpecificEncodings.size()); | |
560 | } | |
561 | } | |
562 | } | |
563 | if ( canDo ) | |
564 | encodingIndexes.push_back(encodingIndex); | |
565 | // compute function offset | |
566 | uint32_t funcOffsetWithInPage = lastEntryAddress - info.funcTentAddress; | |
567 | if ( funcOffsetWithInPage > 0x00FFFF00 ) { | |
568 | // don't use 0x00FFFFFF because addresses may vary after atoms are laid out again | |
569 | canDo = false; // case 2) | |
570 | if (_s_log) fprintf(stderr, "can't use compressed page with %u entries because function offset too big\n", entryCount); | |
571 | } | |
572 | else { | |
573 | ++entryCount; | |
574 | } | |
575 | // check room for entry | |
576 | if ( (pageSpecificEncodings.size()+entryCount) >= space4 ) { | |
577 | canDo = false; // case 1) | |
578 | --entryCount; | |
579 | if (_s_log) fprintf(stderr, "end of compressed page with %u entries because full\n", entryCount); | |
580 | } | |
581 | //if (_s_log) fprintf(stderr, "space4=%d, pageSpecificEncodings.size()=%ld, entryCount=%d\n", space4, pageSpecificEncodings.size(), entryCount); | |
582 | } | |
583 | ||
584 | // check for cases where it would be better to use a regular (non-compressed) page | |
585 | const unsigned int compressPageUsed = sizeof(unwind_info_compressed_second_level_page_header) | |
586 | + pageSpecificEncodings.size()*sizeof(uint32_t) | |
587 | + entryCount*sizeof(uint32_t); | |
588 | if ( (compressPageUsed < (pageSize-4) && (index >= 0) ) ) { | |
589 | const int regularEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry); | |
590 | if ( entryCount < regularEntriesPerPage ) { | |
591 | return makeRegularSecondLevelPage(uniqueInfos, pageSize, endIndex, pageEnd); | |
592 | } | |
593 | } | |
594 | ||
595 | // check if we need any padding because adding another entry would take 8 bytes but only have room for 4 | |
596 | uint32_t pad = 0; | |
597 | if ( compressPageUsed == (pageSize-4) ) | |
598 | pad = 4; | |
599 | ||
600 | // second pass fills in page | |
601 | uint8_t* pageStart = pageEnd - compressPageUsed - pad; | |
602 | CSLP* page = (CSLP*)pageStart; | |
603 | page->set_kind(UNWIND_SECOND_LEVEL_COMPRESSED); | |
604 | page->set_entryPageOffset(sizeof(CSLP)); | |
605 | page->set_entryCount(entryCount); | |
606 | page->set_encodingsPageOffset(page->entryPageOffset()+entryCount*sizeof(uint32_t)); | |
607 | page->set_encodingsCount(pageSpecificEncodings.size()); | |
608 | uint32_t* const encodingsArray = (uint32_t*)&pageStart[page->encodingsPageOffset()]; | |
609 | // fill in entry table | |
610 | uint32_t* const entiresArray = (uint32_t*)&pageStart[page->entryPageOffset()]; | |
611 | const ld::Atom* firstFunc = uniqueInfos[endIndex-entryCount].func; | |
612 | for(unsigned int i=endIndex-entryCount; i < endIndex; ++i) { | |
613 | const UnwindEntry& info = uniqueInfos[i]; | |
614 | uint8_t encodingIndex; | |
615 | if ( encodingMeansUseDwarf(info.encoding) ) { | |
616 | // dwarf entries are always in page specific encodings | |
617 | encodingIndex = pageSpecificEncodings[info.encoding+i]; | |
618 | } | |
619 | else { | |
620 | std::map<uint32_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding); | |
621 | if ( pos != commonEncodings.end() ) | |
622 | encodingIndex = pos->second; | |
623 | else | |
624 | encodingIndex = pageSpecificEncodings[info.encoding]; | |
625 | } | |
626 | uint32_t entryIndex = i - endIndex + entryCount; | |
627 | E::set32(entiresArray[entryIndex], encodingIndex << 24); | |
628 | // add fixup for address part of entry | |
629 | uint32_t offset = (uint8_t*)(&entiresArray[entryIndex]) - _pagesForDelete; | |
630 | this->addCompressedAddressOffsetFixup(offset, info.func, firstFunc); | |
631 | if ( encodingMeansUseDwarf(info.encoding) ) { | |
632 | // add fixup for dwarf offset part of page specific encoding | |
633 | uint32_t encOffset = (uint8_t*)(&encodingsArray[encodingIndex-commonEncodings.size()]) - _pagesForDelete; | |
634 | this->addCompressedEncodingFixup(encOffset, info.fde); | |
635 | } | |
636 | } | |
637 | // fill in encodings table | |
638 | for(std::map<uint32_t, unsigned int>::const_iterator it = pageSpecificEncodings.begin(); it != pageSpecificEncodings.end(); ++it) { | |
639 | E::set32(encodingsArray[it->second-commonEncodings.size()], it->first); | |
640 | } | |
641 | ||
642 | if (_s_log) fprintf(stderr, "compressed page with %u entries, %lu custom encodings\n", entryCount, pageSpecificEncodings.size()); | |
643 | ||
644 | // update pageEnd; | |
645 | pageEnd = pageStart; | |
646 | return endIndex-entryCount; // endIndex for next page | |
647 | } | |
648 | ||
649 | ||
650 | ||
651 | ||
652 | ||
653 | ||
654 | static uint64_t calculateEHFrameSize(const ld::Internal& state) | |
655 | { | |
656 | uint64_t size = 0; | |
657 | for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) { | |
658 | ld::Internal::FinalSection* sect = *sit; | |
659 | if ( sect->type() == ld::Section::typeCFI ) { | |
660 | for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) { | |
661 | size += (*ait)->size(); | |
662 | } | |
663 | } | |
664 | } | |
665 | return size; | |
666 | } | |
667 | ||
668 | static void getAllUnwindInfos(const ld::Internal& state, std::vector<UnwindEntry>& entries) | |
669 | { | |
670 | uint64_t address = 0; | |
671 | for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) { | |
672 | ld::Internal::FinalSection* sect = *sit; | |
673 | for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) { | |
674 | const ld::Atom* atom = *ait; | |
675 | // adjust address for atom alignment | |
676 | uint64_t alignment = 1 << atom->alignment().powerOf2; | |
677 | uint64_t currentModulus = (address % alignment); | |
678 | uint64_t requiredModulus = atom->alignment().modulus; | |
679 | if ( currentModulus != requiredModulus ) { | |
680 | if ( requiredModulus > currentModulus ) | |
681 | address += requiredModulus-currentModulus; | |
682 | else | |
683 | address += requiredModulus+alignment-currentModulus; | |
684 | } | |
685 | ||
686 | if ( atom->beginUnwind() == atom->endUnwind() ) { | |
687 | // be sure to mark that we have no unwind info for stuff in the TEXT segment without unwind info | |
688 | if ( atom->section().type() == ld::Section::typeCode ) { | |
689 | entries.push_back(UnwindEntry(atom, address, 0, NULL, NULL, NULL, 0)); | |
690 | } | |
691 | } | |
692 | else { | |
693 | // atom has unwind info(s), add entry for each | |
694 | const ld::Atom* fde = NULL; | |
695 | const ld::Atom* lsda = NULL; | |
696 | const ld::Atom* personalityPointer = NULL; | |
697 | for (ld::Fixup::iterator fit = atom->fixupsBegin(), end=atom->fixupsEnd(); fit != end; ++fit) { | |
698 | switch ( fit->kind ) { | |
699 | case ld::Fixup::kindNoneGroupSubordinateFDE: | |
700 | assert(fit->binding == ld::Fixup::bindingDirectlyBound); | |
701 | fde = fit->u.target; | |
702 | break; | |
703 | case ld::Fixup::kindNoneGroupSubordinateLSDA: | |
704 | assert(fit->binding == ld::Fixup::bindingDirectlyBound); | |
705 | lsda = fit->u.target; | |
706 | break; | |
afe874b1 A |
707 | case ld::Fixup::kindNoneGroupSubordinatePersonality: |
708 | assert(fit->binding == ld::Fixup::bindingDirectlyBound); | |
709 | personalityPointer = fit->u.target; | |
710 | assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer); | |
711 | break; | |
a645023d A |
712 | default: |
713 | break; | |
714 | } | |
715 | } | |
716 | if ( fde != NULL ) { | |
717 | // find CIE for this FDE | |
718 | const ld::Atom* cie = NULL; | |
719 | for (ld::Fixup::iterator fit = fde->fixupsBegin(), end=fde->fixupsEnd(); fit != end; ++fit) { | |
720 | if ( fit->kind != ld::Fixup::kindSubtractTargetAddress ) | |
721 | continue; | |
722 | if ( fit->binding != ld::Fixup::bindingDirectlyBound ) | |
723 | continue; | |
724 | cie = fit->u.target; | |
725 | // CIE is only direct subtracted target in FDE | |
726 | assert(cie->section().type() == ld::Section::typeCFI); | |
727 | break; | |
728 | } | |
729 | if ( cie != NULL ) { | |
730 | // if CIE can have just one fixup - to the personality pointer | |
731 | for (ld::Fixup::iterator fit = cie->fixupsBegin(), end=cie->fixupsEnd(); fit != end; ++fit) { | |
732 | if ( fit->kind == ld::Fixup::kindSetTargetAddress ) { | |
733 | switch ( fit->binding ) { | |
734 | case ld::Fixup::bindingsIndirectlyBound: | |
735 | personalityPointer = state.indirectBindingTable[fit->u.bindingIndex]; | |
736 | assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer); | |
737 | break; | |
738 | case ld::Fixup::bindingDirectlyBound: | |
739 | personalityPointer = fit->u.target; | |
740 | assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer); | |
741 | break; | |
742 | default: | |
743 | break; | |
744 | } | |
745 | } | |
746 | } | |
747 | } | |
748 | } | |
749 | for ( ld::Atom::UnwindInfo::iterator uit = atom->beginUnwind(); uit != atom->endUnwind(); ++uit ) { | |
750 | entries.push_back(UnwindEntry(atom, address, uit->startOffset, fde, lsda, personalityPointer, uit->unwindInfo)); | |
751 | } | |
752 | } | |
753 | address += atom->size(); | |
754 | } | |
755 | } | |
756 | } | |
757 | ||
758 | ||
afe874b1 | 759 | static void makeFinalLinkedImageCompactUnwindSection(const Options& opts, ld::Internal& state) |
a645023d | 760 | { |
a645023d A |
761 | // walk every atom and gets its unwind info |
762 | std::vector<UnwindEntry> entries; | |
763 | entries.reserve(64); | |
764 | getAllUnwindInfos(state, entries); | |
765 | ||
766 | // don't generate an __unwind_info section if there is no code in this linkage unit | |
767 | if ( entries.size() == 0 ) | |
768 | return; | |
769 | ||
770 | // calculate size of __eh_frame section, so __unwind_info can go before it and page align | |
771 | uint64_t ehFrameSize = calculateEHFrameSize(state); | |
772 | ||
773 | // create atom that contains the whole compact unwind table | |
774 | switch ( opts.architecture() ) { | |
ebf6f434 | 775 | #if SUPPORT_ARCH_x86_64 |
a645023d A |
776 | case CPU_TYPE_X86_64: |
777 | state.addAtom(*new UnwindInfoAtom<x86_64>(entries, ehFrameSize)); | |
778 | break; | |
ebf6f434 A |
779 | #endif |
780 | #if SUPPORT_ARCH_i386 | |
a645023d A |
781 | case CPU_TYPE_I386: |
782 | state.addAtom(*new UnwindInfoAtom<x86>(entries, ehFrameSize)); | |
783 | break; | |
ebf6f434 | 784 | #endif |
a645023d A |
785 | default: |
786 | assert(0 && "no compact unwind for arch"); | |
787 | } | |
788 | } | |
789 | ||
790 | ||
afe874b1 A |
791 | |
792 | template <typename A> | |
793 | class CompactUnwindAtom : public ld::Atom { | |
794 | public: | |
795 | CompactUnwindAtom(ld::Internal& state,const ld::Atom* funcAtom, | |
796 | uint32_t startOffset, uint32_t len, uint32_t cui); | |
797 | ~CompactUnwindAtom() {} | |
798 | ||
799 | virtual const ld::File* file() const { return NULL; } | |
afe874b1 A |
800 | virtual const char* name() const { return "compact unwind info"; } |
801 | virtual uint64_t size() const { return sizeof(macho_compact_unwind_entry<P>); } | |
802 | virtual uint64_t objectAddress() const { return 0; } | |
803 | virtual void copyRawContent(uint8_t buffer[]) const; | |
804 | virtual void setScope(Scope) { } | |
805 | virtual ld::Fixup::iterator fixupsBegin() const { return (ld::Fixup*)&_fixups[0]; } | |
806 | virtual ld::Fixup::iterator fixupsEnd() const { return (ld::Fixup*)&_fixups[_fixups.size()]; } | |
807 | ||
808 | private: | |
809 | typedef typename A::P P; | |
810 | typedef typename A::P::E E; | |
811 | typedef typename A::P::uint_t pint_t; | |
812 | ||
813 | ||
814 | const ld::Atom* _atom; | |
815 | const uint32_t _startOffset; | |
816 | const uint32_t _len; | |
817 | const uint32_t _compactUnwindInfo; | |
818 | std::vector<ld::Fixup> _fixups; | |
819 | ||
820 | static ld::Fixup::Kind _s_pointerKind; | |
821 | static ld::Fixup::Kind _s_pointerStoreKind; | |
822 | static ld::Section _s_section; | |
823 | }; | |
824 | ||
825 | ||
826 | template <typename A> | |
827 | ld::Section CompactUnwindAtom<A>::_s_section("__LD", "__compact_unwind", ld::Section::typeDebug); | |
828 | ||
829 | template <> ld::Fixup::Kind CompactUnwindAtom<x86>::_s_pointerKind = ld::Fixup::kindStoreLittleEndian32; | |
830 | template <> ld::Fixup::Kind CompactUnwindAtom<x86>::_s_pointerStoreKind = ld::Fixup::kindStoreTargetAddressLittleEndian32; | |
831 | template <> ld::Fixup::Kind CompactUnwindAtom<x86_64>::_s_pointerKind = ld::Fixup::kindStoreLittleEndian64; | |
832 | template <> ld::Fixup::Kind CompactUnwindAtom<x86_64>::_s_pointerStoreKind = ld::Fixup::kindStoreTargetAddressLittleEndian64; | |
833 | ||
834 | template <typename A> | |
835 | CompactUnwindAtom<A>::CompactUnwindAtom(ld::Internal& state,const ld::Atom* funcAtom, uint32_t startOffset, | |
836 | uint32_t len, uint32_t cui) | |
837 | : ld::Atom(_s_section, ld::Atom::definitionRegular, ld::Atom::combineNever, | |
838 | ld::Atom::scopeTranslationUnit, ld::Atom::typeUnclassified, | |
839 | symbolTableNotIn, false, false, false, ld::Atom::Alignment(0)), | |
840 | _atom(funcAtom), _startOffset(startOffset), _len(len), _compactUnwindInfo(cui) | |
841 | { | |
842 | _fixups.push_back(ld::Fixup(macho_compact_unwind_entry<P>::codeStartFieldOffset(), ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, funcAtom)); | |
843 | _fixups.push_back(ld::Fixup(macho_compact_unwind_entry<P>::codeStartFieldOffset(), ld::Fixup::k2of3, ld::Fixup::kindAddAddend, _startOffset)); | |
844 | _fixups.push_back(ld::Fixup(macho_compact_unwind_entry<P>::codeStartFieldOffset(), ld::Fixup::k3of3, _s_pointerKind)); | |
845 | // see if atom has subordinate personality function or lsda | |
846 | for (ld::Fixup::iterator fit = funcAtom->fixupsBegin(), end=funcAtom->fixupsEnd(); fit != end; ++fit) { | |
847 | switch ( fit->kind ) { | |
848 | case ld::Fixup::kindNoneGroupSubordinatePersonality: | |
849 | assert(fit->binding == ld::Fixup::bindingsIndirectlyBound); | |
850 | _fixups.push_back(ld::Fixup(macho_compact_unwind_entry<P>::personalityFieldOffset(), ld::Fixup::k1of1, _s_pointerStoreKind, state.indirectBindingTable[fit->u.bindingIndex])); | |
851 | break; | |
852 | case ld::Fixup::kindNoneGroupSubordinateLSDA: | |
853 | assert(fit->binding == ld::Fixup::bindingDirectlyBound); | |
854 | _fixups.push_back(ld::Fixup(macho_compact_unwind_entry<P>::lsdaFieldOffset(), ld::Fixup::k1of1, _s_pointerStoreKind, fit->u.target)); | |
855 | break; | |
856 | default: | |
857 | break; | |
858 | } | |
859 | } | |
860 | ||
861 | } | |
862 | ||
863 | template <typename A> | |
864 | void CompactUnwindAtom<A>::copyRawContent(uint8_t buffer[]) const | |
865 | { | |
866 | macho_compact_unwind_entry<P>* buf = (macho_compact_unwind_entry<P>*)buffer; | |
867 | buf->set_codeStart(0); | |
868 | buf->set_codeLen(_len); | |
869 | buf->set_compactUnwindInfo(_compactUnwindInfo); | |
870 | buf->set_personality(0); | |
871 | buf->set_lsda(0); | |
872 | } | |
873 | ||
874 | ||
875 | static void makeCompactUnwindAtom(const Options& opts, ld::Internal& state, const ld::Atom* atom, | |
876 | uint32_t startOffset, uint32_t endOffset, uint32_t cui) | |
877 | { | |
878 | switch ( opts.architecture() ) { | |
ebf6f434 | 879 | #if SUPPORT_ARCH_x86_64 |
afe874b1 A |
880 | case CPU_TYPE_X86_64: |
881 | state.addAtom(*new CompactUnwindAtom<x86_64>(state, atom, startOffset, endOffset-startOffset, cui)); | |
882 | break; | |
ebf6f434 A |
883 | #endif |
884 | #if SUPPORT_ARCH_i386 | |
afe874b1 A |
885 | case CPU_TYPE_I386: |
886 | state.addAtom(*new CompactUnwindAtom<x86>(state, atom, startOffset, endOffset-startOffset, cui)); | |
887 | break; | |
ebf6f434 | 888 | #endif |
afe874b1 A |
889 | } |
890 | } | |
891 | ||
892 | static void makeRelocateableCompactUnwindSection(const Options& opts, ld::Internal& state) | |
893 | { | |
894 | // can't add CompactUnwindAtom atoms will iterating, so pre-scan | |
895 | std::vector<const ld::Atom*> atomsWithUnwind; | |
896 | for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) { | |
897 | ld::Internal::FinalSection* sect = *sit; | |
898 | for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) { | |
899 | const ld::Atom* atom = *ait; | |
900 | if ( atom->beginUnwind() != atom->endUnwind() ) | |
901 | atomsWithUnwind.push_back(atom); | |
902 | } | |
903 | } | |
904 | // make one CompactUnwindAtom for each compact unwind range in each atom | |
905 | for (std::vector<const ld::Atom*>::iterator it = atomsWithUnwind.begin(); it != atomsWithUnwind.end(); ++it) { | |
906 | const ld::Atom* atom = *it; | |
907 | uint32_t lastOffset = 0; | |
908 | uint32_t lastCUE = 0; | |
909 | bool first = true; | |
910 | for (ld::Atom::UnwindInfo::iterator uit=atom->beginUnwind(); uit != atom->endUnwind(); ++uit) { | |
911 | if ( !first ) { | |
912 | makeCompactUnwindAtom(opts, state, atom, lastOffset, uit->startOffset, lastCUE); | |
913 | } | |
914 | lastOffset = uit->startOffset; | |
915 | lastCUE = uit->unwindInfo; | |
916 | first = false; | |
917 | } | |
918 | makeCompactUnwindAtom(opts, state, atom, lastOffset, (uint32_t)atom->size(), lastCUE); | |
919 | } | |
920 | } | |
921 | ||
922 | ||
923 | void doPass(const Options& opts, ld::Internal& state) | |
924 | { | |
925 | if ( opts.outputKind() == Options::kObjectFile ) | |
926 | makeRelocateableCompactUnwindSection(opts, state); | |
927 | ||
928 | else if ( opts.needsUnwindInfoSection() ) | |
929 | makeFinalLinkedImageCompactUnwindSection(opts, state); | |
930 | } | |
931 | ||
932 | ||
a645023d A |
933 | } // namespace compact_unwind |
934 | } // namespace passes | |
935 | } // namespace ld |