]>
Commit | Line | Data |
---|---|---|
a645023d A |
1 | /* -*- mode: C++; c-basic-offset: 4; tab-width: 4 -*- |
2 | * | |
3 | * Copyright (c) 2009 Apple Inc. All rights reserved. | |
4 | * | |
5 | * @APPLE_LICENSE_HEADER_START@ | |
6 | * | |
7 | * This file contains Original Code and/or Modifications of Original Code | |
8 | * as defined in and that are subject to the Apple Public Source License | |
9 | * Version 2.0 (the 'License'). You may not use this file except in | |
10 | * compliance with the License. Please obtain a copy of the License at | |
11 | * http://www.opensource.apple.com/apsl/ and read it before using this | |
12 | * file. | |
13 | * | |
14 | * The Original Code and all software distributed under the License are | |
15 | * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER | |
16 | * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES, | |
17 | * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY, | |
18 | * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT. | |
19 | * Please see the License for the specific language governing rights and | |
20 | * limitations under the License. | |
21 | * | |
22 | * @APPLE_LICENSE_HEADER_END@ | |
23 | */ | |
24 | ||
25 | ||
26 | #include <stdint.h> | |
27 | #include <math.h> | |
28 | #include <unistd.h> | |
29 | #include <dlfcn.h> | |
30 | #include <mach/machine.h> | |
31 | #include <mach-o/compact_unwind_encoding.h> | |
32 | ||
33 | #include <vector> | |
34 | #include <map> | |
35 | ||
36 | #include "ld.hpp" | |
37 | #include "compact_unwind.h" | |
38 | #include "Architectures.hpp" | |
39 | #include "MachOFileAbstraction.hpp" | |
40 | ||
41 | ||
42 | namespace ld { | |
43 | namespace passes { | |
44 | namespace compact_unwind { | |
45 | ||
46 | ||
47 | struct UnwindEntry { | |
48 | UnwindEntry(const ld::Atom* f, uint64_t a, uint32_t o, const ld::Atom* d, | |
49 | const ld::Atom* l, const ld::Atom* p, uint32_t en) | |
50 | : func(f), fde(d), lsda(l), personalityPointer(p), funcTentAddress(a), | |
51 | functionOffset(o), encoding(en) { } | |
52 | const ld::Atom* func; | |
53 | const ld::Atom* fde; | |
54 | const ld::Atom* lsda; | |
55 | const ld::Atom* personalityPointer; | |
56 | uint64_t funcTentAddress; | |
57 | uint32_t functionOffset; | |
58 | compact_unwind_encoding_t encoding; | |
59 | }; | |
60 | ||
61 | struct LSDAEntry { | |
62 | const ld::Atom* func; | |
63 | const ld::Atom* lsda; | |
64 | }; | |
65 | ||
66 | ||
67 | template <typename A> | |
68 | class UnwindInfoAtom : public ld::Atom { | |
69 | public: | |
70 | UnwindInfoAtom(const std::vector<UnwindEntry>& entries,uint64_t ehFrameSize); | |
71 | ~UnwindInfoAtom(); | |
72 | ||
73 | virtual const ld::File* file() const { return NULL; } | |
74 | virtual bool translationUnitSource(const char** dir, const char**) const | |
75 | { return false; } | |
76 | virtual const char* name() const { return "compact unwind info"; } | |
77 | virtual uint64_t size() const { return _headerSize+_pagesSize; } | |
78 | virtual uint64_t objectAddress() const { return 0; } | |
79 | virtual void copyRawContent(uint8_t buffer[]) const; | |
80 | virtual void setScope(Scope) { } | |
81 | virtual ld::Fixup::iterator fixupsBegin() const { return (ld::Fixup*)&_fixups[0]; } | |
82 | virtual ld::Fixup::iterator fixupsEnd() const { return (ld::Fixup*)&_fixups[_fixups.size()]; } | |
83 | ||
84 | private: | |
85 | typedef typename A::P P; | |
86 | typedef typename A::P::E E; | |
87 | typedef typename A::P::uint_t pint_t; | |
88 | ||
89 | typedef macho_unwind_info_compressed_second_level_page_header<P> CSLP; | |
90 | ||
91 | bool encodingMeansUseDwarf(compact_unwind_encoding_t enc); | |
92 | void compressDuplicates(const std::vector<UnwindEntry>& entries, | |
93 | std::vector<UnwindEntry>& uniqueEntries); | |
94 | void makePersonalityIndexes(std::vector<UnwindEntry>& entries, | |
95 | std::map<const ld::Atom*, uint32_t>& personalityIndexMap); | |
96 | void findCommonEncoding(const std::vector<UnwindEntry>& entries, | |
97 | std::map<compact_unwind_encoding_t, unsigned int>& commonEncodings); | |
98 | void makeLsdaIndex(const std::vector<UnwindEntry>& entries, std::vector<LSDAEntry>& lsdaIndex, | |
99 | std::map<const ld::Atom*, uint32_t>& lsdaIndexOffsetMap); | |
100 | unsigned int makeCompressedSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, | |
101 | const std::map<compact_unwind_encoding_t,unsigned int> commonEncodings, | |
102 | uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd); | |
103 | unsigned int makeRegularSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, uint32_t pageSize, | |
104 | unsigned int endIndex, uint8_t*& pageEnd); | |
105 | void addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc); | |
106 | void addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde); | |
107 | void addRegularAddressFixup(uint32_t offset, const ld::Atom* func); | |
108 | void addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde); | |
109 | void addImageOffsetFixup(uint32_t offset, const ld::Atom* targ); | |
110 | void addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend); | |
111 | ||
112 | uint8_t* _pagesForDelete; | |
113 | uint8_t* _pages; | |
114 | uint64_t _pagesSize; | |
115 | uint8_t* _header; | |
116 | uint64_t _headerSize; | |
117 | std::vector<ld::Fixup> _fixups; | |
118 | ||
119 | static bool _s_log; | |
120 | static ld::Section _s_section; | |
121 | }; | |
122 | ||
123 | template <typename A> | |
124 | bool UnwindInfoAtom<A>::_s_log = false; | |
125 | ||
126 | template <typename A> | |
127 | ld::Section UnwindInfoAtom<A>::_s_section("__TEXT", "__unwind_info", ld::Section::typeUnwindInfo); | |
128 | ||
129 | ||
130 | template <typename A> | |
131 | UnwindInfoAtom<A>::UnwindInfoAtom(const std::vector<UnwindEntry>& entries, uint64_t ehFrameSize) | |
132 | : ld::Atom(_s_section, ld::Atom::definitionRegular, ld::Atom::combineNever, | |
133 | ld::Atom::scopeLinkageUnit, ld::Atom::typeUnclassified, | |
134 | symbolTableNotIn, false, false, false, ld::Atom::Alignment(0)), | |
135 | _pagesForDelete(NULL), _pages(NULL), _pagesSize(0), _header(NULL), _headerSize(0) | |
136 | { | |
137 | // build new compressed list by removing entries where next function has same encoding | |
138 | std::vector<UnwindEntry> uniqueEntries; | |
139 | compressDuplicates(entries, uniqueEntries); | |
140 | ||
141 | // reserve room so _fixups vector is not reallocated a bunch of times | |
142 | _fixups.reserve(uniqueEntries.size()*3); | |
143 | ||
144 | // build personality index, update encodings with personality index | |
145 | std::map<const ld::Atom*, uint32_t> personalityIndexMap; | |
146 | makePersonalityIndexes(uniqueEntries, personalityIndexMap); | |
147 | if ( personalityIndexMap.size() > 3 ) { | |
148 | warning("too many personality routines for compact unwind to encode"); | |
149 | return; | |
150 | } | |
151 | ||
152 | // put the most common encodings into the common table, but at most 127 of them | |
153 | std::map<compact_unwind_encoding_t, unsigned int> commonEncodings; | |
154 | findCommonEncoding(uniqueEntries, commonEncodings); | |
155 | ||
156 | // build lsda index | |
157 | std::map<const ld::Atom*, uint32_t> lsdaIndexOffsetMap; | |
158 | std::vector<LSDAEntry> lsdaIndex; | |
159 | makeLsdaIndex(uniqueEntries, lsdaIndex, lsdaIndexOffsetMap); | |
160 | ||
161 | ||
162 | // calculate worst case size for all unwind info pages when allocating buffer | |
163 | const unsigned int entriesPerRegularPage = (4096-sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry); | |
164 | assert(uniqueEntries.size() > 0); | |
165 | const unsigned int pageCount = ((uniqueEntries.size() - 1)/entriesPerRegularPage) + 1; | |
166 | _pagesForDelete = (uint8_t*)calloc(pageCount,4096); | |
167 | if ( _pagesForDelete == NULL ) { | |
168 | warning("could not allocate space for compact unwind info"); | |
169 | return; | |
170 | } | |
171 | ||
172 | // make last second level page smaller so that all other second level pages can be page aligned | |
173 | uint32_t maxLastPageSize = 4096 - (ehFrameSize % 4096); | |
174 | uint32_t tailPad = 0; | |
175 | if ( maxLastPageSize < 128 ) { | |
176 | tailPad = maxLastPageSize; | |
177 | maxLastPageSize = 4096; | |
178 | } | |
179 | ||
180 | // fill in pages in reverse order | |
181 | const ld::Atom* secondLevelFirstFuncs[pageCount*3]; | |
182 | uint8_t* secondLevelPagesStarts[pageCount*3]; | |
183 | unsigned int endIndex = uniqueEntries.size(); | |
184 | unsigned int secondLevelPageCount = 0; | |
185 | uint8_t* pageEnd = &_pagesForDelete[pageCount*4096]; | |
186 | uint32_t pageSize = maxLastPageSize; | |
187 | while ( endIndex > 0 ) { | |
188 | endIndex = makeCompressedSecondLevelPage(uniqueEntries, commonEncodings, pageSize, endIndex, pageEnd); | |
189 | secondLevelPagesStarts[secondLevelPageCount] = pageEnd; | |
190 | secondLevelFirstFuncs[secondLevelPageCount] = uniqueEntries[endIndex].func; | |
191 | ++secondLevelPageCount; | |
192 | pageSize = 4096; // last page can be odd size, make rest up to 4096 bytes in size | |
193 | } | |
194 | _pages = pageEnd; | |
195 | _pagesSize = &_pagesForDelete[pageCount*4096] - pageEnd; | |
196 | ||
197 | ||
198 | // calculate section layout | |
199 | const uint32_t commonEncodingsArraySectionOffset = sizeof(macho_unwind_info_section_header<P>); | |
200 | const uint32_t commonEncodingsArrayCount = commonEncodings.size(); | |
201 | const uint32_t commonEncodingsArraySize = commonEncodingsArrayCount * sizeof(compact_unwind_encoding_t); | |
202 | const uint32_t personalityArraySectionOffset = commonEncodingsArraySectionOffset + commonEncodingsArraySize; | |
203 | const uint32_t personalityArrayCount = personalityIndexMap.size(); | |
204 | const uint32_t personalityArraySize = personalityArrayCount * sizeof(uint32_t); | |
205 | const uint32_t indexSectionOffset = personalityArraySectionOffset + personalityArraySize; | |
206 | const uint32_t indexCount = secondLevelPageCount+1; | |
207 | const uint32_t indexSize = indexCount * sizeof(macho_unwind_info_section_header_index_entry<P>); | |
208 | const uint32_t lsdaIndexArraySectionOffset = indexSectionOffset + indexSize; | |
209 | const uint32_t lsdaIndexArrayCount = lsdaIndex.size(); | |
210 | const uint32_t lsdaIndexArraySize = lsdaIndexArrayCount * sizeof(macho_unwind_info_section_header_lsda_index_entry<P>); | |
211 | const uint32_t headerEndSectionOffset = lsdaIndexArraySectionOffset + lsdaIndexArraySize; | |
212 | ||
213 | // now that we know the size of the header, slide all existing fixups on the pages | |
214 | const int32_t fixupSlide = headerEndSectionOffset + (_pagesForDelete - _pages); | |
215 | for(std::vector<ld::Fixup>::iterator it = _fixups.begin(); it != _fixups.end(); ++it) { | |
216 | it->offsetInAtom += fixupSlide; | |
217 | } | |
218 | ||
219 | // allocate and fill in section header | |
220 | _headerSize = headerEndSectionOffset; | |
221 | _header = new uint8_t[_headerSize]; | |
222 | bzero(_header, _headerSize); | |
223 | macho_unwind_info_section_header<P>* sectionHeader = (macho_unwind_info_section_header<P>*)_header; | |
224 | sectionHeader->set_version(UNWIND_SECTION_VERSION); | |
225 | sectionHeader->set_commonEncodingsArraySectionOffset(commonEncodingsArraySectionOffset); | |
226 | sectionHeader->set_commonEncodingsArrayCount(commonEncodingsArrayCount); | |
227 | sectionHeader->set_personalityArraySectionOffset(personalityArraySectionOffset); | |
228 | sectionHeader->set_personalityArrayCount(personalityArrayCount); | |
229 | sectionHeader->set_indexSectionOffset(indexSectionOffset); | |
230 | sectionHeader->set_indexCount(indexCount); | |
231 | ||
232 | // copy common encodings | |
233 | uint32_t* commonEncodingsTable = (uint32_t*)&_header[commonEncodingsArraySectionOffset]; | |
234 | for (std::map<uint32_t, unsigned int>::iterator it=commonEncodings.begin(); it != commonEncodings.end(); ++it) | |
235 | E::set32(commonEncodingsTable[it->second], it->first); | |
236 | ||
237 | // make references for personality entries | |
238 | uint32_t* personalityArray = (uint32_t*)&_header[sectionHeader->personalityArraySectionOffset()]; | |
239 | for (std::map<const ld::Atom*, unsigned int>::iterator it=personalityIndexMap.begin(); it != personalityIndexMap.end(); ++it) { | |
240 | uint32_t offset = (uint8_t*)&personalityArray[it->second-1] - _header; | |
241 | this->addImageOffsetFixup(offset, it->first); | |
242 | } | |
243 | ||
244 | // build first level index and references | |
245 | macho_unwind_info_section_header_index_entry<P>* indexTable = (macho_unwind_info_section_header_index_entry<P>*)&_header[indexSectionOffset]; | |
246 | uint32_t refOffset; | |
247 | for (unsigned int i=0; i < secondLevelPageCount; ++i) { | |
248 | unsigned int reverseIndex = secondLevelPageCount - 1 - i; | |
249 | indexTable[i].set_functionOffset(0); | |
250 | indexTable[i].set_secondLevelPagesSectionOffset(secondLevelPagesStarts[reverseIndex]-_pages+headerEndSectionOffset); | |
251 | indexTable[i].set_lsdaIndexArraySectionOffset(lsdaIndexOffsetMap[secondLevelFirstFuncs[reverseIndex]]+lsdaIndexArraySectionOffset); | |
252 | refOffset = (uint8_t*)&indexTable[i] - _header; | |
253 | this->addImageOffsetFixup(refOffset, secondLevelFirstFuncs[reverseIndex]); | |
254 | } | |
255 | indexTable[secondLevelPageCount].set_functionOffset(0); | |
256 | indexTable[secondLevelPageCount].set_secondLevelPagesSectionOffset(0); | |
257 | indexTable[secondLevelPageCount].set_lsdaIndexArraySectionOffset(lsdaIndexArraySectionOffset+lsdaIndexArraySize); | |
258 | refOffset = (uint8_t*)&indexTable[secondLevelPageCount] - _header; | |
259 | this->addImageOffsetFixupPlusAddend(refOffset, entries.back().func, entries.back().func->size()+1); | |
260 | ||
261 | // build lsda references | |
262 | uint32_t lsdaEntrySectionOffset = lsdaIndexArraySectionOffset; | |
263 | for (std::vector<LSDAEntry>::iterator it = lsdaIndex.begin(); it != lsdaIndex.end(); ++it) { | |
264 | this->addImageOffsetFixup(lsdaEntrySectionOffset, it->func); | |
265 | this->addImageOffsetFixup(lsdaEntrySectionOffset+4, it->lsda); | |
266 | lsdaEntrySectionOffset += sizeof(unwind_info_section_header_lsda_index_entry); | |
267 | } | |
268 | ||
269 | } | |
270 | ||
271 | template <typename A> | |
272 | UnwindInfoAtom<A>::~UnwindInfoAtom() | |
273 | { | |
274 | free(_pagesForDelete); | |
275 | free(_header); | |
276 | } | |
277 | ||
278 | template <typename A> | |
279 | void UnwindInfoAtom<A>::copyRawContent(uint8_t buffer[]) const | |
280 | { | |
281 | // content is in two parts | |
282 | memcpy(buffer, _header, _headerSize); | |
283 | memcpy(&buffer[_headerSize], _pages, _pagesSize); | |
284 | } | |
285 | ||
286 | ||
287 | template <> | |
288 | bool UnwindInfoAtom<x86>::encodingMeansUseDwarf(compact_unwind_encoding_t enc) | |
289 | { | |
290 | return ((enc & UNWIND_X86_MODE_MASK) == UNWIND_X86_MODE_DWARF); | |
291 | } | |
292 | ||
293 | template <> | |
294 | bool UnwindInfoAtom<x86_64>::encodingMeansUseDwarf(compact_unwind_encoding_t enc) | |
295 | { | |
296 | return ((enc & UNWIND_X86_64_MODE_MASK) == UNWIND_X86_64_MODE_DWARF); | |
297 | } | |
298 | ||
299 | template <typename A> | |
300 | void UnwindInfoAtom<A>::compressDuplicates(const std::vector<UnwindEntry>& entries, std::vector<UnwindEntry>& uniqueEntries) | |
301 | { | |
302 | // build new list removing entries where next function has same encoding | |
303 | uniqueEntries.reserve(entries.size()); | |
304 | UnwindEntry last(NULL, 0, 0, NULL, NULL, NULL, 0xFFFFFFFF); | |
305 | for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) { | |
306 | const UnwindEntry& next = *it; | |
307 | bool newNeedsDwarf = encodingMeansUseDwarf(next.encoding); | |
308 | // remove entries which have same encoding and personalityPointer as last one | |
309 | if ( newNeedsDwarf || (next.encoding != last.encoding) || (next.personalityPointer != last.personalityPointer) | |
310 | || (next.lsda != NULL) || (last.lsda != NULL) ) { | |
311 | uniqueEntries.push_back(next); | |
312 | } | |
313 | last = next; | |
314 | } | |
315 | if (_s_log) fprintf(stderr, "compressDuplicates() entries.size()=%lu, uniqueEntries.size()=%lu\n", | |
316 | entries.size(), uniqueEntries.size()); | |
317 | } | |
318 | ||
319 | template <typename A> | |
320 | void UnwindInfoAtom<A>::makePersonalityIndexes(std::vector<UnwindEntry>& entries, std::map<const ld::Atom*, uint32_t>& personalityIndexMap) | |
321 | { | |
322 | for(std::vector<UnwindEntry>::iterator it=entries.begin(); it != entries.end(); ++it) { | |
323 | if ( it->personalityPointer != NULL ) { | |
324 | std::map<const ld::Atom*, uint32_t>::iterator pos = personalityIndexMap.find(it->personalityPointer); | |
325 | if ( pos == personalityIndexMap.end() ) { | |
326 | const uint32_t nextIndex = personalityIndexMap.size() + 1; | |
327 | personalityIndexMap[it->personalityPointer] = nextIndex; | |
328 | } | |
329 | uint32_t personalityIndex = personalityIndexMap[it->personalityPointer]; | |
330 | it->encoding |= (personalityIndex << (__builtin_ctz(UNWIND_PERSONALITY_MASK)) ); | |
331 | } | |
332 | } | |
333 | if (_s_log) fprintf(stderr, "makePersonalityIndexes() %lu personality routines used\n", personalityIndexMap.size()); | |
334 | } | |
335 | ||
336 | ||
337 | template <typename A> | |
338 | void UnwindInfoAtom<A>::findCommonEncoding(const std::vector<UnwindEntry>& entries, | |
339 | std::map<compact_unwind_encoding_t, unsigned int>& commonEncodings) | |
340 | { | |
341 | // scan infos to get frequency counts for each encoding | |
342 | std::map<compact_unwind_encoding_t, unsigned int> encodingsUsed; | |
343 | unsigned int mostCommonEncodingUsageCount = 0; | |
344 | for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) { | |
345 | // never put dwarf into common table | |
346 | if ( encodingMeansUseDwarf(it->encoding) ) | |
347 | continue; | |
348 | std::map<compact_unwind_encoding_t, unsigned int>::iterator pos = encodingsUsed.find(it->encoding); | |
349 | if ( pos == encodingsUsed.end() ) { | |
350 | encodingsUsed[it->encoding] = 1; | |
351 | } | |
352 | else { | |
353 | encodingsUsed[it->encoding] += 1; | |
354 | if ( mostCommonEncodingUsageCount < encodingsUsed[it->encoding] ) | |
355 | mostCommonEncodingUsageCount = encodingsUsed[it->encoding]; | |
356 | } | |
357 | } | |
358 | // put the most common encodings into the common table, but at most 127 of them | |
359 | for(unsigned int usages=mostCommonEncodingUsageCount; usages > 1; --usages) { | |
360 | for (std::map<compact_unwind_encoding_t, unsigned int>::iterator euit=encodingsUsed.begin(); euit != encodingsUsed.end(); ++euit) { | |
361 | if ( euit->second == usages ) { | |
362 | unsigned int sz = commonEncodings.size(); | |
363 | if ( sz < 127 ) { | |
364 | commonEncodings[euit->first] = sz; | |
365 | } | |
366 | } | |
367 | } | |
368 | } | |
369 | if (_s_log) fprintf(stderr, "findCommonEncoding() %lu common encodings found\n", commonEncodings.size()); | |
370 | } | |
371 | ||
372 | ||
373 | template <typename A> | |
374 | void UnwindInfoAtom<A>::makeLsdaIndex(const std::vector<UnwindEntry>& entries, std::vector<LSDAEntry>& lsdaIndex, std::map<const ld::Atom*, uint32_t>& lsdaIndexOffsetMap) | |
375 | { | |
376 | for(std::vector<UnwindEntry>::const_iterator it=entries.begin(); it != entries.end(); ++it) { | |
377 | lsdaIndexOffsetMap[it->func] = lsdaIndex.size() * sizeof(unwind_info_section_header_lsda_index_entry); | |
378 | if ( it->lsda != NULL ) { | |
379 | LSDAEntry entry; | |
380 | entry.func = it->func; | |
381 | entry.lsda = it->lsda; | |
382 | lsdaIndex.push_back(entry); | |
383 | } | |
384 | } | |
385 | if (_s_log) fprintf(stderr, "makeLsdaIndex() %lu LSDAs found\n", lsdaIndex.size()); | |
386 | } | |
387 | ||
388 | ||
389 | template <> | |
390 | void UnwindInfoAtom<x86>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc) | |
391 | { | |
392 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func)); | |
393 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc)); | |
394 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
395 | } | |
396 | ||
397 | template <> | |
398 | void UnwindInfoAtom<x86_64>::addCompressedAddressOffsetFixup(uint32_t offset, const ld::Atom* func, const ld::Atom* fromFunc) | |
399 | { | |
400 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetAddress, func)); | |
401 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindSubtractTargetAddress, fromFunc)); | |
402 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
403 | } | |
404 | ||
405 | template <> | |
406 | void UnwindInfoAtom<x86>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde) | |
407 | { | |
408 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
409 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
410 | } | |
411 | ||
412 | template <> | |
413 | void UnwindInfoAtom<x86_64>::addCompressedEncodingFixup(uint32_t offset, const ld::Atom* fde) | |
414 | { | |
415 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
416 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
417 | } | |
418 | ||
419 | ||
420 | template <> | |
421 | void UnwindInfoAtom<x86>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func) | |
422 | { | |
423 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func)); | |
424 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
425 | } | |
426 | ||
427 | template <> | |
428 | void UnwindInfoAtom<x86_64>::addRegularAddressFixup(uint32_t offset, const ld::Atom* func) | |
429 | { | |
430 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, func)); | |
431 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
432 | } | |
433 | ||
434 | template <> | |
435 | void UnwindInfoAtom<x86>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde) | |
436 | { | |
437 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
438 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
439 | } | |
440 | ||
441 | template <> | |
442 | void UnwindInfoAtom<x86_64>::addRegularFDEOffsetFixup(uint32_t offset, const ld::Atom* fde) | |
443 | { | |
444 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k1of2, ld::Fixup::kindSetTargetSectionOffset, fde)); | |
445 | _fixups.push_back(ld::Fixup(offset+4, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndianLow24of32)); | |
446 | } | |
447 | ||
448 | template <> | |
449 | void UnwindInfoAtom<x86>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ) | |
450 | { | |
451 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ)); | |
452 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
453 | } | |
454 | ||
455 | template <> | |
456 | void UnwindInfoAtom<x86_64>::addImageOffsetFixup(uint32_t offset, const ld::Atom* targ) | |
457 | { | |
458 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of2, ld::Fixup::kindSetTargetImageOffset, targ)); | |
459 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of2, ld::Fixup::kindStoreLittleEndian32)); | |
460 | } | |
461 | ||
462 | template <> | |
463 | void UnwindInfoAtom<x86>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend) | |
464 | { | |
465 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ)); | |
466 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend)); | |
467 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32)); | |
468 | } | |
469 | ||
470 | template <> | |
471 | void UnwindInfoAtom<x86_64>::addImageOffsetFixupPlusAddend(uint32_t offset, const ld::Atom* targ, uint32_t addend) | |
472 | { | |
473 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k1of3, ld::Fixup::kindSetTargetImageOffset, targ)); | |
474 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k2of3, ld::Fixup::kindAddAddend, addend)); | |
475 | _fixups.push_back(ld::Fixup(offset, ld::Fixup::k3of3, ld::Fixup::kindStoreLittleEndian32)); | |
476 | } | |
477 | ||
478 | ||
479 | ||
480 | ||
481 | ||
482 | template <typename A> | |
483 | unsigned int UnwindInfoAtom<A>::makeRegularSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, uint32_t pageSize, | |
484 | unsigned int endIndex, uint8_t*& pageEnd) | |
485 | { | |
486 | const unsigned int maxEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry); | |
487 | const unsigned int entriesToAdd = ((endIndex > maxEntriesPerPage) ? maxEntriesPerPage : endIndex); | |
488 | uint8_t* pageStart = pageEnd | |
489 | - entriesToAdd*sizeof(unwind_info_regular_second_level_entry) | |
490 | - sizeof(unwind_info_regular_second_level_page_header); | |
491 | macho_unwind_info_regular_second_level_page_header<P>* page = (macho_unwind_info_regular_second_level_page_header<P>*)pageStart; | |
492 | page->set_kind(UNWIND_SECOND_LEVEL_REGULAR); | |
493 | page->set_entryPageOffset(sizeof(macho_unwind_info_regular_second_level_page_header<P>)); | |
494 | page->set_entryCount(entriesToAdd); | |
495 | macho_unwind_info_regular_second_level_entry<P>* entryTable = (macho_unwind_info_regular_second_level_entry<P>*)(pageStart + page->entryPageOffset()); | |
496 | for (unsigned int i=0; i < entriesToAdd; ++i) { | |
497 | const UnwindEntry& info = uniqueInfos[endIndex-entriesToAdd+i]; | |
498 | entryTable[i].set_functionOffset(0); | |
499 | entryTable[i].set_encoding(info.encoding); | |
500 | // add fixup for address part of entry | |
501 | uint32_t offset = (uint8_t*)(&entryTable[i]) - _pagesForDelete; | |
502 | this->addRegularAddressFixup(offset, info.func); | |
503 | if ( encodingMeansUseDwarf(info.encoding) ) { | |
504 | // add fixup for dwarf offset part of page specific encoding | |
505 | uint32_t encOffset = (uint8_t*)(&entryTable[i]) - _pagesForDelete; | |
506 | this->addRegularFDEOffsetFixup(encOffset, info.fde); | |
507 | } | |
508 | } | |
509 | if (_s_log) fprintf(stderr, "regular page with %u entries\n", entriesToAdd); | |
510 | pageEnd = pageStart; | |
511 | return endIndex - entriesToAdd; | |
512 | } | |
513 | ||
514 | ||
515 | template <typename A> | |
516 | unsigned int UnwindInfoAtom<A>::makeCompressedSecondLevelPage(const std::vector<UnwindEntry>& uniqueInfos, | |
517 | const std::map<compact_unwind_encoding_t,unsigned int> commonEncodings, | |
518 | uint32_t pageSize, unsigned int endIndex, uint8_t*& pageEnd) | |
519 | { | |
520 | if (_s_log) fprintf(stderr, "makeCompressedSecondLevelPage(pageSize=%u, endIndex=%u)\n", pageSize, endIndex); | |
521 | // first pass calculates how many compressed entries we could fit in this sized page | |
522 | // keep adding entries to page until: | |
523 | // 1) encoding table plus entry table plus header exceed page size | |
524 | // 2) the file offset delta from the first to last function > 24 bits | |
525 | // 3) custom encoding index reachs 255 | |
526 | // 4) run out of uniqueInfos to encode | |
527 | std::map<compact_unwind_encoding_t, unsigned int> pageSpecificEncodings; | |
528 | uint32_t space4 = (pageSize - sizeof(unwind_info_compressed_second_level_page_header))/sizeof(uint32_t); | |
529 | std::vector<uint8_t> encodingIndexes; | |
530 | int index = endIndex-1; | |
531 | int entryCount = 0; | |
532 | uint64_t lastEntryAddress = uniqueInfos[index].funcTentAddress; | |
533 | bool canDo = true; | |
534 | while ( canDo && (index >= 0) ) { | |
535 | const UnwindEntry& info = uniqueInfos[index--]; | |
536 | // compute encoding index | |
537 | unsigned int encodingIndex; | |
538 | std::map<compact_unwind_encoding_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding); | |
539 | if ( pos != commonEncodings.end() ) { | |
540 | encodingIndex = pos->second; | |
541 | } | |
542 | else { | |
543 | // no commmon entry, so add one on this page | |
544 | uint32_t encoding = info.encoding; | |
545 | if ( encodingMeansUseDwarf(encoding) ) { | |
546 | // make unique pseudo encoding so this dwarf will gets is own encoding entry slot | |
547 | encoding += (index+1); | |
548 | } | |
549 | std::map<compact_unwind_encoding_t, unsigned int>::iterator ppos = pageSpecificEncodings.find(encoding); | |
550 | if ( ppos != pageSpecificEncodings.end() ) { | |
551 | encodingIndex = pos->second; | |
552 | } | |
553 | else { | |
554 | encodingIndex = commonEncodings.size() + pageSpecificEncodings.size(); | |
555 | if ( encodingIndex <= 255 ) { | |
556 | pageSpecificEncodings[encoding] = encodingIndex; | |
557 | } | |
558 | else { | |
559 | canDo = false; // case 3) | |
560 | if (_s_log) fprintf(stderr, "end of compressed page with %u entries, %lu custom encodings because too many custom encodings\n", | |
561 | entryCount, pageSpecificEncodings.size()); | |
562 | } | |
563 | } | |
564 | } | |
565 | if ( canDo ) | |
566 | encodingIndexes.push_back(encodingIndex); | |
567 | // compute function offset | |
568 | uint32_t funcOffsetWithInPage = lastEntryAddress - info.funcTentAddress; | |
569 | if ( funcOffsetWithInPage > 0x00FFFF00 ) { | |
570 | // don't use 0x00FFFFFF because addresses may vary after atoms are laid out again | |
571 | canDo = false; // case 2) | |
572 | if (_s_log) fprintf(stderr, "can't use compressed page with %u entries because function offset too big\n", entryCount); | |
573 | } | |
574 | else { | |
575 | ++entryCount; | |
576 | } | |
577 | // check room for entry | |
578 | if ( (pageSpecificEncodings.size()+entryCount) >= space4 ) { | |
579 | canDo = false; // case 1) | |
580 | --entryCount; | |
581 | if (_s_log) fprintf(stderr, "end of compressed page with %u entries because full\n", entryCount); | |
582 | } | |
583 | //if (_s_log) fprintf(stderr, "space4=%d, pageSpecificEncodings.size()=%ld, entryCount=%d\n", space4, pageSpecificEncodings.size(), entryCount); | |
584 | } | |
585 | ||
586 | // check for cases where it would be better to use a regular (non-compressed) page | |
587 | const unsigned int compressPageUsed = sizeof(unwind_info_compressed_second_level_page_header) | |
588 | + pageSpecificEncodings.size()*sizeof(uint32_t) | |
589 | + entryCount*sizeof(uint32_t); | |
590 | if ( (compressPageUsed < (pageSize-4) && (index >= 0) ) ) { | |
591 | const int regularEntriesPerPage = (pageSize - sizeof(unwind_info_regular_second_level_page_header))/sizeof(unwind_info_regular_second_level_entry); | |
592 | if ( entryCount < regularEntriesPerPage ) { | |
593 | return makeRegularSecondLevelPage(uniqueInfos, pageSize, endIndex, pageEnd); | |
594 | } | |
595 | } | |
596 | ||
597 | // check if we need any padding because adding another entry would take 8 bytes but only have room for 4 | |
598 | uint32_t pad = 0; | |
599 | if ( compressPageUsed == (pageSize-4) ) | |
600 | pad = 4; | |
601 | ||
602 | // second pass fills in page | |
603 | uint8_t* pageStart = pageEnd - compressPageUsed - pad; | |
604 | CSLP* page = (CSLP*)pageStart; | |
605 | page->set_kind(UNWIND_SECOND_LEVEL_COMPRESSED); | |
606 | page->set_entryPageOffset(sizeof(CSLP)); | |
607 | page->set_entryCount(entryCount); | |
608 | page->set_encodingsPageOffset(page->entryPageOffset()+entryCount*sizeof(uint32_t)); | |
609 | page->set_encodingsCount(pageSpecificEncodings.size()); | |
610 | uint32_t* const encodingsArray = (uint32_t*)&pageStart[page->encodingsPageOffset()]; | |
611 | // fill in entry table | |
612 | uint32_t* const entiresArray = (uint32_t*)&pageStart[page->entryPageOffset()]; | |
613 | const ld::Atom* firstFunc = uniqueInfos[endIndex-entryCount].func; | |
614 | for(unsigned int i=endIndex-entryCount; i < endIndex; ++i) { | |
615 | const UnwindEntry& info = uniqueInfos[i]; | |
616 | uint8_t encodingIndex; | |
617 | if ( encodingMeansUseDwarf(info.encoding) ) { | |
618 | // dwarf entries are always in page specific encodings | |
619 | encodingIndex = pageSpecificEncodings[info.encoding+i]; | |
620 | } | |
621 | else { | |
622 | std::map<uint32_t, unsigned int>::const_iterator pos = commonEncodings.find(info.encoding); | |
623 | if ( pos != commonEncodings.end() ) | |
624 | encodingIndex = pos->second; | |
625 | else | |
626 | encodingIndex = pageSpecificEncodings[info.encoding]; | |
627 | } | |
628 | uint32_t entryIndex = i - endIndex + entryCount; | |
629 | E::set32(entiresArray[entryIndex], encodingIndex << 24); | |
630 | // add fixup for address part of entry | |
631 | uint32_t offset = (uint8_t*)(&entiresArray[entryIndex]) - _pagesForDelete; | |
632 | this->addCompressedAddressOffsetFixup(offset, info.func, firstFunc); | |
633 | if ( encodingMeansUseDwarf(info.encoding) ) { | |
634 | // add fixup for dwarf offset part of page specific encoding | |
635 | uint32_t encOffset = (uint8_t*)(&encodingsArray[encodingIndex-commonEncodings.size()]) - _pagesForDelete; | |
636 | this->addCompressedEncodingFixup(encOffset, info.fde); | |
637 | } | |
638 | } | |
639 | // fill in encodings table | |
640 | for(std::map<uint32_t, unsigned int>::const_iterator it = pageSpecificEncodings.begin(); it != pageSpecificEncodings.end(); ++it) { | |
641 | E::set32(encodingsArray[it->second-commonEncodings.size()], it->first); | |
642 | } | |
643 | ||
644 | if (_s_log) fprintf(stderr, "compressed page with %u entries, %lu custom encodings\n", entryCount, pageSpecificEncodings.size()); | |
645 | ||
646 | // update pageEnd; | |
647 | pageEnd = pageStart; | |
648 | return endIndex-entryCount; // endIndex for next page | |
649 | } | |
650 | ||
651 | ||
652 | ||
653 | ||
654 | ||
655 | ||
656 | static uint64_t calculateEHFrameSize(const ld::Internal& state) | |
657 | { | |
658 | uint64_t size = 0; | |
659 | for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) { | |
660 | ld::Internal::FinalSection* sect = *sit; | |
661 | if ( sect->type() == ld::Section::typeCFI ) { | |
662 | for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) { | |
663 | size += (*ait)->size(); | |
664 | } | |
665 | } | |
666 | } | |
667 | return size; | |
668 | } | |
669 | ||
670 | static void getAllUnwindInfos(const ld::Internal& state, std::vector<UnwindEntry>& entries) | |
671 | { | |
672 | uint64_t address = 0; | |
673 | for (std::vector<ld::Internal::FinalSection*>::const_iterator sit=state.sections.begin(); sit != state.sections.end(); ++sit) { | |
674 | ld::Internal::FinalSection* sect = *sit; | |
675 | for (std::vector<const ld::Atom*>::iterator ait=sect->atoms.begin(); ait != sect->atoms.end(); ++ait) { | |
676 | const ld::Atom* atom = *ait; | |
677 | // adjust address for atom alignment | |
678 | uint64_t alignment = 1 << atom->alignment().powerOf2; | |
679 | uint64_t currentModulus = (address % alignment); | |
680 | uint64_t requiredModulus = atom->alignment().modulus; | |
681 | if ( currentModulus != requiredModulus ) { | |
682 | if ( requiredModulus > currentModulus ) | |
683 | address += requiredModulus-currentModulus; | |
684 | else | |
685 | address += requiredModulus+alignment-currentModulus; | |
686 | } | |
687 | ||
688 | if ( atom->beginUnwind() == atom->endUnwind() ) { | |
689 | // be sure to mark that we have no unwind info for stuff in the TEXT segment without unwind info | |
690 | if ( atom->section().type() == ld::Section::typeCode ) { | |
691 | entries.push_back(UnwindEntry(atom, address, 0, NULL, NULL, NULL, 0)); | |
692 | } | |
693 | } | |
694 | else { | |
695 | // atom has unwind info(s), add entry for each | |
696 | const ld::Atom* fde = NULL; | |
697 | const ld::Atom* lsda = NULL; | |
698 | const ld::Atom* personalityPointer = NULL; | |
699 | for (ld::Fixup::iterator fit = atom->fixupsBegin(), end=atom->fixupsEnd(); fit != end; ++fit) { | |
700 | switch ( fit->kind ) { | |
701 | case ld::Fixup::kindNoneGroupSubordinateFDE: | |
702 | assert(fit->binding == ld::Fixup::bindingDirectlyBound); | |
703 | fde = fit->u.target; | |
704 | break; | |
705 | case ld::Fixup::kindNoneGroupSubordinateLSDA: | |
706 | assert(fit->binding == ld::Fixup::bindingDirectlyBound); | |
707 | lsda = fit->u.target; | |
708 | break; | |
709 | default: | |
710 | break; | |
711 | } | |
712 | } | |
713 | if ( fde != NULL ) { | |
714 | // find CIE for this FDE | |
715 | const ld::Atom* cie = NULL; | |
716 | for (ld::Fixup::iterator fit = fde->fixupsBegin(), end=fde->fixupsEnd(); fit != end; ++fit) { | |
717 | if ( fit->kind != ld::Fixup::kindSubtractTargetAddress ) | |
718 | continue; | |
719 | if ( fit->binding != ld::Fixup::bindingDirectlyBound ) | |
720 | continue; | |
721 | cie = fit->u.target; | |
722 | // CIE is only direct subtracted target in FDE | |
723 | assert(cie->section().type() == ld::Section::typeCFI); | |
724 | break; | |
725 | } | |
726 | if ( cie != NULL ) { | |
727 | // if CIE can have just one fixup - to the personality pointer | |
728 | for (ld::Fixup::iterator fit = cie->fixupsBegin(), end=cie->fixupsEnd(); fit != end; ++fit) { | |
729 | if ( fit->kind == ld::Fixup::kindSetTargetAddress ) { | |
730 | switch ( fit->binding ) { | |
731 | case ld::Fixup::bindingsIndirectlyBound: | |
732 | personalityPointer = state.indirectBindingTable[fit->u.bindingIndex]; | |
733 | assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer); | |
734 | break; | |
735 | case ld::Fixup::bindingDirectlyBound: | |
736 | personalityPointer = fit->u.target; | |
737 | assert(personalityPointer->section().type() == ld::Section::typeNonLazyPointer); | |
738 | break; | |
739 | default: | |
740 | break; | |
741 | } | |
742 | } | |
743 | } | |
744 | } | |
745 | } | |
746 | for ( ld::Atom::UnwindInfo::iterator uit = atom->beginUnwind(); uit != atom->endUnwind(); ++uit ) { | |
747 | entries.push_back(UnwindEntry(atom, address, uit->startOffset, fde, lsda, personalityPointer, uit->unwindInfo)); | |
748 | } | |
749 | } | |
750 | address += atom->size(); | |
751 | } | |
752 | } | |
753 | } | |
754 | ||
755 | ||
756 | ||
757 | ||
758 | void doPass(const Options& opts, ld::Internal& state) | |
759 | { | |
760 | //const bool log = false; | |
761 | ||
762 | // only make make __unwind_info in final linked images | |
763 | if ( !opts.needsUnwindInfoSection() ) | |
764 | return; | |
765 | ||
766 | // walk every atom and gets its unwind info | |
767 | std::vector<UnwindEntry> entries; | |
768 | entries.reserve(64); | |
769 | getAllUnwindInfos(state, entries); | |
770 | ||
771 | // don't generate an __unwind_info section if there is no code in this linkage unit | |
772 | if ( entries.size() == 0 ) | |
773 | return; | |
774 | ||
775 | // calculate size of __eh_frame section, so __unwind_info can go before it and page align | |
776 | uint64_t ehFrameSize = calculateEHFrameSize(state); | |
777 | ||
778 | // create atom that contains the whole compact unwind table | |
779 | switch ( opts.architecture() ) { | |
780 | case CPU_TYPE_X86_64: | |
781 | state.addAtom(*new UnwindInfoAtom<x86_64>(entries, ehFrameSize)); | |
782 | break; | |
783 | case CPU_TYPE_I386: | |
784 | state.addAtom(*new UnwindInfoAtom<x86>(entries, ehFrameSize)); | |
785 | break; | |
786 | default: | |
787 | assert(0 && "no compact unwind for arch"); | |
788 | } | |
789 | } | |
790 | ||
791 | ||
792 | } // namespace compact_unwind | |
793 | } // namespace passes | |
794 | } // namespace ld |