+#if USE(JSVALUE32_64)
+
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned src = currentInstruction[2].u.operand;
+
+ emitLoad(src, regT1, regT0);
+
+ Jump srcNotInt = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+ addSlowCase(branch32(Equal, regT0, Imm32(0)));
+
+ neg32(regT0);
+ emitStoreInt32(dst, regT0, (dst == src));
+
+ Jump end = jump();
+
+ srcNotInt.link(this);
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+
+ xor32(Imm32(1 << 31), regT1);
+ store32(regT1, tagFor(dst));
+ if (dst != src)
+ store32(regT0, payloadFor(dst));
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // 0 check
+ linkSlowCase(iter); // double check
+
+ JITStubCall stubCall(this, cti_op_negate);
+ stubCall.addArgument(regT1, regT0);
+ stubCall.call(dst);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThanOrEqual, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jnlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jlesseq);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+// LeftShift (<<)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+ emitStoreInt32(dst, regT0, dst == op1);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ lshift32(regT2, regT0);
+ emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_lshift);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// RightShift (>>)
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ rshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+ emitStoreInt32(dst, regT0, dst == op1);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ rshift32(regT2, regT0);
+ emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_rshift);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitAnd (&)
+
+void JIT::emit_op_bitand(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ and32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, (op == dst));
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ and32(regT2, regT0);
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitand);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitOr (|)
+
+void JIT::emit_op_bitor(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ or32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, (op == dst));
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ or32(regT2, regT0);
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitor);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitXor (^)
+
+void JIT::emit_op_bitxor(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ xor32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, (op == dst));
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ xor32(regT2, regT0);
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitxor);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitNot (~)
+
+void JIT::emit_op_bitnot(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned src = currentInstruction[2].u.operand;
+
+ emitLoad(src, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+ not32(regT0);
+ emitStoreInt32(dst, regT0, (dst == src));
+}
+
+void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitnot);
+ stubCall.addArgument(regT1, regT0);
+ stubCall.call(dst);
+}
+
+// PostInc (i++)
+
+void JIT::emit_op_post_inc(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+ if (dst == srcDst) // x = x++ is a noop for ints.
+ return;
+
+ emitStoreInt32(dst, regT0);
+
+ addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ if (dst != srcDst)
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_post_inc);
+ stubCall.addArgument(srcDst);
+ stubCall.addArgument(Imm32(srcDst));
+ stubCall.call(dst);
+}
+
+// PostDec (i--)
+
+void JIT::emit_op_post_dec(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+ if (dst == srcDst) // x = x-- is a noop for ints.
+ return;
+
+ emitStoreInt32(dst, regT0);
+
+ addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ if (dst != srcDst)
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_post_dec);
+ stubCall.addArgument(srcDst);
+ stubCall.addArgument(Imm32(srcDst));
+ stubCall.call(dst);
+}
+
+// PreInc (++i)
+
+void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_pre_inc);
+ stubCall.addArgument(srcDst);
+ stubCall.call(srcDst);
+}
+
+// PreDec (--i)
+
+void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_pre_dec);
+ stubCall.addArgument(srcDst);
+ stubCall.call(srcDst);
+}
+
+// Addition (+)
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+ return;
+ }
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second());
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ addSlowCase(branchAdd32(Overflow, regT2, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
+{
+ // Int32 case.
+ emitLoad(op, regT1, regT0);
+ Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+ addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0));
+ emitStoreInt32(dst, regT0, (op == dst));
+
+ // Double case.
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32);
+ return;
+ }
+ Jump end = jump();
+
+ notInt32.link(this);
+ if (!opType.definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+ move(Imm32(constant), regT2);
+ convertInt32ToDouble(regT2, fpRegT0);
+ emitLoadDouble(op, fpRegT1);
+ addDouble(fpRegT1, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint())
+ linkSlowCase(iter); // non-sse case
+ else {
+ ResultType opType = op == op1 ? types.first() : types.second();
+ if (!opType.definitelyIsNumber())
+ linkSlowCase(iter); // double check
+ }
+ } else {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+ }
+
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// Subtraction (-)
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first());
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ addSlowCase(branchSub32(Overflow, regT2, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
+{
+ // Int32 case.
+ emitLoad(op, regT1, regT0);
+ Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+ addSlowCase(branchSub32(Overflow, Imm32(constant), regT0));
+ emitStoreInt32(dst, regT0, (op == dst));
+
+ // Double case.
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32);
+ return;
+ }
+ Jump end = jump();
+
+ notInt32.link(this);
+ if (!opType.definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+ move(Imm32(constant), regT2);
+ convertInt32ToDouble(regT2, fpRegT0);
+ emitLoadDouble(op, fpRegT1);
+ subDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint() || !types.first().definitelyIsNumber())
+ linkSlowCase(iter); // int32 or double check
+ } else {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+ }
+
+ JITStubCall stubCall(this, cti_op_sub);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
+{
+ JumpList end;
+
+ if (!notInt32Op1.empty()) {
+ // Double case 1: Op1 is not int32; Op2 is unknown.
+ notInt32Op1.link(this);
+
+ ASSERT(op1IsInRegisters);
+
+ // Verify Op1 is double.
+ if (!types.first().definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+
+ if (!op2IsInRegisters)
+ emitLoad(op2, regT3, regT2);
+
+ Jump doubleOp2 = branch32(Below, regT3, Imm32(JSValue::LowestTag));
+
+ if (!types.second().definitelyIsNumber())
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ convertInt32ToDouble(regT2, fpRegT0);
+ Jump doTheMath = jump();
+
+ // Load Op2 as double into double register.
+ doubleOp2.link(this);
+ emitLoadDouble(op2, fpRegT0);
+
+ // Do the math.
+ doTheMath.link(this);
+ switch (opcodeID) {
+ case op_mul:
+ emitLoadDouble(op1, fpRegT2);
+ mulDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_add:
+ emitLoadDouble(op1, fpRegT2);
+ addDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_sub:
+ emitLoadDouble(op1, fpRegT1);
+ subDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+ break;
+ case op_div:
+ emitLoadDouble(op1, fpRegT1);
+ divDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+ break;
+ case op_jnless:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
+ case op_jless:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
+ break;
+ case op_jnlesseq:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
+ default:
+ ASSERT_NOT_REACHED();
+ }
+
+ if (!notInt32Op2.empty())
+ end.append(jump());
+ }
+
+ if (!notInt32Op2.empty()) {
+ // Double case 2: Op1 is int32; Op2 is not int32.
+ notInt32Op2.link(this);
+
+ ASSERT(op2IsInRegisters);
+
+ if (!op1IsInRegisters)
+ emitLoadPayload(op1, regT0);
+
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ // Verify op2 is double.
+ if (!types.second().definitelyIsNumber())
+ addSlowCase(branch32(Above, regT3, Imm32(JSValue::LowestTag)));
+
+ // Do the math.
+ switch (opcodeID) {
+ case op_mul:
+ emitLoadDouble(op2, fpRegT2);
+ mulDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_add:
+ emitLoadDouble(op2, fpRegT2);
+ addDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_sub:
+ emitLoadDouble(op2, fpRegT2);
+ subDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_div:
+ emitLoadDouble(op2, fpRegT2);
+ divDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_jnless:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
+ case op_jless:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
+ break;
+ case op_jnlesseq:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
+ default:
+ ASSERT_NOT_REACHED();
+ }
+ }
+
+ end.link(this);
+}
+
+// Multiplication (*)
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ move(regT0, regT3);
+ addSlowCase(branchMul32(Overflow, regT2, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ Jump overflow = getSlowCase(iter); // overflow check
+ linkSlowCase(iter); // zero result check
+
+ Jump negZero = branchOr32(Signed, regT2, regT3);
+ emitStoreInt32(dst, Imm32(0), (op1 == dst || op2 == dst));
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
+
+ negZero.link(this);
+ overflow.link(this);
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ }
+
+ if (supportsFloatingPoint()) {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+
+ Label jitStubCall(this);
+ JITStubCall stubCall(this, cti_op_mul);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// Division (/)
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(jump());
+ return;
+ }
+
+ // Int32 divide.
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ JumpList end;
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ convertInt32ToDouble(regT0, fpRegT0);
+ convertInt32ToDouble(regT2, fpRegT1);
+ divDouble(fpRegT1, fpRegT0);
+
+ JumpList doubleResult;
+ branchConvertDoubleToInt32(fpRegT0, regT0, doubleResult, fpRegT1);
+
+ // Int32 result.
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+ end.append(jump());
+
+ // Double result.
+ doubleResult.link(this);
+ emitStoreDouble(dst, fpRegT0);
+ end.append(jump());
+
+ // Double divide.
+ emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!supportsFloatingPoint())
+ linkSlowCase(iter);
+ else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+
+ JITStubCall stubCall(this, cti_op_div);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// Mod (%)
+
+/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
+
+#if CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
+ emitLoad(op1, X86Registers::edx, X86Registers::eax);
+ move(Imm32(getConstantOperand(op2).asInt32()), X86Registers::ecx);
+ addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+ if (getConstantOperand(op2).asInt32() == -1)
+ addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+ } else {
+ emitLoad2(op1, X86Registers::edx, X86Registers::eax, op2, X86Registers::ebx, X86Registers::ecx);
+ addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, X86Registers::ebx, Imm32(JSValue::Int32Tag)));
+
+ addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+ addSlowCase(branch32(Equal, X86Registers::ecx, Imm32(0))); // divide by 0
+ }
+
+ move(X86Registers::eax, X86Registers::ebx); // Save dividend payload, in case of 0.
+ m_assembler.cdq();
+ m_assembler.idivl_r(X86Registers::ecx);
+
+ // If the remainder is zero and the dividend is negative, the result is -0.
+ Jump storeResult1 = branchTest32(NonZero, X86Registers::edx);
+ Jump storeResult2 = branchTest32(Zero, X86Registers::ebx, Imm32(0x80000000)); // not negative
+ emitStore(dst, jsNumber(m_globalData, -0.0));
+ Jump end = jump();
+
+ storeResult1.link(this);
+ storeResult2.link(this);
+ emitStoreInt32(dst, X86Registers::edx, (op1 == dst || op2 == dst));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
+ linkSlowCase(iter); // int32 check
+ if (getConstantOperand(op2).asInt32() == -1)
+ linkSlowCase(iter); // 0x80000000 check
+ } else {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // 0 check
+ linkSlowCase(iter); // 0x80000000 check
+ }
+
+ JITStubCall stubCall(this, cti_op_mod);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+#else // CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ JITStubCall stubCall(this, cti_op_mod);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
+{
+}
+
+#endif // CPU(X86) || CPU(X86_64)
+
+/* ------------------------------ END: OP_MOD ------------------------------ */
+
+#else // USE(JSVALUE32_64)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ emitFastArithImmToInt(regT0);
+ emitFastArithImmToInt(regT2);
+ lshift32(regT2, regT0);
+#if USE(JSVALUE32)
+ addSlowCase(branchAdd32(Overflow, regT0, regT0));
+ signExtend32ToPtr(regT0, regT0);
+#endif
+ emitFastArithReTagImmediate(regT0, regT0);
+ emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+#if USE(JSVALUE64)
+ UNUSED_PARAM(op1);
+ UNUSED_PARAM(op2);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#else
+ // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
+ Jump notImm1 = getSlowCase(iter);
+ Jump notImm2 = getSlowCase(iter);
+ linkSlowCase(iter);
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ notImm1.link(this);
+ notImm2.link(this);
+#endif
+ JITStubCall stubCall(this, cti_op_lshift);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT2);
+ stubCall.call(result);
+}
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ // isOperandConstantImmediateInt(op2) => 1 SlowCase
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+ rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ if (supportsFloatingPointTruncate()) {
+ Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
+ addSlowCase(emitJumpIfNotImmediateNumber(regT0));
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+ addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+#else
+ // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell)
+ emitJumpSlowCaseIfNotJSCell(regT0, op1);
+ addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get()));
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ addSlowCase(branchAdd32(Overflow, regT0, regT0));
+#endif
+ lhsIsInt.link(this);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ } else {
+ // !supportsFloatingPoint() => 2 SlowCases
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ }
+ emitFastArithImmToInt(regT2);
+ rshift32(regT2, regT0);
+#if USE(JSVALUE32)
+ signExtend32ToPtr(regT0, regT0);
+#endif
+ }
+#if USE(JSVALUE64)
+ emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+ orPtr(Imm32(JSImmediate::TagTypeNumber), regT0);
+#endif
+ emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ JITStubCall stubCall(this, cti_op_rshift);
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ } else {
+ if (supportsFloatingPointTruncate()) {
+#if USE(JSVALUE64)
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#else
+ linkSlowCaseIfNotJSCell(iter, op1);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#endif
+ // We're reloading op1 to regT0 as we can no longer guarantee that
+ // we have not munged the operand. It may have already been shifted
+ // correctly, but it still will not have been tagged.
+ stubCall.addArgument(op1, regT0);
+ stubCall.addArgument(regT2);
+ } else {
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT2);
+ }
+ }
+
+ stubCall.call(result);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the fast path:
+ // - int immediate to constant int immediate
+ // - constant int immediate to int immediate
+ // - int immediate to int immediate
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+ int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+ addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitGetVirtualRegister(op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+ int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+ int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+ addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+ addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
+ }
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the slow path:
+ // - floating-point number to constant int immediate
+ // - constant int immediate to floating-point number
+ // - floating-point number to floating-point number.
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+ int32_t op2imm = getConstantOperand(op2).asInt32();;
+
+ move(Imm32(op2imm), regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+ } else if (isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ int32_t op1imm = getConstantOperand(op1).asInt32();;
+
+ move(Imm32(op1imm), regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+ } else {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+ Jump fail3 = emitJumpIfImmediateInteger(regT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT0, fpRegT0);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+ Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+ fail2.link(this);
+ fail3.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2.link(this);
+ fail3.link(this);
+ fail4.link(this);
+#endif
+ }
+
+ linkSlowCase(iter);
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+ }
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the fast path:
+ // - int immediate to constant int immediate
+ // - constant int immediate to int immediate
+ // - int immediate to int immediate
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+ int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+ addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitGetVirtualRegister(op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+ int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+ int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+ addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+ addJump(branch32(LessThan, regT0, regT1), target);
+ }
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the slow path:
+ // - floating-point number to constant int immediate
+ // - constant int immediate to floating-point number
+ // - floating-point number to floating-point number.
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+ int32_t op2imm = getConstantOperand(op2).asInt32();
+
+ move(Imm32(op2imm), regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+ } else if (isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ int32_t op1imm = getConstantOperand(op1).asInt32();
+
+ move(Imm32(op1imm), regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+ } else {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+ Jump fail3 = emitJumpIfImmediateInteger(regT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT0, fpRegT0);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+ Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+ fail2.link(this);
+ fail3.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2.link(this);
+ fail3.link(this);
+ fail4.link(this);
+#endif
+ }
+
+ linkSlowCase(iter);
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+ }