#include "CodeBlock.h"
#include "JITInlineMethods.h"
+#include "JITStubCall.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
#include <stdio.h>
#endif
-#define __ m_assembler.
-
using namespace std;
namespace JSC {
-void JIT::compileFastArith_op_lshift(unsigned result, unsigned op1, unsigned op2)
-{
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx);
- // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::ecx);
- emitFastArithImmToInt(X86::eax);
- emitFastArithImmToInt(X86::ecx);
-#if !PLATFORM(X86)
- // Mask with 0x1f as per ecma-262 11.7.2 step 7.
- // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction.
- and32(Imm32(0x1f), X86::ecx);
-#endif
- lshift32(X86::ecx, X86::eax);
-#if !USE(ALTERNATE_JSIMMEDIATE)
- addSlowCase(joAdd32(X86::eax, X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
-#endif
- emitFastArithReTagImmediate(X86::eax, X86::eax);
- emitPutVirtualRegister(result);
+#if USE(JSVALUE32_64)
+
+void JIT::emit_op_negate(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned src = currentInstruction[2].u.operand;
+
+ emitLoad(src, regT1, regT0);
+
+ Jump srcNotInt = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+ addSlowCase(branch32(Equal, regT0, Imm32(0)));
+
+ neg32(regT0);
+ emitStoreInt32(dst, regT0, (dst == src));
+
+ Jump end = jump();
+
+ srcNotInt.link(this);
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+
+ xor32(Imm32(1 << 31), regT1);
+ store32(regT1, tagFor(dst));
+ if (dst != src)
+ store32(regT0, payloadFor(dst));
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_negate(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // 0 check
+ linkSlowCase(iter); // double check
+
+ JITStubCall stubCall(this, cti_op_negate);
+ stubCall.addArgument(regT1, regT0);
+ stubCall.call(dst);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThanOrEqual, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+}
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ // Int32 less.
+ if (isOperandConstantImmediateInt(op1)) {
+ emitLoad(op2, regT3, regT2);
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(LessThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ addJump(branch32(GreaterThan, regT0, regT2), target);
+ }
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double less.
+ emitBinaryDoubleOp(op_jnlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ if (!supportsFloatingPoint()) {
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter); // double check
+ linkSlowCase(iter); // int32 check
+ }
+ if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // double check
+ }
+
+ JITStubCall stubCall(this, cti_op_jlesseq);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+}
+
+// LeftShift (<<)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+ emitStoreInt32(dst, regT0, dst == op1);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ lshift32(regT2, regT0);
+ emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_lshift);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// RightShift (>>)
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitLoad(op1, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ rshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
+ emitStoreInt32(dst, regT0, dst == op1);
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ rshift32(regT2, regT0);
+ emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_rshift);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitAnd (&)
+
+void JIT::emit_op_bitand(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ and32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, (op == dst));
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ and32(regT2, regT0);
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitand);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitOr (|)
+
+void JIT::emit_op_bitor(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ or32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, (op == dst));
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ or32(regT2, regT0);
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitor);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitXor (^)
+
+void JIT::emit_op_bitxor(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitLoad(op, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ xor32(Imm32(constant), regT0);
+ emitStoreInt32(dst, regT0, (op == dst));
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+ xor32(regT2, regT0);
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+}
+
+void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitxor);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// BitNot (~)
+
+void JIT::emit_op_bitnot(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned src = currentInstruction[2].u.operand;
+
+ emitLoad(src, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+ not32(regT0);
+ emitStoreInt32(dst, regT0, (dst == src));
+}
+
+void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // int32 check
+
+ JITStubCall stubCall(this, cti_op_bitnot);
+ stubCall.addArgument(regT1, regT0);
+ stubCall.call(dst);
+}
+
+// PostInc (i++)
+
+void JIT::emit_op_post_inc(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+ if (dst == srcDst) // x = x++ is a noop for ints.
+ return;
+
+ emitStoreInt32(dst, regT0);
+
+ addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ if (dst != srcDst)
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_post_inc);
+ stubCall.addArgument(srcDst);
+ stubCall.addArgument(Imm32(srcDst));
+ stubCall.call(dst);
+}
+
+// PostDec (i--)
+
+void JIT::emit_op_post_dec(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+
+ if (dst == srcDst) // x = x-- is a noop for ints.
+ return;
+
+ emitStoreInt32(dst, regT0);
+
+ addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ if (dst != srcDst)
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_post_dec);
+ stubCall.addArgument(srcDst);
+ stubCall.addArgument(Imm32(srcDst));
+ stubCall.call(dst);
+}
+
+// PreInc (++i)
+
+void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_pre_inc);
+ stubCall.addArgument(srcDst);
+ stubCall.call(srcDst);
+}
+
+// PreDec (--i)
+
+void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ emitLoad(srcDst, regT1, regT0);
+
+ addSlowCase(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branchSub32(Overflow, Imm32(1), regT0));
+ emitStoreInt32(srcDst, regT0, true);
+}
+
+void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // overflow check
+
+ JITStubCall stubCall(this, cti_op_pre_dec);
+ stubCall.addArgument(srcDst);
+ stubCall.call(srcDst);
+}
+
+// Addition (+)
+
+void JIT::emit_op_add(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+ return;
+ }
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ emitAdd32Constant(dst, op, constant, op == op1 ? types.first() : types.second());
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ addSlowCase(branchAdd32(Overflow, regT2, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_add, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
+{
+ // Int32 case.
+ emitLoad(op, regT1, regT0);
+ Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+ addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0));
+ emitStoreInt32(dst, regT0, (op == dst));
+
+ // Double case.
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32);
+ return;
+ }
+ Jump end = jump();
+
+ notInt32.link(this);
+ if (!opType.definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+ move(Imm32(constant), regT2);
+ convertInt32ToDouble(regT2, fpRegT0);
+ emitLoadDouble(op, fpRegT1);
+ addDouble(fpRegT1, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
+
+ unsigned op;
+ int32_t constant;
+ if (getOperandConstantImmediateInt(op1, op2, op, constant)) {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint())
+ linkSlowCase(iter); // non-sse case
+ else {
+ ResultType opType = op == op1 ? types.first() : types.second();
+ if (!opType.definitelyIsNumber())
+ linkSlowCase(iter); // double check
+ }
+ } else {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+ }
+
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// Subtraction (-)
+
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitSub32Constant(dst, op1, getConstantOperand(op2).asInt32(), types.first());
+ return;
+ }
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ addSlowCase(branchSub32(Overflow, regT2, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_sub, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
+{
+ // Int32 case.
+ emitLoad(op, regT1, regT0);
+ Jump notInt32 = branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag));
+ addSlowCase(branchSub32(Overflow, Imm32(constant), regT0));
+ emitStoreInt32(dst, regT0, (op == dst));
+
+ // Double case.
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32);
+ return;
+ }
+ Jump end = jump();
+
+ notInt32.link(this);
+ if (!opType.definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+ move(Imm32(constant), regT2);
+ convertInt32ToDouble(regT2, fpRegT0);
+ emitLoadDouble(op, fpRegT1);
+ subDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+
+ end.link(this);
+}
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint() || !types.first().definitelyIsNumber())
+ linkSlowCase(iter); // int32 or double check
+ } else {
+ linkSlowCase(iter); // overflow check
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ } else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+ }
+
+ JITStubCall stubCall(this, cti_op_sub);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsigned op2, OperandTypes types, JumpList& notInt32Op1, JumpList& notInt32Op2, bool op1IsInRegisters, bool op2IsInRegisters)
+{
+ JumpList end;
+
+ if (!notInt32Op1.empty()) {
+ // Double case 1: Op1 is not int32; Op2 is unknown.
+ notInt32Op1.link(this);
+
+ ASSERT(op1IsInRegisters);
+
+ // Verify Op1 is double.
+ if (!types.first().definitelyIsNumber())
+ addSlowCase(branch32(Above, regT1, Imm32(JSValue::LowestTag)));
+
+ if (!op2IsInRegisters)
+ emitLoad(op2, regT3, regT2);
+
+ Jump doubleOp2 = branch32(Below, regT3, Imm32(JSValue::LowestTag));
+
+ if (!types.second().definitelyIsNumber())
+ addSlowCase(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ convertInt32ToDouble(regT2, fpRegT0);
+ Jump doTheMath = jump();
+
+ // Load Op2 as double into double register.
+ doubleOp2.link(this);
+ emitLoadDouble(op2, fpRegT0);
+
+ // Do the math.
+ doTheMath.link(this);
+ switch (opcodeID) {
+ case op_mul:
+ emitLoadDouble(op1, fpRegT2);
+ mulDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_add:
+ emitLoadDouble(op1, fpRegT2);
+ addDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_sub:
+ emitLoadDouble(op1, fpRegT1);
+ subDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+ break;
+ case op_div:
+ emitLoadDouble(op1, fpRegT1);
+ divDouble(fpRegT0, fpRegT1);
+ emitStoreDouble(dst, fpRegT1);
+ break;
+ case op_jnless:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
+ case op_jless:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
+ break;
+ case op_jnlesseq:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
+ default:
+ ASSERT_NOT_REACHED();
+ }
+
+ if (!notInt32Op2.empty())
+ end.append(jump());
+ }
+
+ if (!notInt32Op2.empty()) {
+ // Double case 2: Op1 is int32; Op2 is not int32.
+ notInt32Op2.link(this);
+
+ ASSERT(op2IsInRegisters);
+
+ if (!op1IsInRegisters)
+ emitLoadPayload(op1, regT0);
+
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ // Verify op2 is double.
+ if (!types.second().definitelyIsNumber())
+ addSlowCase(branch32(Above, regT3, Imm32(JSValue::LowestTag)));
+
+ // Do the math.
+ switch (opcodeID) {
+ case op_mul:
+ emitLoadDouble(op2, fpRegT2);
+ mulDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_add:
+ emitLoadDouble(op2, fpRegT2);
+ addDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_sub:
+ emitLoadDouble(op2, fpRegT2);
+ subDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_div:
+ emitLoadDouble(op2, fpRegT2);
+ divDouble(fpRegT2, fpRegT0);
+ emitStoreDouble(dst, fpRegT0);
+ break;
+ case op_jnless:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
+ case op_jless:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
+ break;
+ case op_jnlesseq:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
+ default:
+ ASSERT_NOT_REACHED();
+ }
+ }
+
+ end.link(this);
+}
+
+// Multiplication (*)
+
+void JIT::emit_op_mul(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ // Int32 case.
+ move(regT0, regT3);
+ addSlowCase(branchMul32(Overflow, regT2, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(notInt32Op1);
+ addSlowCase(notInt32Op2);
+ return;
+ }
+ Jump end = jump();
+
+ // Double case.
+ emitBinaryDoubleOp(op_mul, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ Jump overflow = getSlowCase(iter); // overflow check
+ linkSlowCase(iter); // zero result check
+
+ Jump negZero = branchOr32(Signed, regT2, regT3);
+ emitStoreInt32(dst, Imm32(0), (op1 == dst || op2 == dst));
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
+
+ negZero.link(this);
+ overflow.link(this);
+
+ if (!supportsFloatingPoint()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ }
+
+ if (supportsFloatingPoint()) {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+
+ Label jitStubCall(this);
+ JITStubCall stubCall(this, cti_op_mul);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// Division (/)
+
+void JIT::emit_op_div(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!supportsFloatingPoint()) {
+ addSlowCase(jump());
+ return;
+ }
+
+ // Int32 divide.
+ JumpList notInt32Op1;
+ JumpList notInt32Op2;
+
+ JumpList end;
+
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+
+ notInt32Op1.append(branch32(NotEqual, regT1, Imm32(JSValue::Int32Tag)));
+ notInt32Op2.append(branch32(NotEqual, regT3, Imm32(JSValue::Int32Tag)));
+
+ convertInt32ToDouble(regT0, fpRegT0);
+ convertInt32ToDouble(regT2, fpRegT1);
+ divDouble(fpRegT1, fpRegT0);
+
+ JumpList doubleResult;
+ branchConvertDoubleToInt32(fpRegT0, regT0, doubleResult, fpRegT1);
+
+ // Int32 result.
+ emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+ end.append(jump());
+
+ // Double result.
+ doubleResult.link(this);
+ emitStoreDouble(dst, fpRegT0);
+ end.append(jump());
+
+ // Double divide.
+ emitBinaryDoubleOp(op_div, dst, op1, op2, types, notInt32Op1, notInt32Op2);
+ end.link(this);
+}
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!supportsFloatingPoint())
+ linkSlowCase(iter);
+ else {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter); // double check
+
+ if (!types.second().definitelyIsNumber()) {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // double check
+ }
+ }
+
+ JITStubCall stubCall(this, cti_op_div);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+// Mod (%)
+
+/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
+
+#if CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
+ emitLoad(op1, X86Registers::edx, X86Registers::eax);
+ move(Imm32(getConstantOperand(op2).asInt32()), X86Registers::ecx);
+ addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+ if (getConstantOperand(op2).asInt32() == -1)
+ addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+ } else {
+ emitLoad2(op1, X86Registers::edx, X86Registers::eax, op2, X86Registers::ebx, X86Registers::ecx);
+ addSlowCase(branch32(NotEqual, X86Registers::edx, Imm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, X86Registers::ebx, Imm32(JSValue::Int32Tag)));
+
+ addSlowCase(branch32(Equal, X86Registers::eax, Imm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
+ addSlowCase(branch32(Equal, X86Registers::ecx, Imm32(0))); // divide by 0
+ }
+
+ move(X86Registers::eax, X86Registers::ebx); // Save dividend payload, in case of 0.
+ m_assembler.cdq();
+ m_assembler.idivl_r(X86Registers::ecx);
+
+ // If the remainder is zero and the dividend is negative, the result is -0.
+ Jump storeResult1 = branchTest32(NonZero, X86Registers::edx);
+ Jump storeResult2 = branchTest32(Zero, X86Registers::ebx, Imm32(0x80000000)); // not negative
+ emitStore(dst, jsNumber(m_globalData, -0.0));
+ Jump end = jump();
+
+ storeResult1.link(this);
+ storeResult2.link(this);
+ emitStoreInt32(dst, X86Registers::edx, (op1 == dst || op2 == dst));
+ end.link(this);
+}
+
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
+ linkSlowCase(iter); // int32 check
+ if (getConstantOperand(op2).asInt32() == -1)
+ linkSlowCase(iter); // 0x80000000 check
+ } else {
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // int32 check
+ linkSlowCase(iter); // 0 check
+ linkSlowCase(iter); // 0x80000000 check
+ }
+
+ JITStubCall stubCall(this, cti_op_mod);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+#else // CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
+{
+ unsigned dst = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ JITStubCall stubCall(this, cti_op_mod);
+ stubCall.addArgument(op1);
+ stubCall.addArgument(op2);
+ stubCall.call(dst);
+}
+
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
+{
+}
+
+#endif // CPU(X86) || CPU(X86_64)
+
+/* ------------------------------ END: OP_MOD ------------------------------ */
+
+#else // USE(JSVALUE32_64)
+
+void JIT::emit_op_lshift(Instruction* currentInstruction)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ // FIXME: would we be better using 'emitJumpSlowCaseIfNotImmediateIntegers'? - we *probably* ought to be consistent.
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ emitFastArithImmToInt(regT0);
+ emitFastArithImmToInt(regT2);
+ lshift32(regT2, regT0);
+#if USE(JSVALUE32)
+ addSlowCase(branchAdd32(Overflow, regT0, regT0));
+ signExtend32ToPtr(regT0, regT0);
+#endif
+ emitFastArithReTagImmediate(regT0, regT0);
+ emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+#if USE(JSVALUE64)
+ UNUSED_PARAM(op1);
+ UNUSED_PARAM(op2);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#else
+ // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
+ Jump notImm1 = getSlowCase(iter);
+ Jump notImm2 = getSlowCase(iter);
+ linkSlowCase(iter);
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ notImm1.link(this);
+ notImm2.link(this);
+#endif
+ JITStubCall stubCall(this, cti_op_lshift);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT2);
+ stubCall.call(result);
+}
+
+void JIT::emit_op_rshift(Instruction* currentInstruction)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ if (isOperandConstantImmediateInt(op2)) {
+ // isOperandConstantImmediateInt(op2) => 1 SlowCase
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ // Mask with 0x1f as per ecma-262 11.7.2 step 7.
+ rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), regT0);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT2);
+ if (supportsFloatingPointTruncate()) {
+ Jump lhsIsInt = emitJumpIfImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ // supportsFloatingPoint() && USE(JSVALUE64) => 3 SlowCases
+ addSlowCase(emitJumpIfNotImmediateNumber(regT0));
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+ addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+#else
+ // supportsFloatingPoint() && !USE(JSVALUE64) => 5 SlowCases (of which 1 IfNotJSCell)
+ emitJumpSlowCaseIfNotJSCell(regT0, op1);
+ addSlowCase(checkStructure(regT0, m_globalData->numberStructure.get()));
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ addSlowCase(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ addSlowCase(branchAdd32(Overflow, regT0, regT0));
+#endif
+ lhsIsInt.link(this);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ } else {
+ // !supportsFloatingPoint() => 2 SlowCases
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT2);
+ }
+ emitFastArithImmToInt(regT2);
+ rshift32(regT2, regT0);
+#if USE(JSVALUE32)
+ signExtend32ToPtr(regT0, regT0);
+#endif
+ }
+#if USE(JSVALUE64)
+ emitFastArithIntToImmNoCheck(regT0, regT0);
+#else
+ orPtr(Imm32(JSImmediate::TagTypeNumber), regT0);
+#endif
+ emitPutVirtualRegister(result);
+}
+
+void JIT::emitSlow_op_rshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
+ JITStubCall stubCall(this, cti_op_rshift);
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ } else {
+ if (supportsFloatingPointTruncate()) {
+#if USE(JSVALUE64)
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#else
+ linkSlowCaseIfNotJSCell(iter, op1);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#endif
+ // We're reloading op1 to regT0 as we can no longer guarantee that
+ // we have not munged the operand. It may have already been shifted
+ // correctly, but it still will not have been tagged.
+ stubCall.addArgument(op1, regT0);
+ stubCall.addArgument(regT2);
+ } else {
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT2);
+ }
+ }
+
+ stubCall.call(result);
+}
+
+void JIT::emit_op_jnless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the fast path:
+ // - int immediate to constant int immediate
+ // - constant int immediate to int immediate
+ // - int immediate to int immediate
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+ int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+ addJump(branch32(GreaterThanOrEqual, regT0, Imm32(op2imm)), target);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitGetVirtualRegister(op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+ int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+ int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+ addJump(branch32(LessThanOrEqual, regT1, Imm32(op1imm)), target);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+ addJump(branch32(GreaterThanOrEqual, regT0, regT1), target);
+ }
+}
+
+void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the slow path:
+ // - floating-point number to constant int immediate
+ // - constant int immediate to floating-point number
+ // - floating-point number to floating-point number.
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+ int32_t op2imm = getConstantOperand(op2).asInt32();;
+
+ move(Imm32(op2imm), regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+ } else if (isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ int32_t op1imm = getConstantOperand(op1).asInt32();;
+
+ move(Imm32(op1imm), regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+ } else {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+ Jump fail3 = emitJumpIfImmediateInteger(regT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT0, fpRegT0);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+ Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+ fail2.link(this);
+ fail3.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2.link(this);
+ fail3.link(this);
+ fail4.link(this);
+#endif
+ }
+
+ linkSlowCase(iter);
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+ }
+}
+
+void JIT::emit_op_jless(Instruction* currentInstruction)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the fast path:
+ // - int immediate to constant int immediate
+ // - constant int immediate to int immediate
+ // - int immediate to int immediate
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ int32_t op2imm = getConstantOperandImmediateInt(op2);
+#else
+ int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
+#endif
+ addJump(branch32(LessThan, regT0, Imm32(op2imm)), target);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitGetVirtualRegister(op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+ int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+ int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+ addJump(branch32(GreaterThan, regT1, Imm32(op1imm)), target);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+ addJump(branch32(LessThan, regT0, regT1), target);
+ }
+}
+
+void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the slow path:
+ // - floating-point number to constant int immediate
+ // - constant int immediate to floating-point number
+ // - floating-point number to floating-point number.
+
+ if (isOperandConstantImmediateInt(op2)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+#endif
+
+ int32_t op2imm = getConstantOperand(op2).asInt32();
+
+ move(Imm32(op2imm), regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+ } else if (isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ int32_t op1imm = getConstantOperand(op1).asInt32();
+
+ move(Imm32(op1imm), regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1.link(this);
+ fail2.link(this);
+#endif
+ }
+
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+
+ } else {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+ Jump fail3 = emitJumpIfImmediateInteger(regT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT0, fpRegT0);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+ Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnless));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+ fail2.link(this);
+ fail3.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2.link(this);
+ fail3.link(this);
+ fail4.link(this);
+#endif
+ }
+
+ linkSlowCase(iter);
+ JITStubCall stubCall(this, cti_op_jless);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
+ }
}
-void JIT::compileFastArithSlow_op_lshift(unsigned result, unsigned op1, unsigned op2, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
{
-#if USE(ALTERNATE_JSIMMEDIATE)
- UNUSED_PARAM(op1);
- UNUSED_PARAM(op2);
- linkSlowCase(iter);
- linkSlowCase(iter);
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the fast path:
+ // - int immediate to constant int immediate
+ // - constant int immediate to int immediate
+ // - int immediate to int immediate
+
+ if (isOperandConstantImmediateInt(op2)) {
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ int32_t op2imm = getConstantOperandImmediateInt(op2);
#else
- // If we are limited to 32-bit immediates there is a third slow case, which required the operands to have been reloaded.
- Jump notImm1 = getSlowCase(iter);
- Jump notImm2 = getSlowCase(iter);
- linkSlowCase(iter);
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx);
- notImm1.link(this);
- notImm2.link(this);
+ int32_t op2imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)));
#endif
- emitPutJITStubArg(X86::eax, 1);
- emitPutJITStubArg(X86::ecx, 2);
- emitCTICall(Interpreter::cti_op_lshift);
- emitPutVirtualRegister(result);
+ addJump(branch32(GreaterThan, regT0, Imm32(op2imm)), target);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitGetVirtualRegister(op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+#if USE(JSVALUE64)
+ int32_t op1imm = getConstantOperandImmediateInt(op1);
+#else
+ int32_t op1imm = static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)));
+#endif
+ addJump(branch32(LessThan, regT1, Imm32(op1imm)), target);
+ } else {
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
+
+ addJump(branch32(GreaterThan, regT0, regT1), target);
+ }
}
-void JIT::compileFastArith_op_rshift(unsigned result, unsigned op1, unsigned op2)
+void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
+ unsigned op1 = currentInstruction[1].u.operand;
+ unsigned op2 = currentInstruction[2].u.operand;
+ unsigned target = currentInstruction[3].u.operand;
+
+ // We generate inline code for the following cases in the slow path:
+ // - floating-point number to constant int immediate
+ // - constant int immediate to floating-point number
+ // - floating-point number to floating-point number.
+
if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- // Mask with 0x1f as per ecma-262 11.7.2 step 7.
-#if USE(ALTERNATE_JSIMMEDIATE)
- rshift32(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), X86::eax);
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
#else
- rshiftPtr(Imm32(getConstantOperandImmediateInt(op2) & 0x1f), X86::eax);
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2 = checkStructure(regT0, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
#endif
- } else {
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::ecx);
- emitFastArithImmToInt(X86::ecx);
-#if !PLATFORM(X86)
- // Mask with 0x1f as per ecma-262 11.7.2 step 7.
- // On 32-bit x86 this is not necessary, since the shift anount is implicitly masked in the instruction.
- and32(Imm32(0x1f), X86::ecx);
+
+ int32_t op2imm = getConstantOperand(op2).asInt32();;
+
+ move(Imm32(op2imm), regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ fail2.link(this);
#endif
-#if USE(ALTERNATE_JSIMMEDIATE)
- rshift32(X86::ecx, X86::eax);
+ }
+
+ JITStubCall stubCall(this, cti_op_jlesseq);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+ } else if (isOperandConstantImmediateInt(op1)) {
+ linkSlowCase(iter);
+
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
#else
- rshiftPtr(X86::ecx, X86::eax);
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail2 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
#endif
- }
-#if USE(ALTERNATE_JSIMMEDIATE)
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+
+ int32_t op1imm = getConstantOperand(op1).asInt32();;
+
+ move(Imm32(op1imm), regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
#else
- orPtr(Imm32(JSImmediate::TagTypeNumber), X86::eax);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail1.link(this);
+ fail2.link(this);
#endif
- emitPutVirtualRegister(result);
-}
-void JIT::compileFastArithSlow_op_rshift(unsigned result, unsigned, unsigned op2, Vector<SlowCaseEntry>::iterator& iter)
-{
- linkSlowCase(iter);
- if (isOperandConstantImmediateInt(op2))
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- else {
+ }
+
+ JITStubCall stubCall(this, cti_op_jlesseq);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+
+ } else {
linkSlowCase(iter);
- emitPutJITStubArg(X86::ecx, 2);
- }
- emitPutJITStubArg(X86::eax, 1);
- emitCTICall(Interpreter::cti_op_rshift);
- emitPutVirtualRegister(result);
+ if (supportsFloatingPoint()) {
+#if USE(JSVALUE64)
+ Jump fail1 = emitJumpIfNotImmediateNumber(regT0);
+ Jump fail2 = emitJumpIfNotImmediateNumber(regT1);
+ Jump fail3 = emitJumpIfImmediateInteger(regT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT0, fpRegT0);
+ movePtrToDouble(regT1, fpRegT1);
+#else
+ Jump fail1;
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1 = emitJumpIfNotJSCell(regT0);
+
+ Jump fail2;
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2 = emitJumpIfNotJSCell(regT1);
+
+ Jump fail3 = checkStructure(regT0, m_globalData->numberStructure.get());
+ Jump fail4 = checkStructure(regT1, m_globalData->numberStructure.get());
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+#endif
+
+ emitJumpSlowToHot(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), target);
+
+ emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_jnlesseq));
+
+#if USE(JSVALUE64)
+ fail1.link(this);
+ fail2.link(this);
+ fail3.link(this);
+#else
+ if (!m_codeBlock->isKnownNotImmediate(op1))
+ fail1.link(this);
+ if (!m_codeBlock->isKnownNotImmediate(op2))
+ fail2.link(this);
+ fail3.link(this);
+ fail4.link(this);
+#endif
+ }
+
+ linkSlowCase(iter);
+ JITStubCall stubCall(this, cti_op_jlesseq);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call();
+ emitJumpSlowToHot(branchTest32(Zero, regT0), target);
+ }
}
-void JIT::compileFastArith_op_bitand(unsigned result, unsigned op1, unsigned op2)
+void JIT::emit_op_bitand(Instruction* currentInstruction)
{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
-#if USE(ALTERNATE_JSIMMEDIATE)
+ emitGetVirtualRegister(op2, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
int32_t imm = getConstantOperandImmediateInt(op1);
- andPtr(Imm32(imm), X86::eax);
+ andPtr(Imm32(imm), regT0);
if (imm >= 0)
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ emitFastArithIntToImmNoCheck(regT0, regT0);
#else
- andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), X86::eax);
+ andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op1)))), regT0);
#endif
} else if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
-#if USE(ALTERNATE_JSIMMEDIATE)
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
int32_t imm = getConstantOperandImmediateInt(op2);
- andPtr(Imm32(imm), X86::eax);
+ andPtr(Imm32(imm), regT0);
if (imm >= 0)
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ emitFastArithIntToImmNoCheck(regT0, regT0);
#else
- andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), X86::eax);
+ andPtr(Imm32(static_cast<int32_t>(JSImmediate::rawValue(getConstantOperand(op2)))), regT0);
#endif
} else {
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::edx);
- andPtr(X86::edx, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ andPtr(regT1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
}
emitPutVirtualRegister(result);
}
-void JIT::compileFastArithSlow_op_bitand(unsigned result, unsigned op1, unsigned op2, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+
linkSlowCase(iter);
if (isOperandConstantImmediateInt(op1)) {
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArg(X86::eax, 2);
+ JITStubCall stubCall(this, cti_op_bitand);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT0);
+ stubCall.call(result);
} else if (isOperandConstantImmediateInt(op2)) {
- emitPutJITStubArg(X86::eax, 1);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
+ JITStubCall stubCall(this, cti_op_bitand);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
} else {
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArg(X86::edx, 2);
+ JITStubCall stubCall(this, cti_op_bitand);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT1);
+ stubCall.call(result);
}
- emitCTICall(Interpreter::cti_op_bitand);
- emitPutVirtualRegister(result);
}
-void JIT::compileFastArith_op_mod(unsigned result, unsigned op1, unsigned op2)
+void JIT::emit_op_post_inc(Instruction* currentInstruction)
{
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::ecx);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::ecx);
-#if USE(ALTERNATE_JSIMMEDIATE)
- addSlowCase(jePtr(X86::ecx, ImmPtr(JSValuePtr::encode(js0()))));
- mod32(X86::ecx, X86::eax, X86::edx);
-#else
- emitFastArithDeTagImmediate(X86::eax);
- addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86::ecx));
- mod32(X86::ecx, X86::eax, X86::edx);
- signExtend32ToPtr(X86::edx, X86::edx);
-#endif
- emitFastArithReTagImmediate(X86::edx, X86::eax);
- emitPutVirtualRegister(result);
-}
-void JIT::compileFastArithSlow_op_mod(unsigned result, unsigned, unsigned, Vector<SlowCaseEntry>::iterator& iter)
-{
-#if USE(ALTERNATE_JSIMMEDIATE)
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(srcDst, regT0);
+ move(regT0, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ addSlowCase(branchAdd32(Overflow, Imm32(1), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT1);
#else
- Jump notImm1 = getSlowCase(iter);
- Jump notImm2 = getSlowCase(iter);
- linkSlowCase(iter);
- emitFastArithReTagImmediate(X86::eax, X86::eax);
- emitFastArithReTagImmediate(X86::ecx, X86::ecx);
- notImm1.link(this);
- notImm2.link(this);
+ addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
+ signExtend32ToPtr(regT1, regT1);
#endif
- emitPutJITStubArg(X86::eax, 1);
- emitPutJITStubArg(X86::ecx, 2);
- emitCTICall(Interpreter::cti_op_mod);
+ emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
-void JIT::compileFastArith_op_post_inc(unsigned result, unsigned srcDst)
-{
- emitGetVirtualRegister(srcDst, X86::eax);
- move(X86::eax, X86::edx);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
-#if USE(ALTERNATE_JSIMMEDIATE)
- addSlowCase(joAdd32(Imm32(1), X86::edx));
- emitFastArithIntToImmNoCheck(X86::edx, X86::edx);
-#else
- addSlowCase(joAdd32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::edx));
- signExtend32ToPtr(X86::edx, X86::edx);
-#endif
- emitPutVirtualRegister(srcDst, X86::edx);
- emitPutVirtualRegister(result);
-}
-void JIT::compileFastArithSlow_op_post_inc(unsigned result, unsigned srcDst, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
linkSlowCase(iter);
linkSlowCase(iter);
- emitPutJITStubArg(X86::eax, 1);
- emitCTICall(Interpreter::cti_op_post_inc);
- emitPutVirtualRegister(srcDst, X86::edx);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_post_inc);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(Imm32(srcDst));
+ stubCall.call(result);
}
-void JIT::compileFastArith_op_post_dec(unsigned result, unsigned srcDst)
+void JIT::emit_op_post_dec(Instruction* currentInstruction)
{
- emitGetVirtualRegister(srcDst, X86::eax);
- move(X86::eax, X86::edx);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
-#if USE(ALTERNATE_JSIMMEDIATE)
- addSlowCase(joSub32(Imm32(1), X86::edx));
- emitFastArithIntToImmNoCheck(X86::edx, X86::edx);
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
+ emitGetVirtualRegister(srcDst, regT0);
+ move(regT0, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ addSlowCase(branchSub32(Zero, Imm32(1), regT1));
+ emitFastArithIntToImmNoCheck(regT1, regT1);
#else
- addSlowCase(joSub32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::edx));
- signExtend32ToPtr(X86::edx, X86::edx);
+ addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT1));
+ signExtend32ToPtr(regT1, regT1);
#endif
- emitPutVirtualRegister(srcDst, X86::edx);
+ emitPutVirtualRegister(srcDst, regT1);
emitPutVirtualRegister(result);
}
-void JIT::compileFastArithSlow_op_post_dec(unsigned result, unsigned srcDst, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned srcDst = currentInstruction[2].u.operand;
+
linkSlowCase(iter);
linkSlowCase(iter);
- emitPutJITStubArg(X86::eax, 1);
- emitCTICall(Interpreter::cti_op_post_dec);
- emitPutVirtualRegister(srcDst, X86::edx);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_post_dec);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(Imm32(srcDst));
+ stubCall.call(result);
}
-void JIT::compileFastArith_op_pre_inc(unsigned srcDst)
+void JIT::emit_op_pre_inc(Instruction* currentInstruction)
{
- emitGetVirtualRegister(srcDst, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
-#if USE(ALTERNATE_JSIMMEDIATE)
- addSlowCase(joAdd32(Imm32(1), X86::eax));
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ emitGetVirtualRegister(srcDst, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ addSlowCase(branchAdd32(Overflow, Imm32(1), regT0));
+ emitFastArithIntToImmNoCheck(regT0, regT0);
#else
- addSlowCase(joAdd32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
+ addSlowCase(branchAdd32(Overflow, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
+ signExtend32ToPtr(regT0, regT0);
#endif
emitPutVirtualRegister(srcDst);
}
-void JIT::compileFastArithSlow_op_pre_inc(unsigned srcDst, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- emitGetVirtualRegister(srcDst, X86::eax);
+ emitGetVirtualRegister(srcDst, regT0);
notImm.link(this);
- emitPutJITStubArg(X86::eax, 1);
- emitCTICall(Interpreter::cti_op_pre_inc);
- emitPutVirtualRegister(srcDst);
+ JITStubCall stubCall(this, cti_op_pre_inc);
+ stubCall.addArgument(regT0);
+ stubCall.call(srcDst);
}
-void JIT::compileFastArith_op_pre_dec(unsigned srcDst)
+void JIT::emit_op_pre_dec(Instruction* currentInstruction)
{
- emitGetVirtualRegister(srcDst, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
-#if USE(ALTERNATE_JSIMMEDIATE)
- addSlowCase(joSub32(Imm32(1), X86::eax));
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ unsigned srcDst = currentInstruction[1].u.operand;
+
+ emitGetVirtualRegister(srcDst, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+#if USE(JSVALUE64)
+ addSlowCase(branchSub32(Zero, Imm32(1), regT0));
+ emitFastArithIntToImmNoCheck(regT0, regT0);
#else
- addSlowCase(joSub32(Imm32(1 << JSImmediate::IntegerPayloadShift), X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
+ addSlowCase(branchSub32(Zero, Imm32(1 << JSImmediate::IntegerPayloadShift), regT0));
+ signExtend32ToPtr(regT0, regT0);
#endif
emitPutVirtualRegister(srcDst);
}
-void JIT::compileFastArithSlow_op_pre_dec(unsigned srcDst, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
+ unsigned srcDst = currentInstruction[1].u.operand;
+
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- emitGetVirtualRegister(srcDst, X86::eax);
+ emitGetVirtualRegister(srcDst, regT0);
notImm.link(this);
- emitPutJITStubArg(X86::eax, 1);
- emitCTICall(Interpreter::cti_op_pre_dec);
- emitPutVirtualRegister(srcDst);
+ JITStubCall stubCall(this, cti_op_pre_dec);
+ stubCall.addArgument(regT0);
+ stubCall.call(srcDst);
}
+/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
-#if !ENABLE(JIT_OPTIMIZE_ARITHMETIC)
+#if CPU(X86) || CPU(X86_64)
-void JIT::compileFastArith_op_add(Instruction* currentInstruction)
+void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_add);
+ emitGetVirtualRegisters(op1, X86Registers::eax, op2, X86Registers::ecx);
+ emitJumpSlowCaseIfNotImmediateInteger(X86Registers::eax);
+ emitJumpSlowCaseIfNotImmediateInteger(X86Registers::ecx);
+#if USE(JSVALUE64)
+ addSlowCase(branchPtr(Equal, X86Registers::ecx, ImmPtr(JSValue::encode(jsNumber(m_globalData, 0)))));
+ m_assembler.cdq();
+ m_assembler.idivl_r(X86Registers::ecx);
+#else
+ emitFastArithDeTagImmediate(X86Registers::eax);
+ addSlowCase(emitFastArithDeTagImmediateJumpIfZero(X86Registers::ecx));
+ m_assembler.cdq();
+ m_assembler.idivl_r(X86Registers::ecx);
+ signExtend32ToPtr(X86Registers::edx, X86Registers::edx);
+#endif
+ emitFastArithReTagImmediate(X86Registers::edx, X86Registers::eax);
emitPutVirtualRegister(result);
}
-void JIT::compileFastArithSlow_op_add(Instruction*, Vector<SlowCaseEntry>::iterator&)
-{
- ASSERT_NOT_REACHED();
-}
-void JIT::compileFastArith_op_mul(Instruction* currentInstruction)
+void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_mul);
- emitPutVirtualRegister(result);
-}
-void JIT::compileFastArithSlow_op_mul(Instruction*, Vector<SlowCaseEntry>::iterator&)
-{
- ASSERT_NOT_REACHED();
+#if USE(JSVALUE64)
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
+#else
+ Jump notImm1 = getSlowCase(iter);
+ Jump notImm2 = getSlowCase(iter);
+ linkSlowCase(iter);
+ emitFastArithReTagImmediate(X86Registers::eax, X86Registers::eax);
+ emitFastArithReTagImmediate(X86Registers::ecx, X86Registers::ecx);
+ notImm1.link(this);
+ notImm2.link(this);
+#endif
+ JITStubCall stubCall(this, cti_op_mod);
+ stubCall.addArgument(X86Registers::eax);
+ stubCall.addArgument(X86Registers::ecx);
+ stubCall.call(result);
}
-void JIT::compileFastArith_op_sub(Instruction* currentInstruction)
+#else // CPU(X86) || CPU(X86_64)
+
+void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_sub);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_mod);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
}
-void JIT::compileFastArithSlow_op_sub(Instruction*, Vector<SlowCaseEntry>::iterator&)
+
+void JIT::emitSlow_op_mod(Instruction*, Vector<SlowCaseEntry>::iterator&)
{
ASSERT_NOT_REACHED();
}
-#elif USE(ALTERNATE_JSIMMEDIATE) // *AND* ENABLE(JIT_OPTIMIZE_ARITHMETIC)
+#endif // CPU(X86) || CPU(X86_64)
+
+/* ------------------------------ END: OP_MOD ------------------------------ */
+
+#if USE(JSVALUE64)
+
+/* ------------------------------ BEGIN: USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned, unsigned op1, unsigned op2, OperandTypes)
{
- emitGetVirtualRegisters(op1, X86::eax, op2, X86::edx);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::edx);
+ emitGetVirtualRegisters(op1, regT0, op2, regT1);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
if (opcodeID == op_add)
- addSlowCase(joAdd32(X86::edx, X86::eax));
+ addSlowCase(branchAdd32(Overflow, regT1, regT0));
else if (opcodeID == op_sub)
- addSlowCase(joSub32(X86::edx, X86::eax));
+ addSlowCase(branchSub32(Overflow, regT1, regT0));
else {
ASSERT(opcodeID == op_mul);
- addSlowCase(joMul32(X86::edx, X86::eax));
- addSlowCase(jz32(X86::eax));
+ addSlowCase(branchMul32(Overflow, regT1, regT0));
+ addSlowCase(branchTest32(Zero, regT0));
}
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ emitFastArithIntToImmNoCheck(regT0, regT0);
}
-void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned, unsigned op1, unsigned, OperandTypes types)
+void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned result, unsigned op1, unsigned op2, OperandTypes types, bool op1HasImmediateIntFastCase, bool op2HasImmediateIntFastCase)
{
// We assume that subtracting TagTypeNumber is equivalent to adding DoubleEncodeOffset.
COMPILE_ASSERT(((JSImmediate::TagTypeNumber + JSImmediate::DoubleEncodeOffset) == 0), TagTypeNumber_PLUS_DoubleEncodeOffset_EQUALS_0);
-
- Jump notImm1 = getSlowCase(iter);
- Jump notImm2 = getSlowCase(iter);
+
+ Jump notImm1;
+ Jump notImm2;
+ if (op1HasImmediateIntFastCase) {
+ notImm2 = getSlowCase(iter);
+ } else if (op2HasImmediateIntFastCase) {
+ notImm1 = getSlowCase(iter);
+ } else {
+ notImm1 = getSlowCase(iter);
+ notImm2 = getSlowCase(iter);
+ }
linkSlowCase(iter); // Integer overflow case - we could handle this in JIT code, but this is likely rare.
- if (opcodeID == op_mul) // op_mul has an extra slow case to handle 0 * negative number.
+ if (opcodeID == op_mul && !op1HasImmediateIntFastCase && !op2HasImmediateIntFastCase) // op_mul has an extra slow case to handle 0 * negative number.
linkSlowCase(iter);
- emitGetVirtualRegister(op1, X86::eax);
+ emitGetVirtualRegister(op1, regT0);
Label stubFunctionCall(this);
- emitPutJITStubArg(X86::eax, 1);
- emitPutJITStubArg(X86::edx, 2);
- if (opcodeID == op_add)
- emitCTICall(Interpreter::cti_op_add);
- else if (opcodeID == op_sub)
- emitCTICall(Interpreter::cti_op_sub);
- else {
- ASSERT(opcodeID == op_mul);
- emitCTICall(Interpreter::cti_op_mul);
+ JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+ if (op1HasImmediateIntFastCase || op2HasImmediateIntFastCase) {
+ emitGetVirtualRegister(op1, regT0);
+ emitGetVirtualRegister(op2, regT1);
}
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(regT1);
+ stubCall.call(result);
Jump end = jump();
- // if we get here, eax is not an int32, edx not yet checked.
- notImm1.link(this);
- if (!types.first().definitelyIsNumber())
- emitJumpIfNotImmediateNumber(X86::eax).linkTo(stubFunctionCall, this);
- if (!types.second().definitelyIsNumber())
- emitJumpIfNotImmediateNumber(X86::edx).linkTo(stubFunctionCall, this);
- addPtr(tagTypeNumberRegister, X86::eax);
- m_assembler.movq_rr(X86::eax, X86::xmm1);
- Jump op2isDouble = emitJumpIfNotImmediateInteger(X86::edx);
- m_assembler.cvtsi2sd_rr(X86::edx, X86::xmm2);
- Jump op2wasInteger = jump();
-
- // if we get here, eax IS an int32, edx is not.
- notImm2.link(this);
- if (!types.second().definitelyIsNumber())
- emitJumpIfNotImmediateNumber(X86::edx).linkTo(stubFunctionCall, this);
- m_assembler.cvtsi2sd_rr(X86::eax, X86::xmm1);
- op2isDouble.link(this);
- addPtr(tagTypeNumberRegister, X86::edx);
- m_assembler.movq_rr(X86::edx, X86::xmm2);
- op2wasInteger.link(this);
+ if (op1HasImmediateIntFastCase) {
+ notImm2.link(this);
+ if (!types.second().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+ emitGetVirtualRegister(op1, regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT2);
+ } else if (op2HasImmediateIntFastCase) {
+ notImm1.link(this);
+ if (!types.first().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+ emitGetVirtualRegister(op2, regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT2);
+ } else {
+ // if we get here, eax is not an int32, edx not yet checked.
+ notImm1.link(this);
+ if (!types.first().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT0).linkTo(stubFunctionCall, this);
+ if (!types.second().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT1);
+ Jump op2isDouble = emitJumpIfNotImmediateInteger(regT1);
+ convertInt32ToDouble(regT1, fpRegT2);
+ Jump op2wasInteger = jump();
+
+ // if we get here, eax IS an int32, edx is not.
+ notImm2.link(this);
+ if (!types.second().definitelyIsNumber())
+ emitJumpIfNotImmediateNumber(regT1).linkTo(stubFunctionCall, this);
+ convertInt32ToDouble(regT0, fpRegT1);
+ op2isDouble.link(this);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT2);
+ op2wasInteger.link(this);
+ }
if (opcodeID == op_add)
- m_assembler.addsd_rr(X86::xmm2, X86::xmm1);
+ addDouble(fpRegT2, fpRegT1);
else if (opcodeID == op_sub)
- m_assembler.subsd_rr(X86::xmm2, X86::xmm1);
+ subDouble(fpRegT2, fpRegT1);
+ else if (opcodeID == op_mul)
+ mulDouble(fpRegT2, fpRegT1);
else {
- ASSERT(opcodeID == op_mul);
- m_assembler.mulsd_rr(X86::xmm2, X86::xmm1);
+ ASSERT(opcodeID == op_div);
+ divDouble(fpRegT2, fpRegT1);
}
- m_assembler.movq_rr(X86::xmm1, X86::eax);
- subPtr(tagTypeNumberRegister, X86::eax);
+ moveDoubleToPtr(fpRegT1, regT0);
+ subPtr(tagTypeNumberRegister, regT0);
+ emitPutVirtualRegister(result, regT0);
end.link(this);
}
-void JIT::compileFastArith_op_add(Instruction* currentInstruction)
+void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_add);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
return;
}
if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op1)), X86::eax));
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ emitGetVirtualRegister(op2, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1)), regT0));
+ emitFastArithIntToImmNoCheck(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op2)), X86::eax));
- emitFastArithIntToImmNoCheck(X86::eax, X86::eax);
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2)), regT0));
+ emitFastArithIntToImmNoCheck(regT0, regT0);
} else
compileBinaryArithOp(op_add, result, op1, op2, types);
emitPutVirtualRegister(result);
}
-void JIT::compileFastArithSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_add);
- } else if (isOperandConstantImmediateInt(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_add);
- } else
- compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, types);
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
- emitPutVirtualRegister(result);
+ bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1);
+ bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2);
+ compileBinaryArithOpSlowCase(op_add, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
-void JIT::compileFastArith_op_mul(Instruction* currentInstruction)
+void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
- emitGetVirtualRegister(op2, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax));
- emitFastArithReTagImmediate(X86::eax, X86::eax);
+ emitGetVirtualRegister(op2, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+ emitFastArithReTagImmediate(regT0, regT0);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
- emitGetVirtualRegister(op1, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax));
- emitFastArithReTagImmediate(X86::eax, X86::eax);
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+ emitFastArithReTagImmediate(regT0, regT0);
} else
compileBinaryArithOp(op_mul, result, op1, op2, types);
emitPutVirtualRegister(result);
}
-void JIT::compileFastArithSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if ((isOperandConstantImmediateInt(op1) && (getConstantOperandImmediateInt(op1) > 0))
- || (isOperandConstantImmediateInt(op2) && (getConstantOperandImmediateInt(op2) > 0))) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_mul);
- } else
- compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, types);
-
- emitPutVirtualRegister(result);
+ bool op1HasImmediateIntFastCase = isOperandConstantImmediateInt(op1) && getConstantOperandImmediateInt(op1) > 0;
+ bool op2HasImmediateIntFastCase = !op1HasImmediateIntFastCase && isOperandConstantImmediateInt(op2) && getConstantOperandImmediateInt(op2) > 0;
+ compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand), op1HasImmediateIntFastCase, op2HasImmediateIntFastCase);
}
-void JIT::compileFastArith_op_sub(Instruction* currentInstruction)
+void JIT::emit_op_div(Instruction* currentInstruction)
{
- unsigned result = currentInstruction[1].u.operand;
+ unsigned dst = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- compileBinaryArithOp(op_sub, result, op1, op2, types);
+ if (isOperandConstantImmediateDouble(op1)) {
+ emitGetVirtualRegister(op1, regT0);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+ } else if (isOperandConstantImmediateInt(op1)) {
+ emitLoadInt32ToDouble(op1, fpRegT0);
+ } else {
+ emitGetVirtualRegister(op1, regT0);
+ if (!types.first().definitelyIsNumber())
+ emitJumpSlowCaseIfNotImmediateNumber(regT0);
+ Jump notInt = emitJumpIfNotImmediateInteger(regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
+ Jump skipDoubleLoad = jump();
+ notInt.link(this);
+ addPtr(tagTypeNumberRegister, regT0);
+ movePtrToDouble(regT0, fpRegT0);
+ skipDoubleLoad.link(this);
+ }
+
+ if (isOperandConstantImmediateDouble(op2)) {
+ emitGetVirtualRegister(op2, regT1);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+ } else if (isOperandConstantImmediateInt(op2)) {
+ emitLoadInt32ToDouble(op2, fpRegT1);
+ } else {
+ emitGetVirtualRegister(op2, regT1);
+ if (!types.second().definitelyIsNumber())
+ emitJumpSlowCaseIfNotImmediateNumber(regT1);
+ Jump notInt = emitJumpIfNotImmediateInteger(regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
+ Jump skipDoubleLoad = jump();
+ notInt.link(this);
+ addPtr(tagTypeNumberRegister, regT1);
+ movePtrToDouble(regT1, fpRegT1);
+ skipDoubleLoad.link(this);
+ }
+ divDouble(fpRegT1, fpRegT0);
- emitPutVirtualRegister(result);
+ // Double result.
+ moveDoubleToPtr(fpRegT0, regT0);
+ subPtr(tagTypeNumberRegister, regT0);
+
+ emitPutVirtualRegister(dst, regT0);
}
-void JIT::compileFastArithSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ if (types.first().definitelyIsNumber() && types.second().definitelyIsNumber()) {
+#ifndef NDEBUG
+ breakpoint();
+#endif
+ return;
+ }
+ if (!isOperandConstantImmediateDouble(op1) && !isOperandConstantImmediateInt(op1)) {
+ if (!types.first().definitelyIsNumber())
+ linkSlowCase(iter);
+ }
+ if (!isOperandConstantImmediateDouble(op2) && !isOperandConstantImmediateInt(op2)) {
+ if (!types.second().definitelyIsNumber())
+ linkSlowCase(iter);
+ }
+ // There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
+ JITStubCall stubCall(this, cti_op_div);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
+}
- compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types);
+void JIT::emit_op_sub(Instruction* currentInstruction)
+{
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ compileBinaryArithOp(op_sub, result, op1, op2, types);
emitPutVirtualRegister(result);
}
-#else
-
-typedef X86Assembler::JmpSrc JmpSrc;
-typedef X86Assembler::JmpDst JmpDst;
-typedef X86Assembler::XMMRegisterID XMMRegisterID;
-
-#if PLATFORM(MAC)
-
-static inline bool isSSE2Present()
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- return true; // All X86 Macs are guaranteed to support at least SSE2
-}
-
-#else
+ unsigned result = currentInstruction[1].u.operand;
+ unsigned op1 = currentInstruction[2].u.operand;
+ unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
-static bool isSSE2Present()
-{
- static const int SSE2FeatureBit = 1 << 26;
- struct SSE2Check {
- SSE2Check()
- {
- int flags;
-#if COMPILER(MSVC)
- _asm {
- mov eax, 1 // cpuid function 1 gives us the standard feature set
- cpuid;
- mov flags, edx;
- }
-#else
- flags = 0;
- // FIXME: Add GCC code to do above asm
-#endif
- present = (flags & SSE2FeatureBit) != 0;
- }
- bool present;
- };
- static SSE2Check check;
- return check.present;
+ compileBinaryArithOpSlowCase(op_sub, iter, result, op1, op2, types, false, false);
}
-#endif
+#else // USE(JSVALUE64)
-/*
- This is required since number representation is canonical - values representable as a JSImmediate should not be stored in a JSNumberCell.
-
- In the common case, the double value from 'xmmSource' is written to the reusable JSNumberCell pointed to by 'jsNumberCell', then 'jsNumberCell'
- is written to the output SF Register 'dst', and then a jump is planted (stored into *wroteJSNumberCell).
-
- However if the value from xmmSource is representable as a JSImmediate, then the JSImmediate value will be written to the output, and flow
- control will fall through from the code planted.
-*/
-void JIT::putDoubleResultToJSNumberCellOrJSImmediate(X86::XMMRegisterID xmmSource, X86::RegisterID jsNumberCell, unsigned dst, JmpSrc* wroteJSNumberCell, X86::XMMRegisterID tempXmm, X86::RegisterID tempReg1, X86::RegisterID tempReg2)
-{
- // convert (double -> JSImmediate -> double), and check if the value is unchanged - in which case the value is representable as a JSImmediate.
- __ cvttsd2si_rr(xmmSource, tempReg1);
- __ addl_rr(tempReg1, tempReg1);
- __ sarl_i8r(1, tempReg1);
- __ cvtsi2sd_rr(tempReg1, tempXmm);
- // Compare & branch if immediate.
- __ ucomisd_rr(tempXmm, xmmSource);
- JmpSrc resultIsImm = __ je();
- JmpDst resultLookedLikeImmButActuallyIsnt = __ label();
-
- // Store the result to the JSNumberCell and jump.
- __ movsd_rm(xmmSource, FIELD_OFFSET(JSNumberCell, m_value), jsNumberCell);
- if (jsNumberCell != X86::eax)
- __ movl_rr(jsNumberCell, X86::eax);
- emitPutVirtualRegister(dst);
- *wroteJSNumberCell = __ jmp();
-
- __ link(resultIsImm, __ label());
- // value == (double)(JSImmediate)value... or at least, it looks that way...
- // ucomi will report that (0 == -0), and will report true if either input in NaN (result is unordered).
- __ link(__ jp(), resultLookedLikeImmButActuallyIsnt); // Actually was a NaN
- __ pextrw_irr(3, xmmSource, tempReg2);
- __ cmpl_ir(0x8000, tempReg2);
- __ link(__ je(), resultLookedLikeImmButActuallyIsnt); // Actually was -0
- // Yes it really really really is representable as a JSImmediate.
- emitFastArithIntToImmNoCheck(tempReg1, X86::eax);
- emitPutVirtualRegister(dst);
-}
+/* ------------------------------ BEGIN: !USE(JSVALUE64) (OP_ADD, OP_SUB, OP_MUL) ------------------------------ */
void JIT::compileBinaryArithOp(OpcodeID opcodeID, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
{
Structure* numberStructure = m_globalData->numberStructure.get();
- JmpSrc wasJSNumberCell1;
- JmpSrc wasJSNumberCell1b;
- JmpSrc wasJSNumberCell2;
- JmpSrc wasJSNumberCell2b;
+ Jump wasJSNumberCell1;
+ Jump wasJSNumberCell2;
- emitGetVirtualRegisters(src1, X86::eax, src2, X86::edx);
+ emitGetVirtualRegisters(src1, regT0, src2, regT1);
- if (types.second().isReusable() && isSSE2Present()) {
+ if (types.second().isReusable() && supportsFloatingPoint()) {
ASSERT(types.second().mightBeNumber());
// Check op2 is a number
- __ testl_i32r(JSImmediate::TagTypeNumber, X86::edx);
- JmpSrc op2imm = __ jne();
+ Jump op2imm = emitJumpIfImmediateInteger(regT1);
if (!types.second().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(X86::edx, src2);
- __ cmpl_im(reinterpret_cast<unsigned>(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::edx);
- addSlowCase(__ jne());
+ emitJumpSlowCaseIfNotJSCell(regT1, src2);
+ addSlowCase(checkStructure(regT1, numberStructure));
}
// (1) In this case src2 is a reusable number cell.
// Slow case if src1 is not a number type.
- __ testl_i32r(JSImmediate::TagTypeNumber, X86::eax);
- JmpSrc op1imm = __ jne();
+ Jump op1imm = emitJumpIfImmediateInteger(regT0);
if (!types.first().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(X86::eax, src1);
- __ cmpl_im(reinterpret_cast<unsigned>(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::eax);
- addSlowCase(__ jne());
+ emitJumpSlowCaseIfNotJSCell(regT0, src1);
+ addSlowCase(checkStructure(regT0, numberStructure));
}
// (1a) if we get here, src1 is also a number cell
- __ movsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0);
- JmpSrc loadedDouble = __ jmp();
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
+ Jump loadedDouble = jump();
// (1b) if we get here, src1 is an immediate
- __ link(op1imm, __ label());
- emitFastArithImmToInt(X86::eax);
- __ cvtsi2sd_rr(X86::eax, X86::xmm0);
+ op1imm.link(this);
+ emitFastArithImmToInt(regT0);
+ convertInt32ToDouble(regT0, fpRegT0);
// (1c)
- __ link(loadedDouble, __ label());
+ loadedDouble.link(this);
if (opcodeID == op_add)
- __ addsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0);
+ addDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
else if (opcodeID == op_sub)
- __ subsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0);
+ subDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
else {
ASSERT(opcodeID == op_mul);
- __ mulsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm0);
+ mulDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
}
- putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::edx, dst, &wasJSNumberCell2, X86::xmm1, X86::ecx, X86::eax);
- wasJSNumberCell2b = __ jmp();
+ // Store the result to the JSNumberCell and jump.
+ storeDouble(fpRegT0, Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+ move(regT1, regT0);
+ emitPutVirtualRegister(dst);
+ wasJSNumberCell2 = jump();
// (2) This handles cases where src2 is an immediate number.
// Two slow cases - either src1 isn't an immediate, or the subtract overflows.
- __ link(op2imm, __ label());
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- } else if (types.first().isReusable() && isSSE2Present()) {
+ op2imm.link(this);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ } else if (types.first().isReusable() && supportsFloatingPoint()) {
ASSERT(types.first().mightBeNumber());
// Check op1 is a number
- __ testl_i32r(JSImmediate::TagTypeNumber, X86::eax);
- JmpSrc op1imm = __ jne();
+ Jump op1imm = emitJumpIfImmediateInteger(regT0);
if (!types.first().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(X86::eax, src1);
- __ cmpl_im(reinterpret_cast<unsigned>(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::eax);
- addSlowCase(__ jne());
+ emitJumpSlowCaseIfNotJSCell(regT0, src1);
+ addSlowCase(checkStructure(regT0, numberStructure));
}
// (1) In this case src1 is a reusable number cell.
// Slow case if src2 is not a number type.
- __ testl_i32r(JSImmediate::TagTypeNumber, X86::edx);
- JmpSrc op2imm = __ jne();
+ Jump op2imm = emitJumpIfImmediateInteger(regT1);
if (!types.second().definitelyIsNumber()) {
- emitJumpSlowCaseIfNotJSCell(X86::edx, src2);
- __ cmpl_im(reinterpret_cast<unsigned>(numberStructure), FIELD_OFFSET(JSCell, m_structure), X86::edx);
- addSlowCase(__ jne());
+ emitJumpSlowCaseIfNotJSCell(regT1, src2);
+ addSlowCase(checkStructure(regT1, numberStructure));
}
// (1a) if we get here, src2 is also a number cell
- __ movsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::edx, X86::xmm1);
- JmpSrc loadedDouble = __ jmp();
+ loadDouble(Address(regT1, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT1);
+ Jump loadedDouble = jump();
// (1b) if we get here, src2 is an immediate
- __ link(op2imm, __ label());
- emitFastArithImmToInt(X86::edx);
- __ cvtsi2sd_rr(X86::edx, X86::xmm1);
+ op2imm.link(this);
+ emitFastArithImmToInt(regT1);
+ convertInt32ToDouble(regT1, fpRegT1);
// (1c)
- __ link(loadedDouble, __ label());
- __ movsd_mr(FIELD_OFFSET(JSNumberCell, m_value), X86::eax, X86::xmm0);
+ loadedDouble.link(this);
+ loadDouble(Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)), fpRegT0);
if (opcodeID == op_add)
- __ addsd_rr(X86::xmm1, X86::xmm0);
+ addDouble(fpRegT1, fpRegT0);
else if (opcodeID == op_sub)
- __ subsd_rr(X86::xmm1, X86::xmm0);
+ subDouble(fpRegT1, fpRegT0);
else {
ASSERT(opcodeID == op_mul);
- __ mulsd_rr(X86::xmm1, X86::xmm0);
+ mulDouble(fpRegT1, fpRegT0);
}
- __ movsd_rm(X86::xmm0, FIELD_OFFSET(JSNumberCell, m_value), X86::eax);
+ storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
emitPutVirtualRegister(dst);
- putDoubleResultToJSNumberCellOrJSImmediate(X86::xmm0, X86::eax, dst, &wasJSNumberCell1, X86::xmm1, X86::ecx, X86::edx);
- wasJSNumberCell1b = __ jmp();
+ // Store the result to the JSNumberCell and jump.
+ storeDouble(fpRegT0, Address(regT0, OBJECT_OFFSETOF(JSNumberCell, m_value)));
+ emitPutVirtualRegister(dst);
+ wasJSNumberCell1 = jump();
// (2) This handles cases where src1 is an immediate number.
// Two slow cases - either src2 isn't an immediate, or the subtract overflows.
- __ link(op1imm, __ label());
- emitJumpSlowCaseIfNotImmediateInteger(X86::edx);
+ op1imm.link(this);
+ emitJumpSlowCaseIfNotImmediateInteger(regT1);
} else
- emitJumpSlowCaseIfNotImmediateIntegers(X86::eax, X86::edx, X86::ecx);
+ emitJumpSlowCaseIfNotImmediateIntegers(regT0, regT1, regT2);
if (opcodeID == op_add) {
- emitFastArithDeTagImmediate(X86::eax);
- __ addl_rr(X86::edx, X86::eax);
- addSlowCase(__ jo());
+ emitFastArithDeTagImmediate(regT0);
+ addSlowCase(branchAdd32(Overflow, regT1, regT0));
} else if (opcodeID == op_sub) {
- __ subl_rr(X86::edx, X86::eax);
- addSlowCase(__ jo());
- signExtend32ToPtr(X86::eax, X86::eax);
- emitFastArithReTagImmediate(X86::eax, X86::eax);
+ addSlowCase(branchSub32(Overflow, regT1, regT0));
+ signExtend32ToPtr(regT0, regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
} else {
ASSERT(opcodeID == op_mul);
// convert eax & edx from JSImmediates to ints, and check if either are zero
- emitFastArithImmToInt(X86::edx);
- JmpSrc op1Zero = emitFastArithDeTagImmediateJumpIfZero(X86::eax);
- __ testl_rr(X86::edx, X86::edx);
- JmpSrc op2NonZero = __ jne();
- __ link(op1Zero, __ label());
+ emitFastArithImmToInt(regT1);
+ Jump op1Zero = emitFastArithDeTagImmediateJumpIfZero(regT0);
+ Jump op2NonZero = branchTest32(NonZero, regT1);
+ op1Zero.link(this);
// if either input is zero, add the two together, and check if the result is < 0.
// If it is, we have a problem (N < 0), (N * 0) == -0, not representatble as a JSImmediate.
- __ movl_rr(X86::eax, X86::ecx);
- __ addl_rr(X86::edx, X86::ecx);
- addSlowCase(__ js());
+ move(regT0, regT2);
+ addSlowCase(branchAdd32(Signed, regT1, regT2));
// Skip the above check if neither input is zero
- __ link(op2NonZero, __ label());
- __ imull_rr(X86::edx, X86::eax);
- addSlowCase(__ jo());
- signExtend32ToPtr(X86::eax, X86::eax);
- emitFastArithReTagImmediate(X86::eax, X86::eax);
+ op2NonZero.link(this);
+ addSlowCase(branchMul32(Overflow, regT1, regT0));
+ signExtend32ToPtr(regT0, regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
}
emitPutVirtualRegister(dst);
- if (types.second().isReusable() && isSSE2Present()) {
- __ link(wasJSNumberCell2, __ label());
- __ link(wasJSNumberCell2b, __ label());
- }
- else if (types.first().isReusable() && isSSE2Present()) {
- __ link(wasJSNumberCell1, __ label());
- __ link(wasJSNumberCell1b, __ label());
- }
+ if (types.second().isReusable() && supportsFloatingPoint())
+ wasJSNumberCell2.link(this);
+ else if (types.first().isReusable() && supportsFloatingPoint())
+ wasJSNumberCell1.link(this);
}
void JIT::compileBinaryArithOpSlowCase(OpcodeID opcodeID, Vector<SlowCaseEntry>::iterator& iter, unsigned dst, unsigned src1, unsigned src2, OperandTypes types)
{
linkSlowCase(iter);
- if (types.second().isReusable() && isSSE2Present()) {
+ if (types.second().isReusable() && supportsFloatingPoint()) {
if (!types.first().definitelyIsNumber()) {
linkSlowCaseIfNotJSCell(iter, src1);
linkSlowCase(iter);
linkSlowCaseIfNotJSCell(iter, src2);
linkSlowCase(iter);
}
- } else if (types.first().isReusable() && isSSE2Present()) {
+ } else if (types.first().isReusable() && supportsFloatingPoint()) {
if (!types.first().definitelyIsNumber()) {
linkSlowCaseIfNotJSCell(iter, src1);
linkSlowCase(iter);
if (opcodeID == op_mul)
linkSlowCase(iter);
- emitPutJITStubArgFromVirtualRegister(src1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(src2, 2, X86::ecx);
- if (opcodeID == op_add)
- emitCTICall(Interpreter::cti_op_add);
- else if (opcodeID == op_sub)
- emitCTICall(Interpreter::cti_op_sub);
- else {
- ASSERT(opcodeID == op_mul);
- emitCTICall(Interpreter::cti_op_mul);
- }
- emitPutVirtualRegister(dst);
+ JITStubCall stubCall(this, opcodeID == op_add ? cti_op_add : opcodeID == op_sub ? cti_op_sub : cti_op_mul);
+ stubCall.addArgument(src1, regT2);
+ stubCall.addArgument(src2, regT2);
+ stubCall.call(dst);
}
-void JIT::compileFastArith_op_add(Instruction* currentInstruction)
+void JIT::emit_op_add(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
+ return;
+ }
if (isOperandConstantImmediateInt(op1)) {
- emitGetVirtualRegister(op2, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
+ emitGetVirtualRegister(op2, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0));
+ signExtend32ToPtr(regT0, regT0);
emitPutVirtualRegister(result);
} else if (isOperandConstantImmediateInt(op2)) {
- emitGetVirtualRegister(op1, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- addSlowCase(joAdd32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ addSlowCase(branchAdd32(Overflow, Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0));
+ signExtend32ToPtr(regT0, regT0);
emitPutVirtualRegister(result);
} else {
- OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (types.first().mightBeNumber() && types.second().mightBeNumber())
- compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
- else {
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_add);
- emitPutVirtualRegister(result);
- }
+ compileBinaryArithOp(op_add, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
}
-void JIT::compileFastArithSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
+ OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ return;
+
if (isOperandConstantImmediateInt(op1)) {
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), X86::eax);
+ sub32(Imm32(getConstantOperandImmediateInt(op1) << JSImmediate::IntegerPayloadShift), regT0);
notImm.link(this);
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArg(X86::eax, 2);
- emitCTICall(Interpreter::cti_op_add);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(regT0);
+ stubCall.call(result);
} else if (isOperandConstantImmediateInt(op2)) {
Jump notImm = getSlowCase(iter);
linkSlowCase(iter);
- sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), X86::eax);
+ sub32(Imm32(getConstantOperandImmediateInt(op2) << JSImmediate::IntegerPayloadShift), regT0);
notImm.link(this);
- emitPutJITStubArg(X86::eax, 1);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_add);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_add);
+ stubCall.addArgument(regT0);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
} else {
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
ASSERT(types.first().mightBeNumber() && types.second().mightBeNumber());
}
}
-void JIT::compileFastArith_op_mul(Instruction* currentInstruction)
+void JIT::emit_op_mul(Instruction* currentInstruction)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
// For now, only plant a fast int case if the constant operand is greater than zero.
int32_t value;
if (isOperandConstantImmediateInt(op1) && ((value = getConstantOperandImmediateInt(op1)) > 0)) {
- emitGetVirtualRegister(op2, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitFastArithDeTagImmediate(X86::eax);
- addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
- emitFastArithReTagImmediate(X86::eax, X86::eax);
+ emitGetVirtualRegister(op2, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitFastArithDeTagImmediate(regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+ signExtend32ToPtr(regT0, regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
} else if (isOperandConstantImmediateInt(op2) && ((value = getConstantOperandImmediateInt(op2)) > 0)) {
- emitGetVirtualRegister(op1, X86::eax);
- emitJumpSlowCaseIfNotImmediateInteger(X86::eax);
- emitFastArithDeTagImmediate(X86::eax);
- addSlowCase(joMul32(Imm32(value), X86::eax, X86::eax));
- signExtend32ToPtr(X86::eax, X86::eax);
- emitFastArithReTagImmediate(X86::eax, X86::eax);
+ emitGetVirtualRegister(op1, regT0);
+ emitJumpSlowCaseIfNotImmediateInteger(regT0);
+ emitFastArithDeTagImmediate(regT0);
+ addSlowCase(branchMul32(Overflow, Imm32(value), regT0, regT0));
+ signExtend32ToPtr(regT0, regT0);
+ emitFastArithReTagImmediate(regT0, regT0);
emitPutVirtualRegister(result);
} else
compileBinaryArithOp(op_mul, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
-void JIT::compileFastArithSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
// There is an extra slow case for (op1 * -N) or (-N * op2), to check for 0 since this should produce a result of -0.
- emitPutJITStubArgFromVirtualRegister(op1, 1, X86::ecx);
- emitPutJITStubArgFromVirtualRegister(op2, 2, X86::ecx);
- emitCTICall(Interpreter::cti_op_mul);
- emitPutVirtualRegister(result);
+ JITStubCall stubCall(this, cti_op_mul);
+ stubCall.addArgument(op1, regT2);
+ stubCall.addArgument(op2, regT2);
+ stubCall.call(result);
} else
compileBinaryArithOpSlowCase(op_mul, iter, result, op1, op2, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
-void JIT::compileFastArith_op_sub(Instruction* currentInstruction)
+void JIT::emit_op_sub(Instruction* currentInstruction)
{
compileBinaryArithOp(op_sub, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
-void JIT::compileFastArithSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+
+void JIT::emitSlow_op_sub(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
compileBinaryArithOpSlowCase(op_sub, iter, currentInstruction[1].u.operand, currentInstruction[2].u.operand, currentInstruction[3].u.operand, OperandTypes::fromInt(currentInstruction[4].u.operand));
}
-#endif
+#endif // USE(JSVALUE64)
+
+/* ------------------------------ END: OP_ADD, OP_SUB, OP_MUL ------------------------------ */
+
+#endif // USE(JSVALUE32_64)
} // namespace JSC