#include "JIT.h"
#include "CodeBlock.h"
-#include "JITInlineMethods.h"
+#include "JITInlines.h"
#include "JITStubCall.h"
#include "JITStubs.h"
#include "JSArray.h"
#include "JSFunction.h"
#include "Interpreter.h"
+#include "Operations.h"
#include "ResultType.h"
#include "SamplingTool.h"
stubCall.call(dst);
}
-void JIT::emit_op_jnless(Instruction* currentInstruction)
+void JIT::emit_compareAndJump(OpcodeID opcode, unsigned op1, unsigned op2, unsigned target, RelationalCondition condition)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- JumpList notInt32Op1;
- JumpList notInt32Op2;
-
- // Character less.
- if (isOperandConstantImmediateChar(op1)) {
- emitLoad(op2, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitLoad(op1, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op1)) {
- // Int32 less.
- emitLoad(op2, regT3, regT2);
- notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
- } else if (isOperandConstantImmediateInt(op2)) {
- emitLoad(op1, regT1, regT0);
- notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
- } else {
- emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
- notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThanOrEqual, regT0, regT2), target);
- }
-
- if (!supportsFloatingPoint()) {
- addSlowCase(notInt32Op1);
- addSlowCase(notInt32Op2);
- return;
- }
- Jump end = jump();
-
- // Double less.
- emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
- end.link(this);
-}
-
-void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- } else {
- if (!supportsFloatingPoint()) {
- if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
- linkSlowCase(iter); // int32 check
- linkSlowCase(iter); // int32 check
- } else {
- if (!isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter); // double check
- linkSlowCase(iter); // int32 check
- }
- if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
- linkSlowCase(iter); // double check
- }
- }
-
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1);
- stubCall.addArgument(op2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(Zero, regT0), target);
-}
-
-void JIT::emit_op_jless(Instruction* currentInstruction)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
JumpList notInt32Op1;
JumpList notInt32Op2;
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
+ addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateChar(op2)) {
JumpList failures;
emitLoadCharacterString(regT0, regT0, failures);
addSlowCase(failures);
- addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
+ addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
return;
}
if (isOperandConstantImmediateInt(op1)) {
emitLoad(op2, regT3, regT2);
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
- } else if (isOperandConstantImmediateInt(op2)) {
- emitLoad(op1, regT1, regT0);
- notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
- } else {
- emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
- notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(LessThan, regT0, regT2), target);
- }
-
- if (!supportsFloatingPoint()) {
- addSlowCase(notInt32Op1);
- addSlowCase(notInt32Op2);
- return;
- }
- Jump end = jump();
-
- // Double less.
- emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
- end.link(this);
-}
-
-void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- linkSlowCase(iter);
- } else {
- if (!supportsFloatingPoint()) {
- if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2))
- linkSlowCase(iter); // int32 check
- linkSlowCase(iter); // int32 check
- } else {
- if (!isOperandConstantImmediateInt(op1)) {
- linkSlowCase(iter); // double check
- linkSlowCase(iter); // int32 check
- }
- if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2))
- linkSlowCase(iter); // double check
- }
- }
- JITStubCall stubCall(this, cti_op_jless);
- stubCall.addArgument(op1);
- stubCall.addArgument(op2);
- stubCall.call();
- emitJumpSlowToHot(branchTest32(NonZero, regT0), target);
-}
-
-void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert)
-{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
- JumpList notInt32Op1;
- JumpList notInt32Op2;
-
- // Character less.
- if (isOperandConstantImmediateChar(op1)) {
- emitLoad(op2, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateChar(op2)) {
- emitLoad(op1, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag)));
- JumpList failures;
- emitLoadCharacterString(regT0, regT0, failures);
- addSlowCase(failures);
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target);
- return;
- }
- if (isOperandConstantImmediateInt(op1)) {
- emitLoad(op2, regT3, regT2);
- notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target);
+ addJump(branch32(commute(condition), regT2, Imm32(getConstantOperand(op1).asInt32())), target);
} else if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
+ addJump(branch32(condition, regT0, Imm32(getConstantOperand(op2).asInt32())), target);
} else {
emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT2), target);
+ addJump(branch32(condition, regT0, regT2), target);
}
if (!supportsFloatingPoint()) {
Jump end = jump();
// Double less.
- emitBinaryDoubleOp(invert ? op_jnlesseq : op_jlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
+ emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2));
end.link(this);
}
-void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool invert)
+void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector<SlowCaseEntry>::iterator& iter)
{
- unsigned op1 = currentInstruction[1].u.operand;
- unsigned op2 = currentInstruction[2].u.operand;
- unsigned target = currentInstruction[3].u.operand;
-
if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) {
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter); // double check
}
}
-
- JITStubCall stubCall(this, cti_op_jlesseq);
+ JITStubCall stubCall(this, stub);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
stubCall.call();
emitJumpSlowToHot(branchTest32(invert ? Zero : NonZero, regT0), target);
}
-void JIT::emit_op_jnlesseq(Instruction* currentInstruction)
-{
- emit_op_jlesseq(currentInstruction, true);
-}
-
-void JIT::emitSlow_op_jnlesseq(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- emitSlow_op_jlesseq(currentInstruction, iter, true);
-}
-
// LeftShift (<<)
void JIT::emit_op_lshift(Instruction* currentInstruction)
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0);
- emitStoreInt32(dst, regT0, dst == op1);
+ emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_lshift));
return;
}
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
lshift32(regT2, regT0);
- emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
+ emitStoreAndMapInt32(dst, regT1, regT0, dst == op1 || dst == op2, OPCODE_LENGTH(op_lshift));
}
void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
if (isOperandConstantImmediateInt(op2)) {
emitLoad(op1, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- int shift = getConstantOperand(op2).asInt32();
+ int shift = getConstantOperand(op2).asInt32() & 0x1f;
+ if (shift) {
+ if (isUnsigned)
+ urshift32(Imm32(shift), regT0);
+ else
+ rshift32(Imm32(shift), regT0);
+ } else if (isUnsigned) // signed right shift by zero is simply toInt conversion
+ addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
+ emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_rshift));
+ } else {
+ emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
+ if (!isOperandConstantImmediateInt(op1))
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
if (isUnsigned) {
- if (shift)
- urshift32(Imm32(shift & 0x1f), regT0);
- // unsigned shift < 0 or shift = k*2^32 may result in (essentially)
- // a toUint conversion, which can result in a value we can represent
- // as an immediate int.
- if (shift < 0 || !(shift & 31))
- addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
- } else if (shift) { // signed right shift by zero is simply toInt conversion
- rshift32(Imm32(shift & 0x1f), regT0);
- }
- emitStoreInt32(dst, regT0, dst == op1);
- return;
+ urshift32(regT2, regT0);
+ addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
+ } else
+ rshift32(regT2, regT0);
+ emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_rshift));
}
-
- emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
- if (!isOperandConstantImmediateInt(op1))
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
- if (isUnsigned) {
- urshift32(regT2, regT0);
- addSlowCase(branch32(LessThan, regT0, TrustedImm32(0)));
- } else
- rshift32(regT2, regT0);
- emitStoreInt32(dst, regT0, dst == op1 || dst == op2);
}
void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter, bool isUnsigned)
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
if (isOperandConstantImmediateInt(op2)) {
- int shift = getConstantOperand(op2).asInt32();
+ int shift = getConstantOperand(op2).asInt32() & 0x1f;
// op1 = regT1:regT0
linkSlowCase(iter); // int32 check
if (supportsFloatingPointTruncate()) {
failures.append(branch32(AboveOrEqual, regT1, TrustedImm32(JSValue::LowestTag)));
emitLoadDouble(op1, fpRegT0);
failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
- if (isUnsigned) {
- if (shift)
- urshift32(Imm32(shift & 0x1f), regT0);
- if (shift < 0 || !(shift & 31))
- failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
- } else if (shift)
- rshift32(Imm32(shift & 0x1f), regT0);
+ if (shift) {
+ if (isUnsigned)
+ urshift32(Imm32(shift), regT0);
+ else
+ rshift32(Imm32(shift), regT0);
+ } else if (isUnsigned) // signed right shift by zero is simply toInt conversion
+ failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
+ move(TrustedImm32(JSValue::Int32Tag), regT1);
emitStoreInt32(dst, regT0, false);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
failures.link(this);
}
- if (isUnsigned && (shift < 0 || !(shift & 31)))
+ if (isUnsigned && !shift)
linkSlowCase(iter); // failed to box in hot path
} else {
// op1 = regT1:regT0
if (!isOperandConstantImmediateInt(op1)) {
linkSlowCase(iter); // int32 check -- op1 is not an int
if (supportsFloatingPointTruncate()) {
- Jump notDouble = branch32(Above, regT1, TrustedImm32(JSValue::LowestTag)); // op1 is not a double
+ JumpList failures;
+ failures.append(branch32(Above, regT1, TrustedImm32(JSValue::LowestTag))); // op1 is not a double
emitLoadDouble(op1, fpRegT0);
- Jump notInt = branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)); // op2 is not an int
- Jump cantTruncate = branchTruncateDoubleToInt32(fpRegT0, regT0);
- if (isUnsigned)
+ failures.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); // op2 is not an int
+ failures.append(branchTruncateDoubleToInt32(fpRegT0, regT0));
+ if (isUnsigned) {
urshift32(regT2, regT0);
- else
+ failures.append(branch32(LessThan, regT0, TrustedImm32(0)));
+ } else
rshift32(regT2, regT0);
+ move(TrustedImm32(JSValue::Int32Tag), regT1);
emitStoreInt32(dst, regT0, false);
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_rshift));
- notDouble.link(this);
- notInt.link(this);
- cantTruncate.link(this);
+ failures.link(this);
}
}
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
and32(Imm32(constant), regT0);
- emitStoreInt32(dst, regT0, (op == dst));
+ emitStoreAndMapInt32(dst, regT1, regT0, dst == op, OPCODE_LENGTH(op_bitand));
return;
}
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
and32(regT2, regT0);
- emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+ emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitand));
}
void JIT::emitSlow_op_bitand(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
or32(Imm32(constant), regT0);
- emitStoreInt32(dst, regT0, (op == dst));
+ emitStoreAndMapInt32(dst, regT1, regT0, op == dst, OPCODE_LENGTH(op_bitor));
return;
}
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
or32(regT2, regT0);
- emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+ emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitor));
}
void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
emitLoad(op, regT1, regT0);
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
xor32(Imm32(constant), regT0);
- emitStoreInt32(dst, regT0, (op == dst));
+ emitStoreAndMapInt32(dst, regT1, regT0, op == dst, OPCODE_LENGTH(op_bitxor));
return;
}
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
xor32(regT2, regT0);
- emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
+ emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitxor));
}
void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
stubCall.call(dst);
}
-// BitNot (~)
-
-void JIT::emit_op_bitnot(Instruction* currentInstruction)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned src = currentInstruction[2].u.operand;
-
- emitLoad(src, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
-
- not32(regT0);
- emitStoreInt32(dst, regT0, (dst == src));
-}
-
-void JIT::emitSlow_op_bitnot(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned dst = currentInstruction[1].u.operand;
-
- linkSlowCase(iter); // int32 check
-
- JITStubCall stubCall(this, cti_op_bitnot);
- stubCall.addArgument(regT1, regT0);
- stubCall.call(dst);
-}
-
-// PostInc (i++)
-
-void JIT::emit_op_post_inc(Instruction* currentInstruction)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- emitLoad(srcDst, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
-
- if (dst == srcDst) // x = x++ is a noop for ints.
- return;
-
- emitStoreInt32(dst, regT0);
-
- addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0));
- emitStoreInt32(srcDst, regT0, true);
-}
-
-void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- linkSlowCase(iter); // int32 check
- if (dst != srcDst)
- linkSlowCase(iter); // overflow check
-
- JITStubCall stubCall(this, cti_op_post_inc);
- stubCall.addArgument(srcDst);
- stubCall.addArgument(Imm32(srcDst));
- stubCall.call(dst);
-}
-
-// PostDec (i--)
-
-void JIT::emit_op_post_dec(Instruction* currentInstruction)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- emitLoad(srcDst, regT1, regT0);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
-
- if (dst == srcDst) // x = x-- is a noop for ints.
- return;
-
- emitStoreInt32(dst, regT0);
-
- addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
- emitStoreInt32(srcDst, regT0, true);
-}
-
-void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned srcDst = currentInstruction[2].u.operand;
-
- linkSlowCase(iter); // int32 check
- if (dst != srcDst)
- linkSlowCase(iter); // overflow check
-
- JITStubCall stubCall(this, cti_op_post_dec);
- stubCall.addArgument(srcDst);
- stubCall.addArgument(TrustedImm32(srcDst));
- stubCall.call(dst);
-}
-
-// PreInc (++i)
-
-void JIT::emit_op_pre_inc(Instruction* currentInstruction)
+void JIT::emit_op_inc(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0));
- emitStoreInt32(srcDst, regT0, true);
+ emitStoreAndMapInt32(srcDst, regT1, regT0, true, OPCODE_LENGTH(op_inc));
}
-void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
- JITStubCall stubCall(this, cti_op_pre_inc);
+ JITStubCall stubCall(this, cti_op_inc);
stubCall.addArgument(srcDst);
stubCall.call(srcDst);
}
-// PreDec (--i)
-
-void JIT::emit_op_pre_dec(Instruction* currentInstruction)
+void JIT::emit_op_dec(Instruction* currentInstruction)
{
unsigned srcDst = currentInstruction[1].u.operand;
addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0));
- emitStoreInt32(srcDst, regT0, true);
+ emitStoreAndMapInt32(srcDst, regT1, regT0, true, OPCODE_LENGTH(op_dec));
}
-void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
+void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
unsigned srcDst = currentInstruction[1].u.operand;
linkSlowCase(iter); // int32 check
linkSlowCase(iter); // overflow check
- JITStubCall stubCall(this, cti_op_pre_dec);
+ JITStubCall stubCall(this, cti_op_dec);
stubCall.addArgument(srcDst);
stubCall.call(srcDst);
}
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ addSlowCase();
JITStubCall stubCall(this, cti_op_add);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType)
{
// Int32 case.
- emitLoad(op, regT1, regT0);
+ emitLoad(op, regT1, regT2);
Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
- addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0));
+ addSlowCase(branchAdd32(Overflow, regT2, Imm32(constant), regT0));
emitStoreInt32(dst, regT0, (op == dst));
// Double case.
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
- if (!types.first().mightBeNumber() || !types.second().mightBeNumber())
+ if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) {
+ linkDummySlowCase(iter);
return;
+ }
unsigned op;
int32_t constant;
// Int32 case.
emitLoad(op, regT1, regT0);
Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag));
- addSlowCase(branchSub32(Overflow, Imm32(constant), regT0));
- emitStoreInt32(dst, regT0, (op == dst));
+#if ENABLE(JIT_CONSTANT_BLINDING)
+ addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2, regT3));
+#else
+ addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2));
+#endif
+
+ emitStoreInt32(dst, regT2, (op == dst));
// Double case.
if (!supportsFloatingPoint()) {
subDouble(fpRegT0, fpRegT1);
emitStoreDouble(dst, fpRegT1);
break;
- case op_div:
+ case op_div: {
emitLoadDouble(op1, fpRegT1);
divDouble(fpRegT0, fpRegT1);
+
+#if ENABLE(VALUE_PROFILER)
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT1, regT2, notInteger, fpRegT0);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitStoreInt32(dst, regT2);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
emitStoreDouble(dst, fpRegT1);
+ isInteger.link(this);
+#else
+ emitStoreDouble(dst, fpRegT1);
+#endif
break;
- case op_jnless:
- emitLoadDouble(op1, fpRegT2);
- addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
- break;
+ }
case op_jless:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst);
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrEqual, fpRegT2, fpRegT0), dst);
break;
+ case op_jgreater:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleGreaterThan, fpRegT2, fpRegT0), dst);
+ break;
+ case op_jgreatereq:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT2, fpRegT0), dst);
+ break;
+ case op_jnless:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
case op_jnlesseq:
emitLoadDouble(op1, fpRegT2);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst);
break;
+ case op_jngreater:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
+ case op_jngreatereq:
+ emitLoadDouble(op1, fpRegT2);
+ addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT0, fpRegT2), dst);
+ break;
default:
- ASSERT_NOT_REACHED();
+ RELEASE_ASSERT_NOT_REACHED();
}
if (!notInt32Op2.empty())
subDouble(fpRegT2, fpRegT0);
emitStoreDouble(dst, fpRegT0);
break;
- case op_div:
+ case op_div: {
emitLoadDouble(op2, fpRegT2);
divDouble(fpRegT2, fpRegT0);
+#if ENABLE(VALUE_PROFILER)
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitStoreInt32(dst, regT2);
+ Jump isInteger = jump();
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
emitStoreDouble(dst, fpRegT0);
+ isInteger.link(this);
+#else
+ emitStoreDouble(dst, fpRegT0);
+#endif
break;
- case op_jnless:
- emitLoadDouble(op2, fpRegT1);
- addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
- break;
+ }
case op_jless:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst);
break;
+ case op_jlesseq:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst);
+ break;
+ case op_jgreater:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleGreaterThan, fpRegT0, fpRegT1), dst);
+ break;
+ case op_jgreatereq:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT0, fpRegT1), dst);
+ break;
+ case op_jnless:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
case op_jnlesseq:
emitLoadDouble(op2, fpRegT1);
addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
- case op_jlesseq:
+ case op_jngreater:
emitLoadDouble(op2, fpRegT1);
- addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst);
+ addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst);
+ break;
+ case op_jngreatereq:
+ emitLoadDouble(op2, fpRegT1);
+ addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT1, fpRegT0), dst);
break;
default:
- ASSERT_NOT_REACHED();
+ RELEASE_ASSERT_NOT_REACHED();
}
}
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+#if ENABLE(VALUE_PROFILER)
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
+
JumpList notInt32Op1;
JumpList notInt32Op2;
emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul));
negZero.link(this);
+#if ENABLE(VALUE_PROFILER)
+ // We only get here if we have a genuine negative zero. Record this,
+ // so that the speculative JIT knows that we failed speculation
+ // because of a negative zero.
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
+#endif
overflow.link(this);
if (!supportsFloatingPoint()) {
unsigned op2 = currentInstruction[3].u.operand;
OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand);
+#if ENABLE(VALUE_PROFILER)
+ m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset);
+#endif
+
if (!supportsFloatingPoint()) {
addSlowCase(jump());
return;
convertInt32ToDouble(regT0, fpRegT0);
convertInt32ToDouble(regT2, fpRegT1);
divDouble(fpRegT1, fpRegT0);
+#if ENABLE(VALUE_PROFILER)
+ // Is the result actually an integer? The DFG JIT would really like to know. If it's
+ // not an integer, we increment a count. If this together with the slow case counter
+ // are below threshold then the DFG JIT will compile this division with a specualtion
+ // that the remainder is zero.
+
+ // As well, there are cases where a double result here would cause an important field
+ // in the heap to sometimes have doubles in it, resulting in double predictions getting
+ // propagated to a use site where it might cause damage (such as the index to an array
+ // access). So if we are DFG compiling anything in the program, we want this code to
+ // ensure that it produces integers whenever possible.
+
+ // FIXME: This will fail to convert to integer if the result is zero. We should
+ // distinguish between positive zero and negative zero here.
+
+ JumpList notInteger;
+ branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1);
+ // If we've got an integer, we might as well make that the result of the division.
+ emitStoreInt32(dst, regT2);
+ end.append(jump());
+ notInteger.link(this);
+ add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter));
+ emitStoreDouble(dst, fpRegT0);
+#else
emitStoreDouble(dst, fpRegT0);
+#endif
end.append(jump());
// Double divide.
/* ------------------------------ BEGIN: OP_MOD ------------------------------ */
-#if CPU(X86) || CPU(X86_64) || CPU(MIPS)
-
void JIT::emit_op_mod(Instruction* currentInstruction)
{
unsigned dst = currentInstruction[1].u.operand;
ASSERT(regT1 == X86Registers::edx);
ASSERT(regT2 == X86Registers::ecx);
ASSERT(regT3 == X86Registers::ebx);
-#endif
- if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
- emitLoad(op1, regT1, regT0);
- move(Imm32(getConstantOperand(op2).asInt32()), regT2);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- if (getConstantOperand(op2).asInt32() == -1)
- addSlowCase(branch32(Equal, regT0, TrustedImm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
- } else {
- emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
-
- addSlowCase(branch32(Equal, regT0, TrustedImm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC
- addSlowCase(branch32(Equal, regT2, TrustedImm32(0))); // divide by 0
- }
+ emitLoad2(op1, regT0, regT3, op2, regT1, regT2);
+ addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
+ addSlowCase(branch32(NotEqual, regT0, TrustedImm32(JSValue::Int32Tag)));
- move(regT0, regT3); // Save dividend payload, in case of 0.
-#if CPU(X86) || CPU(X86_64)
+ move(regT3, regT0);
+ addSlowCase(branchTest32(Zero, regT2));
+ Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1));
+ addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1)));
+ denominatorNotNeg1.link(this);
m_assembler.cdq();
m_assembler.idivl_r(regT2);
-#elif CPU(MIPS)
- m_assembler.div(regT0, regT2);
- m_assembler.mfhi(regT1);
-#endif
-
- // If the remainder is zero and the dividend is negative, the result is -0.
- Jump storeResult1 = branchTest32(NonZero, regT1);
- Jump storeResult2 = branchTest32(Zero, regT3, TrustedImm32(0x80000000)); // not negative
- emitStore(dst, jsNumber(-0.0));
- Jump end = jump();
-
- storeResult1.link(this);
- storeResult2.link(this);
+ Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0));
+ addSlowCase(branchTest32(Zero, regT1));
+ numeratorPositive.link(this);
emitStoreInt32(dst, regT1, (op1 == dst || op2 == dst));
- end.link(this);
-}
-
-void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
- if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) {
- linkSlowCase(iter); // int32 check
- if (getConstantOperand(op2).asInt32() == -1)
- linkSlowCase(iter); // 0x80000000 check
- } else {
- linkSlowCase(iter); // int32 check
- linkSlowCase(iter); // int32 check
- linkSlowCase(iter); // 0 check
- linkSlowCase(iter); // 0x80000000 check
- }
-
- JITStubCall stubCall(this, cti_op_mod);
- stubCall.addArgument(op1);
- stubCall.addArgument(op2);
- stubCall.call(dst);
-}
-
-#else // CPU(X86) || CPU(X86_64) || CPU(MIPS)
-
-void JIT::emit_op_mod(Instruction* currentInstruction)
-{
- unsigned dst = currentInstruction[1].u.operand;
- unsigned op1 = currentInstruction[2].u.operand;
- unsigned op2 = currentInstruction[3].u.operand;
-
-#if ENABLE(JIT_USE_SOFT_MODULO)
- emitLoad2(op1, regT1, regT0, op2, regT3, regT2);
- addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)));
- addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag)));
-
- addSlowCase(branch32(Equal, regT2, TrustedImm32(0)));
-
- emitNakedCall(m_globalData->jitStubs->ctiSoftModulo());
-
- emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst));
#else
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector<SlowCaseEntry>::iterator& iter)
{
- UNUSED_PARAM(currentInstruction);
- UNUSED_PARAM(iter);
-#if ENABLE(JIT_USE_SOFT_MODULO)
+#if CPU(X86) || CPU(X86_64)
unsigned result = currentInstruction[1].u.operand;
unsigned op1 = currentInstruction[2].u.operand;
unsigned op2 = currentInstruction[3].u.operand;
linkSlowCase(iter);
linkSlowCase(iter);
linkSlowCase(iter);
+ linkSlowCase(iter);
+ linkSlowCase(iter);
JITStubCall stubCall(this, cti_op_mod);
stubCall.addArgument(op1);
stubCall.addArgument(op2);
#else
UNUSED_PARAM(currentInstruction);
UNUSED_PARAM(iter);
- ASSERT_NOT_REACHED();
+ // We would have really useful assertions here if it wasn't for the compiler's
+ // insistence on attribute noreturn.
+ // RELEASE_ASSERT_NOT_REACHED();
#endif
}
-#endif // CPU(X86) || CPU(X86_64)
-
/* ------------------------------ END: OP_MOD ------------------------------ */
} // namespace JSC