X-Git-Url: https://git.saurik.com/apple/javascriptcore.git/blobdiff_plain/14957cd040308e3eeec43d26bae5d76da13fcd85..4be4e30906bcb8ee30b4d189205cb70bad6707ce:/jit/JITArithmetic32_64.cpp diff --git a/jit/JITArithmetic32_64.cpp b/jit/JITArithmetic32_64.cpp index 6794654..c1caf61 100644 --- a/jit/JITArithmetic32_64.cpp +++ b/jit/JITArithmetic32_64.cpp @@ -30,12 +30,13 @@ #include "JIT.h" #include "CodeBlock.h" -#include "JITInlineMethods.h" +#include "JITInlines.h" #include "JITStubCall.h" #include "JITStubs.h" #include "JSArray.h" #include "JSFunction.h" #include "Interpreter.h" +#include "Operations.h" #include "ResultType.h" #include "SamplingTool.h" @@ -84,101 +85,8 @@ void JIT::emitSlow_op_negate(Instruction* currentInstruction, VectortryGetValue()[0])), target); - return; - } - if (isOperandConstantImmediateChar(op2)) { - emitLoad(op1, regT1, regT0); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); - JumpList failures; - emitLoadCharacterString(regT0, regT0, failures); - addSlowCase(failures); - addJump(branch32(GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); - return; - } - if (isOperandConstantImmediateInt(op1)) { - // Int32 less. - emitLoad(op2, regT3, regT2); - notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(LessThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target); - } else if (isOperandConstantImmediateInt(op2)) { - emitLoad(op1, regT1, regT0); - notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(GreaterThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target); - } else { - emitLoad2(op1, regT1, regT0, op2, regT3, regT2); - notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(GreaterThanOrEqual, regT0, regT2), target); - } - - if (!supportsFloatingPoint()) { - addSlowCase(notInt32Op1); - addSlowCase(notInt32Op2); - return; - } - Jump end = jump(); - - // Double less. - emitBinaryDoubleOp(op_jnless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); - end.link(this); -} - -void JIT::emitSlow_op_jnless(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned op1 = currentInstruction[1].u.operand; - unsigned op2 = currentInstruction[2].u.operand; - unsigned target = currentInstruction[3].u.operand; - - if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { - linkSlowCase(iter); - linkSlowCase(iter); - linkSlowCase(iter); - linkSlowCase(iter); - } else { - if (!supportsFloatingPoint()) { - if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) - linkSlowCase(iter); // int32 check - linkSlowCase(iter); // int32 check - } else { - if (!isOperandConstantImmediateInt(op1)) { - linkSlowCase(iter); // double check - linkSlowCase(iter); // int32 check - } - if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) - linkSlowCase(iter); // double check - } - } - - JITStubCall stubCall(this, cti_op_jless); - stubCall.addArgument(op1); - stubCall.addArgument(op2); - stubCall.call(); - emitJumpSlowToHot(branchTest32(Zero, regT0), target); -} - -void JIT::emit_op_jless(Instruction* currentInstruction) -{ - unsigned op1 = currentInstruction[1].u.operand; - unsigned op2 = currentInstruction[2].u.operand; - unsigned target = currentInstruction[3].u.operand; - JumpList notInt32Op1; JumpList notInt32Op2; @@ -189,7 +97,7 @@ void JIT::emit_op_jless(Instruction* currentInstruction) JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); - addJump(branch32(GreaterThan, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); + addJump(branch32(commute(condition), regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateChar(op2)) { @@ -198,109 +106,22 @@ void JIT::emit_op_jless(Instruction* currentInstruction) JumpList failures; emitLoadCharacterString(regT0, regT0, failures); addSlowCase(failures); - addJump(branch32(LessThan, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); + addJump(branch32(condition, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); return; } if (isOperandConstantImmediateInt(op1)) { emitLoad(op2, regT3, regT2); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(GreaterThan, regT2, Imm32(getConstantOperand(op1).asInt32())), target); - } else if (isOperandConstantImmediateInt(op2)) { - emitLoad(op1, regT1, regT0); - notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(LessThan, regT0, Imm32(getConstantOperand(op2).asInt32())), target); - } else { - emitLoad2(op1, regT1, regT0, op2, regT3, regT2); - notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(LessThan, regT0, regT2), target); - } - - if (!supportsFloatingPoint()) { - addSlowCase(notInt32Op1); - addSlowCase(notInt32Op2); - return; - } - Jump end = jump(); - - // Double less. - emitBinaryDoubleOp(op_jless, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); - end.link(this); -} - -void JIT::emitSlow_op_jless(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned op1 = currentInstruction[1].u.operand; - unsigned op2 = currentInstruction[2].u.operand; - unsigned target = currentInstruction[3].u.operand; - - if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { - linkSlowCase(iter); - linkSlowCase(iter); - linkSlowCase(iter); - linkSlowCase(iter); - } else { - if (!supportsFloatingPoint()) { - if (!isOperandConstantImmediateInt(op1) && !isOperandConstantImmediateInt(op2)) - linkSlowCase(iter); // int32 check - linkSlowCase(iter); // int32 check - } else { - if (!isOperandConstantImmediateInt(op1)) { - linkSlowCase(iter); // double check - linkSlowCase(iter); // int32 check - } - if (isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)) - linkSlowCase(iter); // double check - } - } - JITStubCall stubCall(this, cti_op_jless); - stubCall.addArgument(op1); - stubCall.addArgument(op2); - stubCall.call(); - emitJumpSlowToHot(branchTest32(NonZero, regT0), target); -} - -void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert) -{ - unsigned op1 = currentInstruction[1].u.operand; - unsigned op2 = currentInstruction[2].u.operand; - unsigned target = currentInstruction[3].u.operand; - - JumpList notInt32Op1; - JumpList notInt32Op2; - - // Character less. - if (isOperandConstantImmediateChar(op1)) { - emitLoad(op2, regT1, regT0); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); - JumpList failures; - emitLoadCharacterString(regT0, regT0, failures); - addSlowCase(failures); - addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT0, Imm32(asString(getConstantOperand(op1))->tryGetValue()[0])), target); - return; - } - if (isOperandConstantImmediateChar(op2)) { - emitLoad(op1, regT1, regT0); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::CellTag))); - JumpList failures; - emitLoadCharacterString(regT0, regT0, failures); - addSlowCase(failures); - addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(asString(getConstantOperand(op2))->tryGetValue()[0])), target); - return; - } - if (isOperandConstantImmediateInt(op1)) { - emitLoad(op2, regT3, regT2); - notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(invert ? LessThan : GreaterThanOrEqual, regT2, Imm32(getConstantOperand(op1).asInt32())), target); + addJump(branch32(commute(condition), regT2, Imm32(getConstantOperand(op1).asInt32())), target); } else if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, Imm32(getConstantOperand(op2).asInt32())), target); + addJump(branch32(condition, regT0, Imm32(getConstantOperand(op2).asInt32())), target); } else { emitLoad2(op1, regT1, regT0, op2, regT3, regT2); notInt32Op1.append(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); notInt32Op2.append(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - addJump(branch32(invert ? GreaterThan : LessThanOrEqual, regT0, regT2), target); + addJump(branch32(condition, regT0, regT2), target); } if (!supportsFloatingPoint()) { @@ -311,16 +132,12 @@ void JIT::emit_op_jlesseq(Instruction* currentInstruction, bool invert) Jump end = jump(); // Double less. - emitBinaryDoubleOp(invert ? op_jnlesseq : op_jlesseq, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); + emitBinaryDoubleOp(opcode, target, op1, op2, OperandTypes(), notInt32Op1, notInt32Op2, !isOperandConstantImmediateInt(op1), isOperandConstantImmediateInt(op1) || !isOperandConstantImmediateInt(op2)); end.link(this); } -void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector::iterator& iter, bool invert) +void JIT::emit_compareAndJumpSlow(unsigned op1, unsigned op2, unsigned target, DoubleCondition, int (JIT_STUB *stub)(STUB_ARGS_DECLARATION), bool invert, Vector::iterator& iter) { - unsigned op1 = currentInstruction[1].u.operand; - unsigned op2 = currentInstruction[2].u.operand; - unsigned target = currentInstruction[3].u.operand; - if (isOperandConstantImmediateChar(op1) || isOperandConstantImmediateChar(op2)) { linkSlowCase(iter); linkSlowCase(iter); @@ -340,24 +157,13 @@ void JIT::emitSlow_op_jlesseq(Instruction* currentInstruction, Vector::iterator& iter) -{ - emitSlow_op_jlesseq(currentInstruction, iter, true); -} - // LeftShift (<<) void JIT::emit_op_lshift(Instruction* currentInstruction) @@ -370,7 +176,7 @@ void JIT::emit_op_lshift(Instruction* currentInstruction) emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); lshift32(Imm32(getConstantOperand(op2).asInt32()), regT0); - emitStoreInt32(dst, regT0, dst == op1); + emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_lshift)); return; } @@ -379,7 +185,7 @@ void JIT::emit_op_lshift(Instruction* currentInstruction) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); lshift32(regT2, regT0); - emitStoreInt32(dst, regT0, dst == op1 || dst == op2); + emitStoreAndMapInt32(dst, regT1, regT0, dst == op1 || dst == op2, OPCODE_LENGTH(op_lshift)); } void JIT::emitSlow_op_lshift(Instruction* currentInstruction, Vector::iterator& iter) @@ -411,32 +217,27 @@ void JIT::emitRightShift(Instruction* currentInstruction, bool isUnsigned) if (isOperandConstantImmediateInt(op2)) { emitLoad(op1, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - int shift = getConstantOperand(op2).asInt32(); + int shift = getConstantOperand(op2).asInt32() & 0x1f; + if (shift) { + if (isUnsigned) + urshift32(Imm32(shift), regT0); + else + rshift32(Imm32(shift), regT0); + } else if (isUnsigned) // signed right shift by zero is simply toInt conversion + addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); + emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_rshift)); + } else { + emitLoad2(op1, regT1, regT0, op2, regT3, regT2); + if (!isOperandConstantImmediateInt(op1)) + addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); + addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); if (isUnsigned) { - if (shift) - urshift32(Imm32(shift & 0x1f), regT0); - // unsigned shift < 0 or shift = k*2^32 may result in (essentially) - // a toUint conversion, which can result in a value we can represent - // as an immediate int. - if (shift < 0 || !(shift & 31)) - addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); - } else if (shift) { // signed right shift by zero is simply toInt conversion - rshift32(Imm32(shift & 0x1f), regT0); - } - emitStoreInt32(dst, regT0, dst == op1); - return; + urshift32(regT2, regT0); + addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); + } else + rshift32(regT2, regT0); + emitStoreAndMapInt32(dst, regT1, regT0, dst == op1, OPCODE_LENGTH(op_rshift)); } - - emitLoad2(op1, regT1, regT0, op2, regT3, regT2); - if (!isOperandConstantImmediateInt(op1)) - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - if (isUnsigned) { - urshift32(regT2, regT0); - addSlowCase(branch32(LessThan, regT0, TrustedImm32(0))); - } else - rshift32(regT2, regT0); - emitStoreInt32(dst, regT0, dst == op1 || dst == op2); } void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector::iterator& iter, bool isUnsigned) @@ -445,7 +246,7 @@ void JIT::emitRightShiftSlowCase(Instruction* currentInstruction, Vector::iterator& iter) @@ -578,7 +381,7 @@ void JIT::emit_op_bitor(Instruction* currentInstruction) emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); or32(Imm32(constant), regT0); - emitStoreInt32(dst, regT0, (op == dst)); + emitStoreAndMapInt32(dst, regT1, regT0, op == dst, OPCODE_LENGTH(op_bitor)); return; } @@ -586,7 +389,7 @@ void JIT::emit_op_bitor(Instruction* currentInstruction) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); or32(regT2, regT0); - emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); + emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitor)); } void JIT::emitSlow_op_bitor(Instruction* currentInstruction, Vector::iterator& iter) @@ -619,7 +422,7 @@ void JIT::emit_op_bitxor(Instruction* currentInstruction) emitLoad(op, regT1, regT0); addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); xor32(Imm32(constant), regT0); - emitStoreInt32(dst, regT0, (op == dst)); + emitStoreAndMapInt32(dst, regT1, regT0, op == dst, OPCODE_LENGTH(op_bitxor)); return; } @@ -627,7 +430,7 @@ void JIT::emit_op_bitxor(Instruction* currentInstruction) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); xor32(regT2, regT0); - emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); + emitStoreAndMapInt32(dst, regT1, regT0, (op1 == dst || op2 == dst), OPCODE_LENGTH(op_bitxor)); } void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) @@ -646,102 +449,7 @@ void JIT::emitSlow_op_bitxor(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned dst = currentInstruction[1].u.operand; - - linkSlowCase(iter); // int32 check - - JITStubCall stubCall(this, cti_op_bitnot); - stubCall.addArgument(regT1, regT0); - stubCall.call(dst); -} - -// PostInc (i++) - -void JIT::emit_op_post_inc(Instruction* currentInstruction) -{ - unsigned dst = currentInstruction[1].u.operand; - unsigned srcDst = currentInstruction[2].u.operand; - - emitLoad(srcDst, regT1, regT0); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - - if (dst == srcDst) // x = x++ is a noop for ints. - return; - - emitStoreInt32(dst, regT0); - - addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); - emitStoreInt32(srcDst, regT0, true); -} - -void JIT::emitSlow_op_post_inc(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned dst = currentInstruction[1].u.operand; - unsigned srcDst = currentInstruction[2].u.operand; - - linkSlowCase(iter); // int32 check - if (dst != srcDst) - linkSlowCase(iter); // overflow check - - JITStubCall stubCall(this, cti_op_post_inc); - stubCall.addArgument(srcDst); - stubCall.addArgument(Imm32(srcDst)); - stubCall.call(dst); -} - -// PostDec (i--) - -void JIT::emit_op_post_dec(Instruction* currentInstruction) -{ - unsigned dst = currentInstruction[1].u.operand; - unsigned srcDst = currentInstruction[2].u.operand; - - emitLoad(srcDst, regT1, regT0); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - - if (dst == srcDst) // x = x-- is a noop for ints. - return; - - emitStoreInt32(dst, regT0); - - addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); - emitStoreInt32(srcDst, regT0, true); -} - -void JIT::emitSlow_op_post_dec(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned dst = currentInstruction[1].u.operand; - unsigned srcDst = currentInstruction[2].u.operand; - - linkSlowCase(iter); // int32 check - if (dst != srcDst) - linkSlowCase(iter); // overflow check - - JITStubCall stubCall(this, cti_op_post_dec); - stubCall.addArgument(srcDst); - stubCall.addArgument(TrustedImm32(srcDst)); - stubCall.call(dst); -} - -// PreInc (++i) - -void JIT::emit_op_pre_inc(Instruction* currentInstruction) +void JIT::emit_op_inc(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; @@ -749,24 +457,22 @@ void JIT::emit_op_pre_inc(Instruction* currentInstruction) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branchAdd32(Overflow, TrustedImm32(1), regT0)); - emitStoreInt32(srcDst, regT0, true); + emitStoreAndMapInt32(srcDst, regT1, regT0, true, OPCODE_LENGTH(op_inc)); } -void JIT::emitSlow_op_pre_inc(Instruction* currentInstruction, Vector::iterator& iter) +void JIT::emitSlow_op_inc(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check - JITStubCall stubCall(this, cti_op_pre_inc); + JITStubCall stubCall(this, cti_op_inc); stubCall.addArgument(srcDst); stubCall.call(srcDst); } -// PreDec (--i) - -void JIT::emit_op_pre_dec(Instruction* currentInstruction) +void JIT::emit_op_dec(Instruction* currentInstruction) { unsigned srcDst = currentInstruction[1].u.operand; @@ -774,17 +480,17 @@ void JIT::emit_op_pre_dec(Instruction* currentInstruction) addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); addSlowCase(branchSub32(Overflow, TrustedImm32(1), regT0)); - emitStoreInt32(srcDst, regT0, true); + emitStoreAndMapInt32(srcDst, regT1, regT0, true, OPCODE_LENGTH(op_dec)); } -void JIT::emitSlow_op_pre_dec(Instruction* currentInstruction, Vector::iterator& iter) +void JIT::emitSlow_op_dec(Instruction* currentInstruction, Vector::iterator& iter) { unsigned srcDst = currentInstruction[1].u.operand; linkSlowCase(iter); // int32 check linkSlowCase(iter); // overflow check - JITStubCall stubCall(this, cti_op_pre_dec); + JITStubCall stubCall(this, cti_op_dec); stubCall.addArgument(srcDst); stubCall.call(srcDst); } @@ -799,6 +505,7 @@ void JIT::emit_op_add(Instruction* currentInstruction) OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + addSlowCase(); JITStubCall stubCall(this, cti_op_add); stubCall.addArgument(op1); stubCall.addArgument(op2); @@ -839,9 +546,9 @@ void JIT::emit_op_add(Instruction* currentInstruction) void JIT::emitAdd32Constant(unsigned dst, unsigned op, int32_t constant, ResultType opType) { // Int32 case. - emitLoad(op, regT1, regT0); + emitLoad(op, regT1, regT2); Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); - addSlowCase(branchAdd32(Overflow, Imm32(constant), regT0)); + addSlowCase(branchAdd32(Overflow, regT2, Imm32(constant), regT0)); emitStoreInt32(dst, regT0, (op == dst)); // Double case. @@ -870,8 +577,10 @@ void JIT::emitSlow_op_add(Instruction* currentInstruction, Vector unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); - if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) + if (!types.first().mightBeNumber() || !types.second().mightBeNumber()) { + linkDummySlowCase(iter); return; + } unsigned op; int32_t constant; @@ -950,8 +659,13 @@ void JIT::emitSub32Constant(unsigned dst, unsigned op, int32_t constant, ResultT // Int32 case. emitLoad(op, regT1, regT0); Jump notInt32 = branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag)); - addSlowCase(branchSub32(Overflow, Imm32(constant), regT0)); - emitStoreInt32(dst, regT0, (op == dst)); +#if ENABLE(JIT_CONSTANT_BLINDING) + addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2, regT3)); +#else + addSlowCase(branchSub32(Overflow, regT0, Imm32(constant), regT2)); +#endif + + emitStoreInt32(dst, regT2, (op == dst)); // Double case. if (!supportsFloatingPoint()) { @@ -1054,15 +768,39 @@ void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsi subDouble(fpRegT0, fpRegT1); emitStoreDouble(dst, fpRegT1); break; - case op_div: + case op_div: { emitLoadDouble(op1, fpRegT1); divDouble(fpRegT0, fpRegT1); + +#if ENABLE(VALUE_PROFILER) + // Is the result actually an integer? The DFG JIT would really like to know. If it's + // not an integer, we increment a count. If this together with the slow case counter + // are below threshold then the DFG JIT will compile this division with a specualtion + // that the remainder is zero. + + // As well, there are cases where a double result here would cause an important field + // in the heap to sometimes have doubles in it, resulting in double predictions getting + // propagated to a use site where it might cause damage (such as the index to an array + // access). So if we are DFG compiling anything in the program, we want this code to + // ensure that it produces integers whenever possible. + + // FIXME: This will fail to convert to integer if the result is zero. We should + // distinguish between positive zero and negative zero here. + + JumpList notInteger; + branchConvertDoubleToInt32(fpRegT1, regT2, notInteger, fpRegT0); + // If we've got an integer, we might as well make that the result of the division. + emitStoreInt32(dst, regT2); + Jump isInteger = jump(); + notInteger.link(this); + add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); emitStoreDouble(dst, fpRegT1); + isInteger.link(this); +#else + emitStoreDouble(dst, fpRegT1); +#endif break; - case op_jnless: - emitLoadDouble(op1, fpRegT2); - addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst); - break; + } case op_jless: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThan, fpRegT2, fpRegT0), dst); @@ -1071,12 +809,32 @@ void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsi emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrEqual, fpRegT2, fpRegT0), dst); break; + case op_jgreater: + emitLoadDouble(op1, fpRegT2); + addJump(branchDouble(DoubleGreaterThan, fpRegT2, fpRegT0), dst); + break; + case op_jgreatereq: + emitLoadDouble(op1, fpRegT2); + addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT2, fpRegT0), dst); + break; + case op_jnless: + emitLoadDouble(op1, fpRegT2); + addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst); + break; case op_jnlesseq: emitLoadDouble(op1, fpRegT2); addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT0, fpRegT2), dst); break; + case op_jngreater: + emitLoadDouble(op1, fpRegT2); + addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT0, fpRegT2), dst); + break; + case op_jngreatereq: + emitLoadDouble(op1, fpRegT2); + addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT0, fpRegT2), dst); + break; default: - ASSERT_NOT_REACHED(); + RELEASE_ASSERT_NOT_REACHED(); } if (!notInt32Op2.empty()) @@ -1115,29 +873,72 @@ void JIT::emitBinaryDoubleOp(OpcodeID opcodeID, unsigned dst, unsigned op1, unsi subDouble(fpRegT2, fpRegT0); emitStoreDouble(dst, fpRegT0); break; - case op_div: + case op_div: { emitLoadDouble(op2, fpRegT2); divDouble(fpRegT2, fpRegT0); +#if ENABLE(VALUE_PROFILER) + // Is the result actually an integer? The DFG JIT would really like to know. If it's + // not an integer, we increment a count. If this together with the slow case counter + // are below threshold then the DFG JIT will compile this division with a specualtion + // that the remainder is zero. + + // As well, there are cases where a double result here would cause an important field + // in the heap to sometimes have doubles in it, resulting in double predictions getting + // propagated to a use site where it might cause damage (such as the index to an array + // access). So if we are DFG compiling anything in the program, we want this code to + // ensure that it produces integers whenever possible. + + // FIXME: This will fail to convert to integer if the result is zero. We should + // distinguish between positive zero and negative zero here. + + JumpList notInteger; + branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1); + // If we've got an integer, we might as well make that the result of the division. + emitStoreInt32(dst, regT2); + Jump isInteger = jump(); + notInteger.link(this); + add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); emitStoreDouble(dst, fpRegT0); + isInteger.link(this); +#else + emitStoreDouble(dst, fpRegT0); +#endif break; - case op_jnless: - emitLoadDouble(op2, fpRegT1); - addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst); - break; + } case op_jless: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThan, fpRegT0, fpRegT1), dst); break; + case op_jlesseq: + emitLoadDouble(op2, fpRegT1); + addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst); + break; + case op_jgreater: + emitLoadDouble(op2, fpRegT1); + addJump(branchDouble(DoubleGreaterThan, fpRegT0, fpRegT1), dst); + break; + case op_jgreatereq: + emitLoadDouble(op2, fpRegT1); + addJump(branchDouble(DoubleGreaterThanOrEqual, fpRegT0, fpRegT1), dst); + break; + case op_jnless: + emitLoadDouble(op2, fpRegT1); + addJump(branchDouble(DoubleLessThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst); + break; case op_jnlesseq: emitLoadDouble(op2, fpRegT1); addJump(branchDouble(DoubleLessThanOrUnordered, fpRegT1, fpRegT0), dst); break; - case op_jlesseq: + case op_jngreater: emitLoadDouble(op2, fpRegT1); - addJump(branchDouble(DoubleLessThanOrEqual, fpRegT0, fpRegT1), dst); + addJump(branchDouble(DoubleGreaterThanOrEqualOrUnordered, fpRegT1, fpRegT0), dst); + break; + case op_jngreatereq: + emitLoadDouble(op2, fpRegT1); + addJump(branchDouble(DoubleGreaterThanOrUnordered, fpRegT1, fpRegT0), dst); break; default: - ASSERT_NOT_REACHED(); + RELEASE_ASSERT_NOT_REACHED(); } } @@ -1153,6 +954,10 @@ void JIT::emit_op_mul(Instruction* currentInstruction) unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); +#if ENABLE(VALUE_PROFILER) + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); +#endif + JumpList notInt32Op1; JumpList notInt32Op2; @@ -1194,6 +999,12 @@ void JIT::emitSlow_op_mul(Instruction* currentInstruction, Vector emitJumpSlowToHot(jump(), OPCODE_LENGTH(op_mul)); negZero.link(this); +#if ENABLE(VALUE_PROFILER) + // We only get here if we have a genuine negative zero. Record this, + // so that the speculative JIT knows that we failed speculation + // because of a negative zero. + add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); +#endif overflow.link(this); if (!supportsFloatingPoint()) { @@ -1227,6 +1038,10 @@ void JIT::emit_op_div(Instruction* currentInstruction) unsigned op2 = currentInstruction[3].u.operand; OperandTypes types = OperandTypes::fromInt(currentInstruction[4].u.operand); +#if ENABLE(VALUE_PROFILER) + m_codeBlock->addSpecialFastCaseProfile(m_bytecodeOffset); +#endif + if (!supportsFloatingPoint()) { addSlowCase(jump()); return; @@ -1246,7 +1061,32 @@ void JIT::emit_op_div(Instruction* currentInstruction) convertInt32ToDouble(regT0, fpRegT0); convertInt32ToDouble(regT2, fpRegT1); divDouble(fpRegT1, fpRegT0); +#if ENABLE(VALUE_PROFILER) + // Is the result actually an integer? The DFG JIT would really like to know. If it's + // not an integer, we increment a count. If this together with the slow case counter + // are below threshold then the DFG JIT will compile this division with a specualtion + // that the remainder is zero. + + // As well, there are cases where a double result here would cause an important field + // in the heap to sometimes have doubles in it, resulting in double predictions getting + // propagated to a use site where it might cause damage (such as the index to an array + // access). So if we are DFG compiling anything in the program, we want this code to + // ensure that it produces integers whenever possible. + + // FIXME: This will fail to convert to integer if the result is zero. We should + // distinguish between positive zero and negative zero here. + + JumpList notInteger; + branchConvertDoubleToInt32(fpRegT0, regT2, notInteger, fpRegT1); + // If we've got an integer, we might as well make that the result of the division. + emitStoreInt32(dst, regT2); + end.append(jump()); + notInteger.link(this); + add32(TrustedImm32(1), AbsoluteAddress(&m_codeBlock->specialFastCaseProfileForBytecodeOffset(m_bytecodeOffset)->m_counter)); + emitStoreDouble(dst, fpRegT0); +#else emitStoreDouble(dst, fpRegT0); +#endif end.append(jump()); // Double divide. @@ -1283,8 +1123,6 @@ void JIT::emitSlow_op_div(Instruction* currentInstruction, Vector /* ------------------------------ BEGIN: OP_MOD ------------------------------ */ -#if CPU(X86) || CPU(X86_64) || CPU(MIPS) - void JIT::emit_op_mod(Instruction* currentInstruction) { unsigned dst = currentInstruction[1].u.operand; @@ -1297,85 +1135,22 @@ void JIT::emit_op_mod(Instruction* currentInstruction) ASSERT(regT1 == X86Registers::edx); ASSERT(regT2 == X86Registers::ecx); ASSERT(regT3 == X86Registers::ebx); -#endif - if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { - emitLoad(op1, regT1, regT0); - move(Imm32(getConstantOperand(op2).asInt32()), regT2); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - if (getConstantOperand(op2).asInt32() == -1) - addSlowCase(branch32(Equal, regT0, TrustedImm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC - } else { - emitLoad2(op1, regT1, regT0, op2, regT3, regT2); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - - addSlowCase(branch32(Equal, regT0, TrustedImm32(0x80000000))); // -2147483648 / -1 => EXC_ARITHMETIC - addSlowCase(branch32(Equal, regT2, TrustedImm32(0))); // divide by 0 - } + emitLoad2(op1, regT0, regT3, op2, regT1, regT2); + addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); + addSlowCase(branch32(NotEqual, regT0, TrustedImm32(JSValue::Int32Tag))); - move(regT0, regT3); // Save dividend payload, in case of 0. -#if CPU(X86) || CPU(X86_64) + move(regT3, regT0); + addSlowCase(branchTest32(Zero, regT2)); + Jump denominatorNotNeg1 = branch32(NotEqual, regT2, TrustedImm32(-1)); + addSlowCase(branch32(Equal, regT0, TrustedImm32(-2147483647-1))); + denominatorNotNeg1.link(this); m_assembler.cdq(); m_assembler.idivl_r(regT2); -#elif CPU(MIPS) - m_assembler.div(regT0, regT2); - m_assembler.mfhi(regT1); -#endif - - // If the remainder is zero and the dividend is negative, the result is -0. - Jump storeResult1 = branchTest32(NonZero, regT1); - Jump storeResult2 = branchTest32(Zero, regT3, TrustedImm32(0x80000000)); // not negative - emitStore(dst, jsNumber(-0.0)); - Jump end = jump(); - - storeResult1.link(this); - storeResult2.link(this); + Jump numeratorPositive = branch32(GreaterThanOrEqual, regT3, TrustedImm32(0)); + addSlowCase(branchTest32(Zero, regT1)); + numeratorPositive.link(this); emitStoreInt32(dst, regT1, (op1 == dst || op2 == dst)); - end.link(this); -} - -void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) -{ - unsigned dst = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - - if (isOperandConstantImmediateInt(op2) && getConstantOperand(op2).asInt32() != 0) { - linkSlowCase(iter); // int32 check - if (getConstantOperand(op2).asInt32() == -1) - linkSlowCase(iter); // 0x80000000 check - } else { - linkSlowCase(iter); // int32 check - linkSlowCase(iter); // int32 check - linkSlowCase(iter); // 0 check - linkSlowCase(iter); // 0x80000000 check - } - - JITStubCall stubCall(this, cti_op_mod); - stubCall.addArgument(op1); - stubCall.addArgument(op2); - stubCall.call(dst); -} - -#else // CPU(X86) || CPU(X86_64) || CPU(MIPS) - -void JIT::emit_op_mod(Instruction* currentInstruction) -{ - unsigned dst = currentInstruction[1].u.operand; - unsigned op1 = currentInstruction[2].u.operand; - unsigned op2 = currentInstruction[3].u.operand; - -#if ENABLE(JIT_USE_SOFT_MODULO) - emitLoad2(op1, regT1, regT0, op2, regT3, regT2); - addSlowCase(branch32(NotEqual, regT1, TrustedImm32(JSValue::Int32Tag))); - addSlowCase(branch32(NotEqual, regT3, TrustedImm32(JSValue::Int32Tag))); - - addSlowCase(branch32(Equal, regT2, TrustedImm32(0))); - - emitNakedCall(m_globalData->jitStubs->ctiSoftModulo()); - - emitStoreInt32(dst, regT0, (op1 == dst || op2 == dst)); #else JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); @@ -1386,15 +1161,15 @@ void JIT::emit_op_mod(Instruction* currentInstruction) void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector::iterator& iter) { - UNUSED_PARAM(currentInstruction); - UNUSED_PARAM(iter); -#if ENABLE(JIT_USE_SOFT_MODULO) +#if CPU(X86) || CPU(X86_64) unsigned result = currentInstruction[1].u.operand; unsigned op1 = currentInstruction[2].u.operand; unsigned op2 = currentInstruction[3].u.operand; linkSlowCase(iter); linkSlowCase(iter); linkSlowCase(iter); + linkSlowCase(iter); + linkSlowCase(iter); JITStubCall stubCall(this, cti_op_mod); stubCall.addArgument(op1); stubCall.addArgument(op2); @@ -1402,12 +1177,12 @@ void JIT::emitSlow_op_mod(Instruction* currentInstruction, Vector #else UNUSED_PARAM(currentInstruction); UNUSED_PARAM(iter); - ASSERT_NOT_REACHED(); + // We would have really useful assertions here if it wasn't for the compiler's + // insistence on attribute noreturn. + // RELEASE_ASSERT_NOT_REACHED(); #endif } -#endif // CPU(X86) || CPU(X86_64) - /* ------------------------------ END: OP_MOD ------------------------------ */ } // namespace JSC