]>
git.saurik.com Git - apple/javascriptcore.git/blob - runtime/MathCommon.cpp
2 * Copyright (C) 2015 Apple Inc. All rights reserved.
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #include "MathCommon.h"
34 #if PLATFORM(IOS) && CPU(ARM_THUMB2)
36 // The following code is taken from netlib.org:
37 // http://www.netlib.org/fdlibm/fdlibm.h
38 // http://www.netlib.org/fdlibm/e_pow.c
39 // http://www.netlib.org/fdlibm/s_scalbn.c
41 // And was originally distributed under the following license:
44 * ====================================================
45 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
47 * Developed at SunSoft, a Sun Microsystems, Inc. business.
48 * Permission to use, copy, modify, and distribute this
49 * software is freely granted, provided that this notice
51 * ====================================================
54 * ====================================================
55 * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
57 * Permission to use, copy, modify, and distribute this
58 * software is freely granted, provided that this notice
60 * ====================================================
63 /* __ieee754_pow(x,y) return x**y
66 * Method: Let x = 2 * (1+f)
67 * 1. Compute and return log2(x) in two pieces:
69 * where w1 has 53-24 = 29 bit trailing zeros.
70 * 2. Perform y*log2(x) = n+y' by simulating muti-precision
71 * arithmetic, where |y'|<=0.5.
72 * 3. Return x**y = 2**n*exp(y'*log2)
75 * 1. (anything) ** 0 is 1
76 * 2. (anything) ** 1 is itself
77 * 3. (anything) ** NAN is NAN
78 * 4. NAN ** (anything except 0) is NAN
79 * 5. +-(|x| > 1) ** +INF is +INF
80 * 6. +-(|x| > 1) ** -INF is +0
81 * 7. +-(|x| < 1) ** +INF is +0
82 * 8. +-(|x| < 1) ** -INF is +INF
83 * 9. +-1 ** +-INF is NAN
84 * 10. +0 ** (+anything except 0, NAN) is +0
85 * 11. -0 ** (+anything except 0, NAN, odd integer) is +0
86 * 12. +0 ** (-anything except 0, NAN) is +INF
87 * 13. -0 ** (-anything except 0, NAN, odd integer) is +INF
88 * 14. -0 ** (odd integer) = -( +0 ** (odd integer) )
89 * 15. +INF ** (+anything except 0,NAN) is +INF
90 * 16. +INF ** (-anything except 0,NAN) is +0
91 * 17. -INF ** (anything) = -0 ** (-anything)
92 * 18. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
93 * 19. (-anything except 0 and inf) ** (non-integer) is NAN
96 * pow(x,y) returns x**y nearly rounded. In particular
97 * pow(integer,integer)
98 * always returns the correct integer provided it is
102 * The hexadecimal values are the intended ones for the following
103 * constants. The decimal values may be used, provided that the
104 * compiler will convert from decimal to binary accurately enough
105 * to produce the hexadecimal values shown.
108 #define __HI(x) *(1+(int*)&x)
109 #define __LO(x) *(int*)&x
113 dp_h
[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
114 dp_l
[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
118 two53
= 9007199254740992.0, /* 0x43400000, 0x00000000 */
122 two54
= 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
123 twom54
= 5.55111512312578270212e-17, /* 0x3C900000, 0x00000000 */
124 /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
125 L1
= 5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
126 L2
= 4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
127 L3
= 3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
128 L4
= 2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
129 L5
= 2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
130 L6
= 2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
131 P1
= 1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
132 P2
= -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
133 P3
= 6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
134 P4
= -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
135 P5
= 4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
136 lg2
= 6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
137 lg2_h
= 6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
138 lg2_l
= -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
139 ovt
= 8.0085662595372944372e-0017, /* -(1024-log2(ovfl+.5ulp)) */
140 cp
= 9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
141 cp_h
= 9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
142 cp_l
= -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
143 ivln2
= 1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
144 ivln2_h
= 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
145 ivln2_l
= 1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
147 inline double fdlibmScalbn (double x
, int n
)
152 k
= (hx
&0x7ff00000)>>20; /* extract exponent */
153 if (k
==0) { /* 0 or subnormal x */
154 if ((lx
|(hx
&0x7fffffff))==0) return x
; /* +-0 */
157 k
= ((hx
&0x7ff00000)>>20) - 54;
158 if (n
< -50000) return tiny
*x
; /*underflow*/
160 if (k
==0x7ff) return x
+x
; /* NaN or Inf */
162 if (k
> 0x7fe) return huge
*copysign(huge
,x
); /* overflow */
163 if (k
> 0) /* normal result */
164 {__HI(x
) = (hx
&0x800fffff)|(k
<<20); return x
;}
166 if (n
> 50000) /* in case integer overflow in n+k */
167 return huge
*copysign(huge
,x
); /*overflow*/
168 else return tiny
*copysign(tiny
,x
); /*underflow*/
170 k
+= 54; /* subnormal result */
171 __HI(x
) = (hx
&0x800fffff)|(k
<<20);
175 static double fdlibmPow(double x
, double y
)
177 double z
,ax
,z_h
,z_l
,p_h
,p_l
;
178 double y1
,t1
,t2
,r
,s
,t
,u
,v
,w
;
179 int i0
,i1
,i
,j
,k
,yisint
,n
;
183 i0
= ((*(int*)&one
)>>29)^1; i1
=1-i0
;
184 hx
= __HI(x
); lx
= __LO(x
);
185 hy
= __HI(y
); ly
= __LO(y
);
186 ix
= hx
&0x7fffffff; iy
= hy
&0x7fffffff;
188 /* y==zero: x**0 = 1 */
189 if((iy
|ly
)==0) return one
;
191 /* +-NaN return x+y */
192 if(ix
> 0x7ff00000 || ((ix
==0x7ff00000)&&(lx
!=0)) ||
193 iy
> 0x7ff00000 || ((iy
==0x7ff00000)&&(ly
!=0)))
196 /* determine if y is an odd int when x < 0
197 * yisint = 0 ... y is not an integer
198 * yisint = 1 ... y is an odd int
199 * yisint = 2 ... y is an even int
203 if(iy
>=0x43400000) yisint
= 2; /* even integer y */
204 else if(iy
>=0x3ff00000) {
205 k
= (iy
>>20)-0x3ff; /* exponent */
208 if(static_cast<unsigned>(j
<<(52-k
))==ly
) yisint
= 2-(j
&1);
211 if((j
<<(20-k
))==iy
) yisint
= 2-(j
&1);
216 /* special value of y */
218 if (iy
==0x7ff00000) { /* y is +-inf */
219 if(((ix
-0x3ff00000)|lx
)==0)
220 return y
- y
; /* inf**+-1 is NaN */
221 else if (ix
>= 0x3ff00000)/* (|x|>1)**+-inf = inf,0 */
222 return (hy
>=0)? y
: zero
;
223 else /* (|x|<1)**-,+inf = inf,0 */
224 return (hy
<0)?-y
: zero
;
226 if(iy
==0x3ff00000) { /* y is +-1 */
227 if(hy
<0) return one
/x
; else return x
;
229 if(hy
==0x40000000) return x
*x
; /* y is 2 */
230 if(hy
==0x3fe00000) { /* y is 0.5 */
231 if(hx
>=0) /* x >= +0 */
237 /* special value of x */
239 if(ix
==0x7ff00000||ix
==0||ix
==0x3ff00000){
240 z
= ax
; /*x is +-0,+-inf,+-1*/
241 if(hy
<0) z
= one
/z
; /* z = (1/|x|) */
243 if(((ix
-0x3ff00000)|yisint
)==0) {
244 z
= (z
-z
)/(z
-z
); /* (-1)**non-int is NaN */
246 z
= -z
; /* (x<0)**odd = -(|x|**odd) */
254 /* (x<0)**(non-int) is NaN */
255 if((n
|yisint
)==0) return (x
-x
)/(x
-x
);
257 s
= one
; /* s (sign of result -ve**odd) = -1 else = 1 */
258 if((n
|(yisint
-1))==0) s
= -one
;/* (-ve)**(odd int) */
261 if(iy
>0x41e00000) { /* if |y| > 2**31 */
262 if(iy
>0x43f00000){ /* if |y| > 2**64, must o/uflow */
263 if(ix
<=0x3fefffff) return (hy
<0)? huge
*huge
:tiny
*tiny
;
264 if(ix
>=0x3ff00000) return (hy
>0)? huge
*huge
:tiny
*tiny
;
266 /* over/underflow if x is not close to one */
267 if(ix
<0x3fefffff) return (hy
<0)? s
*huge
*huge
:s
*tiny
*tiny
;
268 if(ix
>0x3ff00000) return (hy
>0)? s
*huge
*huge
:s
*tiny
*tiny
;
269 /* now |1-x| is tiny <= 2**-20, suffice to compute
270 log(x) by x-x^2/2+x^3/3-x^4/4 */
271 t
= ax
-one
; /* t has 20 trailing zeros */
272 w
= (t
*t
)*(0.5-t
*(0.3333333333333333333333-t
*0.25));
273 u
= ivln2_h
*t
; /* ivln2_h has 21 sig. bits */
274 v
= t
*ivln2_l
-w
*ivln2
;
279 double ss
,s2
,s_h
,s_l
,t_h
,t_l
;
281 /* take care subnormal number */
283 {ax
*= two53
; n
-= 53; ix
= __HI(ax
); }
284 n
+= ((ix
)>>20)-0x3ff;
286 /* determine interval */
287 ix
= j
|0x3ff00000; /* normalize ix */
288 if(j
<=0x3988E) k
=0; /* |x|<sqrt(3/2) */
289 else if(j
<0xBB67A) k
=1; /* |x|<sqrt(3) */
290 else {k
=0;n
+=1;ix
-= 0x00100000;}
293 /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
294 u
= ax
-bp
[k
]; /* bp[0]=1.0, bp[1]=1.5 */
299 /* t_h=ax+bp[k] High */
301 __HI(t_h
)=((ix
>>1)|0x20000000)+0x00080000+(k
<<18);
302 t_l
= ax
- (t_h
-bp
[k
]);
303 s_l
= v
*((u
-s_h
*t_h
)-s_h
*t_l
);
304 /* compute log(ax) */
306 r
= s2
*s2
*(L1
+s2
*(L2
+s2
*(L3
+s2
*(L4
+s2
*(L5
+s2
*L6
)))));
311 t_l
= r
-((t_h
-3.0)-s2
);
312 /* u+v = ss*(1+...) */
315 /* 2/(3log2)*(ss+...) */
319 z_h
= cp_h
*p_h
; /* cp_h+cp_l = 2/(3*log2) */
320 z_l
= cp_l
*p_h
+p_l
*cp
+dp_l
[k
];
321 /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
323 t1
= (((z_h
+z_l
)+dp_h
[k
])+t
);
325 t2
= z_l
-(((t1
-t
)-dp_h
[k
])-z_h
);
328 /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
331 p_l
= (y
-y1
)*t1
+y
*t2
;
336 if (j
>=0x40900000) { /* z >= 1024 */
337 if(((j
-0x40900000)|i
)!=0) /* if z > 1024 */
338 return s
*huge
*huge
; /* overflow */
340 if(p_l
+ovt
>z
-p_h
) return s
*huge
*huge
; /* overflow */
342 } else if((j
&0x7fffffff)>=0x4090cc00 ) { /* z <= -1075 */
343 if(((j
-0xc090cc00)|i
)!=0) /* z < -1075 */
344 return s
*tiny
*tiny
; /* underflow */
346 if(p_l
<=z
-p_h
) return s
*tiny
*tiny
; /* underflow */
350 * compute 2**(p_h+p_l)
355 if(i
>0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
356 n
= j
+(0x00100000>>(k
+1));
357 k
= ((n
&0x7fffffff)>>20)-0x3ff; /* new k for n */
359 __HI(t
) = (n
&~(0x000fffff>>k
));
360 n
= ((n
&0x000fffff)|0x00100000)>>(20-k
);
367 v
= (p_l
-(t
-p_h
))*lg2
+t
*lg2_l
;
371 t1
= z
- t
*(P1
+t
*(P2
+t
*(P3
+t
*(P4
+t
*P5
))));
372 r
= (z
*t1
)/(t1
-two
)-(w
+z
*w
);
376 if((j
>>20)<=0) z
= fdlibmScalbn(z
,n
); /* subnormal output */
377 else __HI(z
) += (n
<<20);
381 static ALWAYS_INLINE
bool isDenormal(double x
)
383 static const uint64_t signbit
= 0x8000000000000000ULL
;
384 static const uint64_t minNormal
= 0x0001000000000000ULL
;
385 return (bitwise_cast
<uint64_t>(x
) & ~signbit
) - 1 < minNormal
- 1;
388 static ALWAYS_INLINE
bool isEdgeCase(double x
)
390 static const uint64_t signbit
= 0x8000000000000000ULL
;
391 static const uint64_t infinity
= 0x7fffffffffffffffULL
;
392 return (bitwise_cast
<uint64_t>(x
) & ~signbit
) - 1 >= infinity
- 1;
395 static ALWAYS_INLINE
double mathPowInternal(double x
, double y
)
397 if (!isDenormal(x
) && !isDenormal(y
)) {
398 double libmResult
= std::pow(x
, y
);
399 if (libmResult
|| isEdgeCase(x
) || isEdgeCase(y
))
402 return fdlibmPow(x
, y
);
407 ALWAYS_INLINE
double mathPowInternal(double x
, double y
)
414 double JIT_OPERATION
operationMathPow(double x
, double y
)
418 if (std::isinf(y
) && fabs(x
) == 1)
420 return mathPowInternal(x
, y
);
424 double jsRound(double value
)
426 double integer
= ceil(value
);
427 return integer
- (integer
- value
> 0.5);